首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Salmonella enterica serovar Typhimurium PhoP/PhoQ system has largely been studied as a paradigmatic two-component regulatory system not only to dissect structural and functional aspects of signal transduction in bacteria but also to gain knowledge about the versatile devices that have evolved allowing a pathogenic bacterium to adjust to or counteract environmental stressful conditions along its life cycle. Mg2+ limitation, acidic pH, and the presence of cationic antimicrobial peptides have been identified as cues that the sensor protein PhoQ can monitor to reprogram Salmonella gene expression to cope with extra- or intracellular challenging conditions. In this work, we show for the first time that long chain unsaturated free fatty acids (LCUFAs) present in Salmonella growth medium are signals specifically detected by PhoQ. We demonstrate that LCUFAs inhibit PhoQ autokinase activity, turning off the expression of the PhoP-dependent regulon. We also show that LCUFAs exert their action independently of their cellular uptake and metabolic utilization by means of the β-oxidative pathway. Our findings put forth the complexity of input signals that can converge to finely tune the activity of the PhoP/PhoQ system. In addition, they provide a new potential biochemical platform for the development of antibacterial strategies to fight against Salmonella infections.  相似文献   

3.
4.
5.
6.
7.
In Escherichia coli and other γ‐proteobacteria, the PhoQ‐PhoP two‐component signaling system responds to low extracellular Mg++ and cationic antimicrobial peptides. On transition to inducing conditions, the expression of PhoP‐dependent genes increases rapidly, but then decays to a new, intermediate steady‐state level, a phenomenon often referred to as partial adaptation. The molecular basis for this partial adaptation has been unclear. Here, using time‐lapse fluorescence microscopy to examine PhoP‐dependent gene expression in individual E. coli cells we show that partial adaptation arises through a negative feedback loop involving the small protein MgrB. When E. coli cells are shifted to low Mg++, PhoQ engages in multiple rounds of autophosphorylation and phosphotransfer to PhoP, which, in turn, drives the expression of mgrB. MgrB then feeds back to inhibit the kinase activity of PhoQ. PhoQ is bifunctional such that, when not active as a kinase, it can stimulate the dephosphorylation of PhoP. Thus, MgrB drives the inactivation of PhoP and the observed adaptation in PhoP‐dependent gene expression. Our results clarify the source of feedback inhibition in the E. coli PhoQ‐PhoP system and reveal how exogenous factors, such as MgrB, can combine with a canonical two‐component signaling pathway to produce complex temporal dynamics in target gene expression.  相似文献   

8.
9.
10.
11.
The PhoP/PhoQ two-component system controls the expression of essential virulence traits in the pathogenic bacterium Salmonella enterica serovar Typhimurium. Environmental deprivation of Mg(2+) activates the PhoP/PhoQ signal transduction cascade, which results in an increased expression of genes necessary for survival inside the host. It was previously demonstrated that the interaction of Mg(2+) with the periplasmic domain of PhoQ promotes a conformational change in the sensor protein that leads to the down-regulation of PhoP-activated genes. We have now examined the regulatory effect of Mg(2+) on the putative activities of the membrane-bound PhoQ. We demonstrated that Mg(2+) promotes a phospho-PhoP phosphatase activity in the sensor protein. This activity depends on the intactness of the conserved His-277, suggesting that the phosphatase active site overlaps the H box. The integrity of the N-terminal domain of PhoQ was essential for the induction of the phosphatase activity, because Mg(2+) did not stimulate the release of inorganic phosphate from phospho-PhoP in a fusion protein that lacks this sensing domain. These findings reveal that the sensor PhoQ harbors a phospho-PhoP phosphatase activity, and that this phosphatase activity is the target of the extracellular Mg(2+)-triggered regulation of the PhoP/PhoQ system.  相似文献   

12.
In two-component signaling systems, the transduction strategy relies on a conserved His-Asp phosphoryl exchange between the sensor histidine kinase and its cognate response-regulator, and structural and functional consensus motifs are found when comparing either the diverse histidine kinases or response regulators present in a single cell. Therefore, the mechanism that guarantees the specific recognition between partners of an individual pair is essential to unequivocally generate the appropriate adaptive response. Based on sequence alignments with other histidine kinases, we dissected the Salmonella enterica Mg2+-sensor PhoQ in different subdomains and examined by in vivo and in vitro assays its interaction with the associated response regulator PhoP. This signal transduction system allows Salmonella to withstand environmental Mg2+ limitation by triggering gene expression that is vital throughout the infective cycle in the host. Using resonant mirror biosensor technology, we calculated the kinetic and equilibrium binding constants and determined that the His-phosphotransfer domain is essential for the PhoQ specific recognition and interaction with PhoP. Additionally, we show the role of this domain in the bimolecular transphosphorylation and provide evidence that this region undergoes dimerization.  相似文献   

13.
Corynebacterium pseudotuberculosis is a facultatively intracellular Gram-positive bacterium that causes caseous lymphadenitis, principally in sheep and goats, though sometimes in other species of animals, leading to considerable economic losses. This pathogen has a TCS known as PhoPR, which consists of a sensory histidine kinase protein (PhoR) and an intracellular response regulator protein (PhoP). This system is involved in the regulation of proteins present in various processes, including virulence. The regulation is activated by PhoP protein phosphorylation, an event that requires a magnesium (Mg2+) ion. Here we describe the 3D structure of the regulatory response protein (PhoP) of C. pseudotuberculosis through molecular modeling by homology. The model generated provides the first structural information on a full-length member of the OmpR/PhoP subfamily. Classical molecular dynamics was used to investigate the stability of the model. In addition, we used quantum mechanical/molecular mechanical techniques to perform (internal, potential) energy optimizations to determine the interaction energy between the Mg2+ ion and the structure of the PhoP protein. Analysis of the interaction energy residue by residue shows that Asp-16 and Asp-59 play an important role in the protein–Mg2+ ion interactions. These results may be useful for the future development of a new vaccine against tuberculosis based on genetic attenuation via a point mutation that results in the polar residue Asp-16 and/or Asp-59 being replaced with a nonpolar residue in the DNA-binding domain of PhoP of C. pseudotuberculosis.  相似文献   

14.
Two-component signal transduction systems (TCSs), utilized extensively by bacteria and archaea, are involved in the rapid adaptation of the organisms to fluctuating environments. A typical TCS transduces the signal by a phosphorelay between the sensor histidine kinase and its cognate response regulator. Recently, small-sized proteins that link TCSs have been reported and are called "connectors." Their physiological roles, however, have remained elusive. SafA (sensor associating factor A) (formerly B1500), a small (65-amino-acid [65-aa]) membrane protein, is among such connectors and links Escherichia coli TCSs EvgS/EvgA and PhoQ/PhoP. Since the activation of the EvgS/EvgA system induces acid resistance, we examined whether the SafA-activated PhoQ/PhoP system is also involved in the acid resistance induced by EvgS/EvgA. Using a constitutively active evgS1 mutant for the activation of EvgS/EvgA, we found that SafA, PhoQ, and PhoP all contributed to the acid resistance phenotype. Moreover, EvgS/EvgA activation resulted in the accumulation of cellular RpoS in the exponential-phase cells in a SafA-, PhoQ-, and PhoP-dependent manner. This RpoS accumulation was caused by another connector, IraM, expression of which was induced by the activation of the PhoQ/PhoP system, thus preventing RpoS degradation by trapping response regulator RssB. Acid resistance assays demonstrated that IraM also participated in the EvgS/EvgA-induced acid resistance. Therefore, we propose a model of a signal transduction cascade proceeding from EvgS/EvgA to PhoQ/PhoP and then to RssB (connected by SafA and IraM) and discuss its contribution to the acid resistance phenotype.  相似文献   

15.
Inhibition of the growth of Saccharomyces cerevisiae was evident at concentrations of 0.5 mM Mn2+ or higher, but a tolerance to lower Mn2+ concentrations was observed. The inhibitory effects of 2.0 mM Mn2+ were eliminated by supplementing the medium with excess Mg2+ (10 mM), whereas addition of excess Ca2+ and K+ had negligible effect on Mn2+ toxicity. Growth inhibition by Mn2+, in the absence of a Mg2+ supplement, was attributed to Mn2+ accumulation to toxic intracellular levels. Mn levels in S. cerevisiae grown in Mg2+-supplemented medium were severalfold lower than those of cells growing in unsupplemented medium. Mn2+ toxicity was also influenced by intracellular Mg, as Mn2+ toxicity was found to be more closely correlated with the cellular Mg:Mn ratio than with cellular Mn levels alone. Cells with low intracellular levels of Mg were more susceptible to Mn2+ toxicity than cells with high cellular Mg, even when sequestered Mn2+ levels were similar. A critical Mg:Mn ratio of 2.0 was identified below which Mn2+ toxicity became acute. The results demonstrate the importance of intracellular and extracellular competitive interactions in determining the toxicity of Mn2+. Received: 18 June 1997 / Received last revision: 10 January 1998 / Accepted: 24 January 1998  相似文献   

16.
17.
PhoP can activate its target genes in a PhoQ-independent manner   总被引:2,自引:0,他引:2       下载免费PDF全文
The PhoP/PhoQ two-component system controls the extracellular magnesium depletion response in Salmonella enterica. Previous studies have shown that PhoP is unable to up-regulate its target genes in the absence of PhoQ function. In this work, we demonstrate that PhoP overexpression can substitute for PhoQ- and phosphorylation-dependent activation. Either a high concentration of PhoP or activation via phosphorylation stimulates PhoP self-association.  相似文献   

18.
We showed previously that insertion of Synechocystis Δ12‐desaturase in salmonella's membrane alters membrane physical state (MPS), followed by the expression of stress genes causing inability to survive within murine macrophages (MΦ). Recently, we showed that expression of one membrane lipid domain (MLD) of Δ12‐desaturase (ORF200) interferes with salmonella MPS, causing loss of virulence in mice and immunoprotection. Here, we postulate that an α‐antimicrobial peptide (α‐AMP) intercalates within membrane lipids, and depending on its amino acid sequence, it does so within specific key sensors of MLD. In this study, we choose as target for a putative synthetic AMP, PhoP/PhoQ, a sensor that responds to low Mg2+ concentration. We synthesised a modified DNA fragment coding for an amino acid sequence (NUF) similar to that fragment and expressed it in salmonella typhimurium. We showed that the pattern of gene expression controlled by PhoP/PhoQ highlights dysregulation of pathways involving phospholipids biosynthesis, stress proteins and genes coding for antigens. RNA‐Seq of strain expressing ORF200 showed that the pattern of those genes is also altered here. Accumulation of NUF conferred temporary immunoprotection. This represents a powerful procedure to address synthetic α‐AMPs to a specific MLD generating live non‐virulent bacterial strains.  相似文献   

19.
Recognition of antimicrobial peptides by a bacterial sensor kinase   总被引:24,自引:0,他引:24  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号