首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that a weak, extremely-low-frequency magnetic field must be coherent for some minimum length of time (≈? 10 s) in order to affect the specific activity of ornithine decarboxylase (ODC) in L929 mouse cells. In this study we explore whether or not the superposition of an incoherent (noise) magnetic field can block the bioeffect of a coherent 60 Hz magnetic field, since the sum of the two fields is incoherent. An experimental test of this idea was conducted using as a biological marker the twofold enhancement of ODC activity found in L929 murine cells after exposure to a 60 Hz, 10 μTrms magnetic field. We superimposed an incoherent magnetic noise field, containing frequencies from 30 to 90 Hz, whose rms amplitude was comparable to that of the 60 Hz field. Under these conditions the ODC activity observed after exposure was equal to control levels. It is concluded that the superposition of incoherent magnetic fields can block the enhancement of ODC activity by a coherent magnetic field if the strength of the incoherent field is equal to or greater than that of the coherent field. When the superimposed, incoherent noise field was reduced in strength, the enhancement of ODC activity by the coherent field increased. Full ODC enhancement was obtained when the rms value of the applied EM noise was less than one-tenth that of the coherent field. These results are discussed in relation to the question of cellular detection of weak EM fields in the presence of endogenous thermal noise fields. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Zeng Q  Ke X  Gao X  Fu Y  Lu D  Chiang H  Xu Z 《Bioelectromagnetics》2006,27(4):274-279
Previously, we have reported that exposure to 50 Hz coherent sinusoidal magnetic fields (MF) for 24 h inhibits gap junction intercellular communication (GJIC) in mammalian cells at an intensity of 0.4 mT and enhances the inhibition effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) at 0.2 mT. In the present study, we further explored the effects of incoherent noise MF on MF-induced GJIC inhibition. GJIC was determined by fluorescence recovery after photobleaching (FRAP) with a laser-scanning confocal microscope. The rate of fluorescence recovery (R) at 10 min after photobleaching was adopted as the functional index of GJIC. The R-value of NIH3T3 cells exposed to 50 Hz sinusoidal MF at 0.4 mT for 24 h was 30.85 +/- 14.70%, while the cells in sham exposure group had an R-value of 46.36 +/- 20.68%, demonstrating that the GJIC of NIH3T3 cells was significantly inhibited by MF exposure (P < .05). However, there were no significant differences in the R-values of the sham exposure, MF-plus-noise MF exposure (R: 49.58 +/- 19.38%), and noise MF exposure groups (R: 46.74 +/- 21.14%) (P > .05), indicating that the superposition of a noise MF alleviated the suppression of GJIC induced by the 50 Hz MF. In addition, although MF at an intensity of 0.2 mT synergistically enhanced TPA-induced GJIC inhibition (R: 24.90 +/- 13.50% vs. 35.82 +/- 17.18%, P < .05), further imposition of a noise MF abolished the synergistic effect of coherent MF (R: 32.51 +/- 18.37%). Overall, the present data clearly showed that although noise MF itself had no effect on GJIC of NIH3T3 cells, its superposition onto a coherent sinusoidal MF at the same intensity abolished MF-induced GJIC suppression. This is the first report showing that noise MF neutralizes 50 Hz MF-induced biological effect by using a signaling component as the test endpoint.  相似文献   

3.
Stress proteins are important in protection during cardiac ischemia/reperfusion (cessation and return of blood flow) and are reportedly induced by electromagnetic (EM) fields. This suggests a possible ischemia protection role for EM exposures. To test this, chick embryos (96 h) were exposed to 60 Hz magnetic fields prior to being placed into anoxia. Survival was 39.6% (control), and 68.7% (field-exposed). As a positive control, embryos were heated prior to anoxia (57.6% survival). We conclude that: 1) 60 Hz magnetic field exposures reduce anoxia-induced mortality in chick embryos, comparable to reductions observed following heat stress, and 2) this is a simple and rapid experiment to demonstrate the existence of weak EM field effects. Bioelectromagnetics 19:498–500, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Fertilized white leghorn eggs were exposed to a 4 micro-Tesla (microT) 60 Hz horizontal magnetic field for 15, 18, 23 and 28 h. After exposure to the magnetic field, the embryos were isolated and assayed for ornithine decarboxylase (ODC) activity. ODC activity in magnetic field-exposed embryos was compared to ODC activity in sham-exposed embryos. ODC activity in magnetic field-exposed embryos was not statistically elevated above sham-exposed embryos.  相似文献   

5.
Four-day-old chicken embryos were exposed to extremely low frequency (ELF) magnetic fields (MF) prior to UV exposure (75 min, predominantly UV-C, 0.4 mW/cm2) to investigate possible MF-mediated protection against lethal effects of UV. The UV exposure typically resulted in a 20% survival rate (as judged by beating hearts) in sham-exposed embryos 3 h postexposure. In contrast, exposure to a 50 (10, 50, or 100 µT) or 60 Hz (10 µT) vertical MF caused a significant increase in survival rate, observed only 30 min after UV exposure. No difference in protection levels was seen between these exposure intensities. A horizontal 50 Hz MF (10, 50, or 100 µT) did not result in the general protection against UV-induced death observed for vertical fields, suggesting that the size of the induced electric field (which differs between horizontal and vertical exposure) is important for the MF-induced protection. To explore the molecular mechanisms involved in this effect, immunoblotting experiments with an antibody against the inducible form of hsp70 were performed. These showed that application of MF (50 Hz, 200 µT, 1 h) induced hsp70 expression in human K562 cells.  相似文献   

6.
We studied the influence of magnetic fields (MFs) and simulated solar radiation (SSR) on ornithine decarboxylase (ODC) and polyamines in mouse epidermis. Chronic exposure to combined MF and SSR did not cause persistent effects on ODC activity or polyamines compared to the animals exposed only to UV, although the same MF treatment was previously found to accelerate skin tumor development. In an acute 24-h experiment, an elevation of putrescine and down-regulation of ODC activity was observed in the animals exposed to a 100-μT MF. No effect was seen 24 h after a single 2-MED (minimal erythemal dose) exposure to SSR. The results indicate that acute exposure to 50 Hz MF does exert distinctive biological effects on epidermal polyamine synthesis. Bioelectromagnetics 19:388–391, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
We have previously demonstrated that microwave fields, amplitude modulated (AM) by an extremely low-frequency (ELF) sine wave, can induce a nearly twofold enhancement in the activity of ornithine decarboxylase (ODC) in L929 cells at SAR levels of the order of 2.5 W/kg. Similar, although less pronounced, effects were also observed from exposure to a typical digital cellular phone test signal of the same power level, burst modulated at 50 Hz. We have also shown that ODC enhancement in L929 cells produced by exposure to ELF fields can be inhibited by superposition of ELF noise. In the present study, we explore the possibility that similar inhibition techniques can be used to suppress the microwave response. We concurrently exposed L929 cells to 60 Hz AM microwave fields or a 50 Hz burst-modulated DAMPS (Digital Advanced Mobile Phone System) digital cellular phone field at levels known to produce ODC enhancement, together with band-limited 30–100 Hz ELF noise with root mean square amplitude of up to 10 μT. All exposures were carried out for 8 h, which was previously found to yield the peak microwave response. In both cases, the ODC enhancement was found to decrease exponentially as a function of the noise root mean square amplitude. With 60 Hz AM microwaves, complete inhibition was obtained with noise levels at or above 2 μT. With the DAMPS digital cellular phone signal, complete inhibition occurred with noise levels at or above 5 μT. These results suggest a possible practical means to inhibit biological effects from exposure to both ELF and microwave fields. Bioelectromagnetics 18:422–430, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
In a series of experiments with the chemical carcinogen DMBA (7, 12-dimethyl[a]anthracene), we recently found that exposure of female Sprague-Dawley rats in 50 Hz magnetic fields (MF) in the microtesla range significantly facilitates the development and growth of mammary tumors. One possible explanation for this finding would be enhanced proliferation of breast epithelial stem cells by MF exposure, thereby increasing the sensitivity of these cells to chemical carcinogens. In line with this possibility, we previously determined that 50 Hz, 50 microT MF exposure induces increases in ornithine decarboxylase (ODC), i.e., a key enzyme in cell proliferation, in the mammary gland of female Sprague-Dawley rats. In the present study, we examined the time course of this effect, by using different periods of exposure to a 50 Hz, 100 microT MF. Furthermore, we determined ODC in different mammary complexes of the rat mammary gland to evaluate whether differences in response to MF exist over the anterior-posterior extension of this organ. Exposure of young female Sprague-Dawley rats induced marked increases in ODC in the mammary gland that were similar to ODC increases seen in "positive control" experiments with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). However, this effect of MF critically depended on the duration of MF exposure, with no effect, or at least no consistent effect, for short (<1 week) or long (8 weeks and above) exposure periods, but a robust and reproducible enhancing effect on ODC activity after 2 weeks of exposure. Furthermore, we found that the effect of MF exposure depends on the part of the mammary complexes examined, the cranial thoracic (or cervical) complexes being particularly sensitive to ODC alterations in response to MF. This is in line with recent DMBA experiments of our group in which MF-induced increases in tumor development and growth were predominantly seen in this large cranial/cervical part of the mammary gland. The most likely explanation for the observed ODC changes after MF exposure is the "melatonin hypothesis," although other cellular and molecular effects of MF might be involved as well.  相似文献   

9.
An early developmental phase of pp60c-src expression in the neural ectoderm   总被引:10,自引:0,他引:10  
The expression of the normal cellular src protein (pp60c-src) was investigated in the early chick embryo during gastrulation and neurulation by immunoperoxidase staining using antisera, raised against bacterially expressed pp60v-src, that recognizes pp60c-src specifically in normal cells. During gastrulation pp60c-src immunoreactivity appeared primarily in the neural ectoderm and was much less prominent in the mesoderm, endoderm, and nonneural ectoderm. During neurulation pp60c-src immunoreactivity began to disappear from the wall of the closing neural tube so that by the completion of neural tube closure no specific pp60c-src immunoreactivity appeared in any of the neuroepithelial cells composing the neural tube. These studies reveal a developmental phase of pp60c-src expression even earlier than reported previously, when neuroepithelial cells of later embryos undergo terminal neuronal differentiation. These findings raise the possibility that pp60c-src may mediate two different differentiation signals in the neuronal lineage.  相似文献   

10.
Several investigators have reported robust, statistically significant results that indicate that weak (∼ 1 μT) magnetic fields (MFs) increase the rate of morphological abnormalities in chick embryos. However, other investigators have reported that weak MFs do not appear to affect embryo morphology at all. We present the results of experiments conducted over five years in five distinct campaigns spanning several months each. In four of the campaigns, exposure was to a pulsed magnetic field (PMF); and in the final campaign, exposure was to a 60 Hz sinusoidal magnetic field (MF). A total of over 2500 White Leghorn chick embryos were examined. When the results of the campaigns were analyzed separately, a range of responses was observed. Four campaigns (three PMF campaigns and one 60 Hz campaign) exhibited statistically significant increases (P ≥ 0.01), ranging from 2-fold to 7-fold, in the abnormality rate in MF-exposed embryos. In the remaining PMF campaign, there was only a slight (roughly 50%), statistically insignificant (P = 0.2) increase in the abnormality rate due to MF exposure. When the morphological abnormality rate of all of the PMF-exposed embryos was compared to that of all of the corresponding control embryos, a statistically significant (P ≥ .001) result was obtained, indicating that PMF exposure approximately doubled the abnormality rate. Likewise, when the abnormality rate of the sinusoid-exposed embryos was compared to the corresponding control embryos, the abnormality rate was increased (approximately tripled). This robust result indicates that weak EMFs can induce morphological abnormalities in developing chick embryos. We have attempted to analyze some of the confounding factors that may have contributed to the lack of response in one of the campaigns. The genetic composition of the breeding stock was altered by the breeder before the start of the nonresponding campaign. We hypothesize that the genetic composition of the breeding stock determines the susceptibility of any given flock to EMF-induced abnormalities and therefore could represent a confounding factor in studies of EMF-induced bioeffects in chick embryos. Bioelectromagnetics 18:431–438, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Electromagnetic field (EMF) exposures have been shown to induce heat shock proteins (HSPs), which help to maintain the conformation of cellular proteins during periods of stress. We have previously reported that short-term exposure of chick embryos to either 60 Hz (extremely low frequency: ELF), or radio-frequency (RF: 915 MHz) EMFs induce protection against hypoxia. Experiments presented in the current report are based on a study in which long-term (4 days), continuous exposure to ELF-EMFs decreased protection against ultraviolet radiation. Based on this result, it was hypothesized that de-protection against hypoxia should also occur following long-term, continuous, or daily, repeated exposures to EMFs. To test this hypothesis, chick embryos were exposed to ELF-EMFs (8 microT) continuously for 4 days, or to ELF or RF (3.5 mW incident power)-EMFs repeated daily (20, 30, or 60 min once or twice daily for 4 days). Several of the exposure protocols yielded embryos that had statistically significant decreases in protection against hypoxic stress (continuous and 30 or 60 min ELF twice daily; or 30 or 60 min once daily RF). This is consistent with our finding that following 4 days of ELF-EMF exposure, HSP70 levels decline by 27% as compared to controls. In addition, the superposition of ELF-EMF noise, previously shown to minimize ELF-EMF induced hypoxia protection, inhibited hypoxia de-protection caused by long term, continuous ELF or daily, repeated RF exposures. This EMF-induced decrease in HSP70 levels and resulting decline in cytoprotection suggests a mechanism by which daily exposure (such as might be experienced by mobile phone users) could enhance the probability of cancer and other diseases.  相似文献   

12.
Previously, we found that exposure to a 50-Hz magnetic field (MF) could induce epidermal growth factor receptor (EGFR) clustering and phosphorylation on cell surface. In order to explore the possible mechanisms, the roles of acid sphingomyelinase (ASMase) and lipid raft in MF-induced EGFR clustering were investigated in the present study. Human amnion epithelial (FL) cells were exposed to a 50-Hz MF at 0.4?mT for different durations. Intracellular ASMase activity was detected using the Amplex® Red Sphingomyelinase Assay Kit. EGFR clustering, ASMase, and lipid rafts on cell membrane were analyzed using confocal microscopy after indirect immunofluorescence staining. Results showed that disturbing lipid rafts with nystatin could inhibit MF-induced EGFR clustering, indicating that it was dependent on intact lipid raft. Exposure of FL cells to MF significantly enhanced ASMase activity and induced ASMase translocation to membrane that co-localized with lipid rafts. Treatment with imipramine, an ASMase inhibitor, inhibited the MF-induced EGFR clustering. This inhibitory effect could be blocked by the addition of C2-ceramide in the culture medium. It suggested that ASMase mediated the 50-Hz MF-induced EGFR clustering via ceramide which was produced from hydrolyzation on lipid rafts.  相似文献   

13.
The effects of exposing meat-type breeder eggs to magnetic field (MF) before incubation on hatchability traits (percents of hatchability and hatchability failures of eggs), chick weight at hatch, and post-hatch performance (weight gain, feed intake, and feed conversion ratio (FCR)) from 1 to 39 d of age were investigated. Eggs from a Ross flock at 38 weeks of age were exposed to MF of 18 Gauss (1.8 mT) at 50 Hz for 0, 15, 30, 45, 60, and 75 min (MF0, MF15, MF30, MF45, MF60, and MF75) before incubation.Exposing eggs to MF did not influence hatchability of eggs and chick weight at hatch. However, chickens of MF60 and MF75 treatments had lower weight gain and feed intake than those of the non-exposed treatment at 39 d of age. MF exposure of eggs did not influence FCR of chickens between 1 and 21 d of age, but tended to increase FCR, albeit non-significantly, between 22 and 39 d of age.It is concluded that exposing meat-type breeder eggs to MF of 18 Gauss (1.8 mT) at 50 Hz for up to 75 min did not influence hatchability traits and chick weight at hatch. However, MF exposure of eggs for 60 and 75 min reduced body weight gain and feed intake of chickens over the 39-d experimental period.  相似文献   

14.
T A Laasberg 《Ontogenez》1988,19(6):645-651
Acetylcholine esterase (AChE, EC 3.1.1.7) and choline acetyltransferase (CAT, EC 2.3.1.6) activities were studied in the early chick embryos. Gastrulation is accompanied by a sharp increase in the AChE activity which was most pronounced in anterior hypoblast. Three molecular of AChE (4.7, 6.8 and 10.9 S) were identified in the extract of chick embryos using a sucrose density gradient centrifugation. The CAT activity remained unchanged during gastrulation but increased twice at the end of gastrulation.  相似文献   

15.
We have previously shown that simultaneous exposure of rat lymphocytes to iron ions and 50Hz magnetic field (MF) caused an increase in the number of cells with DNA strand breaks. Although the mechanism of MF-induced DNA damage is not known, we suppose that it involves free radicals. In the present study, to confirm our hypothesis, we have examined the effect of melatonin, an established free radicals scavenger, on DNA damage in rat peripheral blood lymphocytes exposed in vitro to iron ions and 50Hz MF. The alkaline comet assay was chosen for the assessment of DNA damage. During pre-incubation, part of the cell samples were supplemented with melatonin (0.5 or 1.0mM). The experiments were performed on the cell samples incubated for 3h in Helmholtz coils at 7mT 50Hz MF. During MF exposure, some samples were treated with ferrous chloride (FeCl2, 10microg/ml), while the rest served as controls. A significant increase in the number of cells with DNA damage was found only after simultaneous exposure of lymphocytes to FeCl2 and 7mT 50Hz MF, compared to the control samples or those incubated with FeCl2 alone. However, when the cells were treated with melatonin and then exposed to iron ions and 50Hz MF, the number of damaged cells was significantly reduced, and the effect depended on the concentration of melatonin. The reduction reached about 50% at 0.5mM and about 100% at 1.0mM. Our results indicate that melatonin provides protection against DNA damage in rat lymphocytes exposed in vitro to iron ions and 50Hz MF (7mT). Therefore, it can be suggested that free radicals may be involved in 50Hz magnetic field and iron ions-induced DNA damage in rat blood lymphocytes. The future experimental studies, in vitro and in vivo, should provide an answer to the question concerning the role of melatonin in the free radical processes in the power frequency magnetic field.  相似文献   

16.
Photosynthetic CO2 uptake rate and early growth parameters of radish Raphanus sativus L. seedlings exposed to an extremely low frequency magnetic field (ELF MF) were investigated. Radish seedlings were exposed to a 60 Hz, 50 microT(rms) (root mean square) sinusoidal magnetic field (MF) and a parallel 48 microT static MF for 6 or 15 d immediately after germination. Control seedlings were exposed to the ambient MF but not the ELF MF. The CO2 uptake rate of ELF MF exposed seedlings on day 5 and later was lower than that of the control seedlings. The dry weight and the cotyledon area of ELF MF exposed seedlings on day 6 and the fresh weight, the dry weight and the leaf area of ELF MF exposed seedlings on day 15 were significantly lower than those of the control seedlings, respectively. In another experiment, radish seedlings were grown without ELF MF exposure for 14 d immediately after germination, and then exposed to the ELF MF for about 2 h, and the photosynthetic CO2 uptake rate was measured during the short-term ELF MF exposure. The CO2 uptake rate of the same seedlings was subsequently measured in the ambient MF (control) without the ELF MF. There was no difference in the CO2 uptake rate of seedlings exposed to the ELF MF or the ambient MF. These results indicate that continuous exposure to 60 Hz, 50 microT(rms) sinusoidal MF with a parallel 48 microT static MF affects the early growth of radish seedlings, but the effect is not so severe that modification of photosynthetic CO2 uptake can observed during short-term MF exposure.  相似文献   

17.
Jia C  Zhou Z  Liu R  Chen S  Xia R 《Bioelectromagnetics》2007,28(3):197-207
Atomic force microscopy (AFM), transmission electron microscopy (TEM), and confocal laser scanning microscopy were used to investigate the effects of a 50 Hz 0.4 mT magnetic field (MF) on the clustering of purified epidermal growth factor receptors (EGFRs) and EGFRs in Chinese hamster lung (CHL) cell membrane. The results demonstrate that exposing purified EGFRs to the MF for 30 min induces receptor clustering. The peak height of apparent clusters increased from 1.42 +/- 0.18 (sham-exposed) to 3.08 +/- 0.38 nm (exposed) while the mean half-width increased from 21.7 +/- 2.2 to 33.0 +/- 4.0 nm. A similar effect was also observed by TEM. Treatment of purified EGFR with PD153035 (PD), an EGFR-specific tyrosine kinase (TK) inhibitor, inhibited the MF-induced EGFR clustering of the purified proteins, an effect also observed for the receptors in cell membrane in the absence of EGF. These results strongly suggest that the 50 Hz 0.4 mT MF interferes with the EGFR signaling pathway, most likely by interacting with the cytoplasmic TK domain.  相似文献   

18.
Skepticism over the possibility of weak electromagnetic fields affecting cell function exists because endogenous thermal noise fields are larger than those reported to cause effects. Four-hour exposure to a 55- or 65-Hz field approximately doubles the specific activity of ornithine decarboxylase (ODC) in L929 cells. To test the idea that the cell discriminates against this thermal noise because it is incoherent, partial incoherence was introduced into the applied field by shifting the frequency between 55- to 65-Hz at intervals of tau coh--delta tau where tau coh is a predetermined time interval and delta tau much less than tau coh varies randomly from one frequency shift to the next. To obtain the full ODC enhancement, coherence of the impressed signal must be maintained for a minimum of about 10s. For tau coh = 5.0s a partial enhancement is elicited, and at 1.0s there is no response. Unfortunately coherence times of this duration are too short to solve the thermal noise puzzle.  相似文献   

19.
Plant tissue culture techniques are carried out under environmentally controlled conditions in phytotrons. However, electric components of phytotrons generate electromagnetic fields that may act as a environmental factor influencing plant growth and morphogenesis. Isolated somatic embryos of Quercus suber, picked from embryogenic lines, were chronically exposed to a 50 Hz and 15 μT electromagnetic field generated in a Helmholtz-coil system for 8 weeks, in order to examine if the extremely low frequency (ELF) magnetic field (MF) affected the morphogenic behaviour of embryogenic cultures during recurrent embryogenesis. Germination of somatic embryos from genotype G7.1 was carried out under the same electromagnetic field, and also under conditions in which the local geomagnetic field was suppressed. The ELF MF did not influence the growth of embryogenic clumps of the assayed genotypes, but reduced the number of detachable embryos produced by genotype G3.27. The ELF MF did not modify the percentages of germination or plant formation of somatic embryos. However, somatic embryos had better germination when cultured under the suppressed geomagnetic field condition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号