首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
Murine antibodies derived from the V1 S107/T15 germline structure combined with Vk 22 L chains express the property of self-binding. Previous studies have shown that the self-binding is mediated by the Fab fragment involving structures of the hapten binding site. The molecular locus of self-binding has also been identified by showing that a peptide derived from the CDR2/FR3 region of the V1 S107 H chain inhibits self-binding. We have addressed the question of whether self-binding antibodies interact with peptides that inhibit self-binding. We found that labeled TEPC15 (T15) binds to immobilized VH (50-73) peptide; the peptide binding is specific because different CDR peptides and other unrelated peptides do not inhibit this binding. Furthermore, the hapten phosphorylcholine is a potent inhibitor for the T15-peptide binding. We have demonstrated the presence of naturally occurring antibodies that bind to the T15H(50-73) peptide in the sera of different strains of mice and also in humans, indicating that the CDR2/FR3 sequence of T15 is a conserved Id determining region. We have isolated peptide-specific antibodies from pooled normal human Ig preparations. Human anti-peptide antibodies have self-binding properties similar to their murine counterparts. This interspecies conserved peptide binding of antibodies that are self-binding indicates the existence of an evolutionarily important and biologically active site.  相似文献   

3.
Min J  Feng Q  Li Z  Zhang Y  Xu RM 《Cell》2003,112(5):711-723
Dot1 is an evolutionarily conserved histone methyltransferase that methylates lysine-79 of histone H3 in the core domain. Unlike other histone methyltransferases, Dot1 does not contain a SET domain, and it specifically methylates nucleosomal histone H3. We have solved a 2.5 A resolution structure of the catalytic domain of human Dot1, hDOT1L, in complex with S-adenosyl-L-methionine (SAM). The structure reveals a unique organization of a mainly alpha-helical N-terminal domain and a central open alpha/beta structure, an active site consisting of a SAM binding pocket, and a potential lysine binding channel. We also show that a flexible, positively charged region at the C terminus of the catalytic domain is critical for nucleosome binding and enzymatic activity. These structural and biochemical analyses, combined with molecular modeling, provide mechanistic insights into the catalytic mechanism and nucleosomal specificity of Dot1 proteins.  相似文献   

4.
Human cystathionine β-synthase (hCBS) is a key enzyme of sulfur amino acid metabolism, controlling the commitment of homocysteine to the transsulfuration pathway and antioxidant defense. Mutations in hCBS cause inherited homocystinuria (HCU), a rare inborn error of metabolism characterized by accumulation of toxic homocysteine in blood and urine. hCBS is a complex multidomain and oligomeric protein whose activity and stability are independently regulated by the binding of S-adenosyl-methionine (SAM) to two different types of sites at its C-terminal regulatory domain. Here we study the role of surface electrostatics on the complex regulation and stability of hCBS using biophysical and biochemical procedures. We show that the kinetic stability of the catalytic and regulatory domains is significantly affected by the modulation of surface electrostatics through noticeable structural and energetic changes along their denaturation pathways. We also show that surface electrostatics strongly affect SAM binding properties to those sites responsible for either enzyme activation or kinetic stabilization. Our results provide new insight into the regulation of hCBS activity and stability in vivo with implications for understanding HCU as a conformational disease. We also lend experimental support to the role of electrostatic interactions in the recently proposed binding modes of SAM leading to hCBS activation and kinetic stabilization.  相似文献   

5.
6.
Wojtowicz WM  Wu W  Andre I  Qian B  Baker D  Zipursky SL 《Cell》2007,130(6):1134-1145
Dscam encodes a family of cell surface proteins required for establishing neural circuits in Drosophila. Alternative splicing of Drosophila Dscam can generate 19,008 distinct extracellular domains containing different combinations of three variable immunoglobulin domains. To test the binding properties of many Dscam isoforms, we developed a high-throughput ELISA-based binding assay. We provide evidence that 95% (>18,000) of Dscam isoforms exhibit striking isoform-specific homophilic binding. We demonstrate that each of the three variable domains binds to the same variable domain in an opposing isoform and identify the structural elements that mediate this self-binding of each domain. These studies demonstrate that self-binding domains can assemble in different combinations to generate an enormous family of homophilic binding proteins. We propose that this vast repertoire of Dscam recognition molecules is sufficient to provide each neuron with a unique identity and homotypic binding specificity, thereby allowing neuronal processes to distinguish between self and nonself.  相似文献   

7.
NafY participates in the final steps of nitrogenase maturation, having a dual role as iron-molybdenum cofactor (FeMo-co) carrier and as chaperone to the FeMo-co-deficient apo-NifDK (apo-dinitrogenase). NafY contains an N-terminal domain of unknown function (n-NafY) and a C-terminal domain (core-NafY) necessary for FeMo-co binding. We show here that n-NafY and core-NafY have very weak interactions in intact NafY. The NMR structure of n-NafY reveals that it belongs to the sterile α-motif (SAM) family of domains, which are frequently involved in protein-protein interactions. The presence of a SAM domain in NafY was unexpected and could not be inferred from its amino acid sequence. Although SAM domains are very commonly found in eukaryotic proteins, they have rarely been identified in prokaryotes. The n-NafY SAM domain binds apo-NifDK. As opposed to full-length NafY, n-NafY impaired FeMo-co insertion when present in molar excess relative to FeMo-co and apo-NifDK. The implications of these observations are discussed to offer a plausible mechanism of FeMo-co insertion. NafY domain structure, molecular tumbling, and interdomain motion, as well as NafY interaction with apo-NifDK are consistent with the function of NafY in FeMo-co delivery to apo-NifDK.  相似文献   

8.
SAM (sterile alpha motif) domains are protein-protein interaction modules found in a large number of regulatory proteins. Byr2 and Ste4 are two SAM domain-containing proteins in the mating pheromone response pathway of the fission yeast, Schizosaccharomyces pombe. Byr2 is a mitogen-activated protein kinase kinase kinase that is regulated by Ste4. Tu et al. (Tu, H., Barr, M., Dong, D. L., and Wigler, M. (1997) Mol. Cell. Biol. 17, 5876-5887) showed that the isolated SAM domain of Byr2 binds a fragment of Ste4 that contains both a leucine zipper (Ste4-LZ) domain as well as a SAM domain, suggesting that Byr2-SAM and Ste4-SAM may form a hetero-oligomer. Here, we show that the individual SAM domains of Ste4 and Byr2 are monomeric at low concentrations and bind to each other in a 1:1 stoichiometry with a relatively weak dissociation constant of 56 +/- 3 microm. Inclusion of the Ste4-LZ domain, which determines the oligomeric state of Ste4, has a dramatic effect on binding affinity, however. We find that the Ste4-LZ domain is trimeric and, when included with the Ste4-SAM domain, yields a 3:1 Ste4-LZ-SAM:Byr2-SAM complex with a tight dissociation constant of 19 +/- 4 nm. These results suggest that the Ste4-LZ-SAM protein may recognize multiple binding sites on Byr2-SAM, indicating a new mode of oligomeric organization for SAM domains. The fact that high affinity binding occurs only with the addition of an oligomerization domain suggests that it may be necessary to include ancillary oligomerization modules when searching for binding partners of SAM domains.  相似文献   

9.
10.
11.
12.
Spinach (Spinacea oleracea L.) nitrate reductase (NR) is inactivated by phosphorylation on serine-543, followed by binding of the phosphorylated enzyme to 14-3-3 proteins. We purified one of several chromatographically distinct NRserine-543 kinases from spinach leaf extracts, and established by Edman sequencing of 80 amino acid residues that it is a calcium-dependent (calmodulin-domain) protein kinase (CDPK), with peptide sequences very similar to Arabidopsis CDPK6 (accession no. U20623; also known as CPK3). The spinach CDPK was recognized by antibodies raised against Arabidopsis CDPK. Nitrate reductase was phosphorylated at serine-543 by bacterially expressed His-tagged CDPK6, and the phosphorylated NR was inhibited by 14-3-3 proteins. However, the bacterially expressed CDPK6 had a specific activity approx. 200-fold lower than that of the purified spinach enzyme. The physiological control of NR by CDPK is discussed, and the regulatory properties of the purified CDPK are considered with reference to current models for reversible intramolecular binding of the calmodulin-like domain to the autoinhibitory junction of CDPKs. Received: 12 February 1998 / Accepted: 28 May 1998  相似文献   

13.
14.
We describe a family of stress-induced, developmentally regulated soybean genes for which cDNAs have been obtained from two different cultivars (Glycine max cv. Mandarin and Glycine max cv. Williams). The mRNAs corresponding to these cDNAs, called SAM22 and H4, respectively, accumulate predominantly in the roots of soybean seedlings but are present at high levels in the roots and leaves of mature plants. SAM22 accumulation is especially dramatic in senescent leaves. In addition, SAM22 accumulation can be induced in young leaves by wounding or by transpiration-mediated uptake of salicylic acid, methyl viologen, fungal elicitor, hydrogen peroxide or sodium phosphate (pH 6.9). Taken together, these data indicate that the genes corresponding to SAM22 and H4 are induced by various stresses and developmental cues. Southern blot analysis indicates that multiple copies of sequences related to SAM22 exist in the soybean genome. We also show that the nucleotide sequences of the cDNAs corresponding to SAM22 and H4 are 86% identical at the nucleotide level to each other and 70% identical at the amino acid level to the disease resistance response proteins of Pisum sativum.  相似文献   

15.
Disruptor of telomeric silencing 1-like (DOT1L) is the only non-SET domain histone lysine methyltransferase (KMT) and writer of H3K79 methylation on nucleosomes marked by H2B ubiquitination. DOT1L has elicited significant attention because of its interaction or fusion with members of the AF protein family in blood cell biology and leukemogenic transformation. Here, our goal was to extend previous structural information by performing a robust molecular dynamic study of DOT1L and its leukemogenic partners combined with mutational analysis. We show that statically and dynamically, D161, G163, E186, and F223 make frequent time-dependent interactions with SAM, while additional residues T139, K187, and N241 interact with SAM only under dynamics. Dynamics models reveal DOT1L, SAM, and H4 moving as one and show that more than twice the number of DOT1L residues interacts with these partners, relative to the static structure. Mutational analyses indicate that six of these residues are intolerant to substitution. We describe the dynamic behavior of DOT1L interacting with AF10 and AF9. Studies on the dynamics of a heterotrimeric complex of DOT1L1-AF10 illuminated describe coordinated motions that impact the relative position of the DOT1L HMT domain to the nucleosome. The molecular motions of the DOT1L–AF9 complex are less extensive and highly dynamic, resembling a swivel-like mechanics. Through molecular dynamics and mutational analysis, we extend the knowledge previous provided by static measurements. These results are important to consider when describing the biochemical properties of DOT1L, under normal and in disease conditions, as well as for the development of novel therapeutic agents.  相似文献   

16.
Heppell B  Lafontaine DA 《Biochemistry》2008,47(6):1490-1499
The S-adenosylmethionine (SAM) riboswitch is one of the most recurrent riboswitches found in bacteria and has three known different natural aptamers. The Bacillus subtilis yitJ SAM riboswitch aptamer is organized around a four-way junction which is characterized by the presence of a pseudoknot and a K-turn motif. By replacing the adenine involved in a Watson-Crick base pair at position 138 in the core region of the aptamer with the fluorescent analogue 2-aminopurine (2AP), we show that the ligand-induced reorganization of the aptamer strongly attenuates 2AP fluorescence. The fluorescence quenching process is specific to SAM on the basis of the observation that the structural analogue S-adenosylhomocysteine does not promote a similar effect. We find that the pseudoknot is important for the reorganization of the core domain and that the K-turn motif also has a marked influence on the core domain reorganization, most probably through its important role in pseudoknot formation. Finally, we show that SAM riboswitch ligand binding is facilitated by the L7Ae K-turn binding protein, which suggests that K-turn motifs may be protein anchor sites used by riboswitches to promote RNA folding.  相似文献   

17.
The Imitation Switch (ISWI) type adenosine triphosphate (ATP)-dependent chromatin remodeling factors are conserved proteins in eukaryotes, and some of them are known to form stable remodeling complexes...  相似文献   

18.
19.
Multidrug resistance to anti-cancer drugs is a major medical problem. Resistance is manifested largely by the product of the human MDR1 gene, P-glycoprotein, an ABC transporter that is an integral membrane protein of 1280 amino acids arranged into two homologous halves, each comprising 6 putative transmembrane α-helices and an ATP binding domain. Despite the plethora of data from site-directed, scanning and domain replacement mutagenesis, epitope mapping and photoaffinity labeling, a clear structural model for P-glycoprotein remains largely elusive. In this report, we propose a new model for P-glycoprotein that is supported by the vast body of previous data. The model comprises 2 membrane-embedded 16-strand β-barrels, attached by short loops to two 6-helix bundles beneath each barrel. Each ATP binding domain contributes 2 β-strands and 1 α-helix to the structure. This model, together with an analysis of the amino acid sequence alignment of P-glycoprotein isoforms, is used to delineate drug binding and translocation sites. We show that the locations of these sites are consistent with mutational, kinetic and labeling data. Received: 18 February 1998/Revised: 2 September 1998  相似文献   

20.
p63 is a member of the p53 tumour suppressor family that includes p73. The p63 gene encodes a protein comprising an N-terminal transactivation domain, a DNA binding domain and an oligomerization domain, but varies in the organization of the C-terminus as a result of complex alternative splicing. p63α contains a C-terminal sterile α motif (SAM) domain that is thought to function as a protein-protein interaction domain. Several missense and heterozygous frame shift mutations, encoded within exon 13 and 14 of the p63 gene, have been identified in the p63α SAM domain in patients suffering from ankyloblepharon-ectodermal dysplasia-clefting syndrome. Here we report the solution and high resolution crystal structures of the p63α SAM domain and investigate the effect of several mutations (L553F/V, C562G/W, G569V, Q575L and I576T) on the stability of the domain. The possible effects of other mutations are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号