首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The struggle for existence occurs through the vital rates of population growth. This basic fact demonstrates the tight connection between ecology and evolution that defines the emerging field of eco-evolutionary dynamics. An effective synthesis of the interdependencies between ecology and evolution is grounded in six principles. The mechanics of evolution specifies the origin and rules governing traits and evolutionary strategies. Traits and evolutionary strategies achieve their selective value through their functional relationships with fitness. Function depends on the underlying structure of variation and the temporal, spatial and organizational scales of evolution. An understanding of how changes in traits and strategies occur requires conjoining ecological and evolutionary dynamics. Adaptation merges these five pillars to achieve a comprehensive understanding of ecological and evolutionary change. I demonstrate the value of this world-view with reference to the theory and practice of habitat selection. The theory allows us to assess evolutionarily stable strategies and states of habitat selection, and to draw the adaptive landscapes for habitat-selecting species. The landscapes can then be used to forecast future evolution under a variety of climate change and other scenarios.  相似文献   

2.
Wood TE  Burke JM  Rieseberg LH 《Genetica》2005,123(1-2):157-170
Until recently, parallel genotypic adaptation was considered unlikely because phenotypic differences were thought to be controlled by many genes. There is increasing evidence, however, that phenotypic variation sometimes has a simple genetic basis and that parallel adaptation at the genotypic level may be more frequent than previously believed. Here, we review evidence for parallel genotypic adaptation derived from a survey of the experimental evolution, phylogenetic, and quantitative genetic literature. The most convincing evidence of parallel genotypic adaptation comes from artificial selection experiments involving microbial populations. In some experiments, up to half of the nucleotide substitutions found in independent lineages under uniform selection are the same. Phylogenetic studies provide a means for studying parallel genotypic adaptation in non-experimental systems, but conclusive evidence may be difficult to obtain because homoplasy can arise for other reasons. Nonetheless, phylogenetic approaches have provided evidence of parallel genotypic adaptation across all taxonomic levels, not just microbes. Quantitative genetic approaches also suggest parallel genotypic evolution across both closely and distantly related taxa, but it is important to note that this approach cannot distinguish between parallel changes at homologous loci versus convergent changes at closely linked non-homologous loci. The finding that parallel genotypic adaptation appears to be frequent and occurs at all taxonomic levels has important implications for phylogenetic and evolutionary studies. With respect to phylogenetic analyses, parallel genotypic changes, if common, may result in faulty estimates of phylogenetic relationships. From an evolutionary perspective, the occurrence of parallel genotypic adaptation provides increasing support for determinism in evolution and may provide a partial explanation for how species with low levels of gene flow are held together.  相似文献   

3.
4.
The relationship between fertility selection as measured by the correlation in progeny number between parents and offspring, and selection at individual loci is investigated in humans. Estimates for the magnitude of fertility selection (0.1) and the rate of gene substitution (0.5 gene substitutions per generation per genome) are used in various mathematical models for selection. It is found that the observed magnitude of fertility selection cannot be explained by non‐epistatic directional selection at individual loci. A symmetric quantitative directional selection model is consistent with the observed data. But it is possible that fertility selection does not have a genetic basis.  相似文献   

5.
All of the major groups of fossil hominids (australopithecines, pithecanthropines, Neandertals, and early sapiens) were discovered by 1925, and therefore prior to the formulation of the synthetic theory of evolution that revolutionized the concept of the species in systematics. While these fossil finds were being made the framework for their interpretation included several assumptions: (1) that the number of living hominoid species was great, and that intraspecific variation was slight (authoritative sources recognized as many as 14 separate species of chimpanzees and 15 species of gorillas); (2) that the timescale of human evolution was brief (measured in tens or hundreds of thousands of years). As a result of these premises the consensus that hominid evolution was characterized by a large number of sympatric and synchronic species was virtually inevitable.In contrast, recent molecular studies demonstrate that genetic diversity among recent hominoids is so slight that even humans and chimpanzees differ at only about 1% of the loci that have been sampled so far; evidently, very small genetic differences can produce rather great contrasts in morphology. At the same time, geological break-throughs have increased the timescale for human evolution to several million years.It is concluded that morphological differences among fossil hominids, even if very appreciable and complex, do not necessarily reflect a great degree of either genetic or taxonomic diversity. Potential effects of evolutionary change through time should be incorporated into models of hominid evolution as a means of assessing the minimum number of lineages required to account for observed variations among hominid specimens.  相似文献   

6.
To demonstrate that a given change in the environment has contributed to the emergence of a given genotypic and phenotypic shift during the course of evolution, one should ask to what extent such shifts would have occurred without environmental change. Of course, such tests are rarely practical but phenotypic novelties can still be correlated to genomic shifts in response to environmental changes if enough information is available. We surveyed and re-evaluated the published data in order to estimate the role of environmental changes on the course of species and genomic evolution. Only a few published examples clearly demonstrate a causal link between a given environmental change and the fixation of a genomic variant resulting in functional modification (gain, loss or alteration of function). Many others suggested a link between a given phenotypic shift and a given environmental change but failed to identify the underlying genomic determinant(s) and/or the associated functional consequence(s). The proportion of genotypic and phenotypic variation that is fixed concomitantly with environmental changes is often considered adaptive and hence, the result of positive selection, even though alternative causes, such as genetic drift, are rarely investigated. Therefore, the second aim herein is to review evidence for the mechanisms leading to fixation.  相似文献   

7.
Natural and sexual selection are classically thought to oppose one another, and although there is evidence for this, direct experimental demonstrations of this antagonism are largely lacking. Here, we assessed the effects of sexual and natural selection on the evolution of cuticular hydrocarbons (CHCs), a character subject to both modes of selection, in Drosophila simulans. Natural selection and sexual selection were manipulated in a fully factorial design, and after 27 generations of experimental evolution, the responses of male and female CHCs were assessed. The effects of natural and sexual selection differed greatly across the sexes. The responses of female CHCs were generally small, but CHCs evolved predominantly in the direction of natural selection. For males, profiles evolved via sexual and natural selection, as well as through the interaction between the two, with some male CHC components only evolving in the direction of natural selection when sexual selection was relaxed. These results indicate sex‐specific responses to selection, and that sexual and natural selection act antagonistically for at least some combinations of CHCs.  相似文献   

8.
Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta‐analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection.  相似文献   

9.
Mechanisms of natural selection can be identified using experimental approaches. However, such experiments often yield nonsignificant effects and imprecise estimates of selection due to low power and small sample sizes. Combining results from multiple experimental studies might produce an aggregate estimate of selection that is more revealing than individual studies. For example, bony pelvic armour varies conspicuously among stickleback populations, and predation by vertebrate and insect predators has been hypothesized to be the main driver of this variation. Yet experimental selection studies testing these hypotheses frequently fail to find a significant effect. We experimentally manipulated length of threespine stickleback (Gasterosteus aculeatus) pelvic spines in a mesocosm experiment to test whether prickly sculpin (Cottus asper), an intraguild predator of stickleback, favours longer spines. The probability of survival was greater for stickleback with unclipped pelvic spines, but this effect was noisy and not significant. We used meta‐analysis to combine the results of our mesocosm experiment with previously published experimental studies of selection on pelvic armour. We found evidence that fish predation indeed favours increased pelvic armour, with a moderate effect size. The same approach found little evidence that insect predation favours reduced pelvic armour. The causes of reduced pelvic armour in many stickleback populations remain uncertain.  相似文献   

10.
11.
12.
During the past decade, two lines of research have advanced our understanding of micro‐evolution. On the one hand, a number of studies have generated evidence for strong selection on phenotypes ( Kingsolver et al. 2001 ) and the contemporary (sometimes deemed ‘rapid’) evolution of phenotypic traits ( Hendry & Kinnison 1999 ). On the other hand, other studies have sought to identify the genes that underlie ecologically important traits ( Ungerer et al. 2008 ). Over the next decade, micro‐evolutionists might expect considerable progress from the study of contemporary evolution at both the phenotypic and genetic level simultaneously. In this issue of Molecular Ecology, Le Rouzic et al. (2011) present a teaser for this approach. They examined contemporary evolution of an adaptive trait with a well‐studied genetic basis, the number of lateral plates, in threespine stickleback (Gasterosteus aculeatus L.). A time series of 20 years of change for this trait after introduction into a pond in Norway was compared with a similar time series of 12 years following the invasion of a lake in Alaska. Using a modelling approach, the authors then teased apart selection acting upon the phenotype and selection acting on a major effect gene. In both time series, selection was strong and consistent. The models suggested that selection could act directly on the phenotype, or through the gene’s pleiotropic effects.  相似文献   

13.
Body weights for 12 early hominid specimens are estimated based on an analysis of four variables shown to have high correlation with body size in living Old World primates. Average size estimates of around 36 kg are suggested for gracile early hominids and around 59 kg for robust early hominids. Size variation is considerably more pronounced in the robust group than in the gracile group, suggesting substantially greater sexual dimorphism in the former.  相似文献   

14.
15.
The following paper develops a sexual selection model for the evolution of bipedal locomotion, canine reduction, brain enlargement, language and higher intelligence. The model involves an expansion of Darwin’s ideas about human evolution based on recent elaborations of sexual selection theory. Modern notions about intrasexual competition and female and male choice and their ecological correlates are summarized along with a new model for the role of sexual selection in speciation. Rapid evolution of bipedal locomotion as a male adaptation for nuptial feeding of females is proposed as a model for ape-hominid divergence through sexual selection; canine reduction is attributed to selection for associated epigamic displays. The analogy with male specialization through sexual selection speciation in hamadryas baboons is noted. Subsequent changes in female reproductive physiology are attributed to female competition for increased male parental investment during the time of early Homo andHomo erectus. The origin of higher intellectual and language abilities inHomo sapiens is attributed to male competition through technology and rule production to control resources and females; intellectual abilities involved in social manipulation are attributed to female competition for male parental investment and maintenance of polyandry. The course of hominid evolution is characterized as involving a trend from a promiscuous mating system toward increasing intensity of adaptations for male control of females, and by increasing intensity of female adaptation to maintain male parental investment while circumventing male control.  相似文献   

16.
We propose that chemical evolution can take place by natural selection if a geophysical process is capable of heterotrophic formation of liposomes that grow at some base rate, divide by external agitation, and are subject to stochastic chemical avalanches, in the absence of nucleotides or any monomers capable of modular heredity. We model this process using a simple hill-climbing algorithm, and an artificial chemistry that is unique in exhibiting conservation of mass and energy in an open thermodynamic system. Selection at the liposome level results in the stabilization of rarely occurring molecular autocatalysts that either catalyse or are consumed in reactions that confer liposome level fitness; typically they contribute in parallel to an increasingly conserved intermediary metabolism. Loss of competing autocatalysts can sometimes be adaptive. Steady-state energy flux by the individual increases due to the energetic demands of growth, but also of memory, i.e. maintaining variations in the chemical network. Self-organizing principles such as those proposed by Kauffman, Fontana, and Morowitz have been hypothesized as an ordering principle in chemical evolution, rather than chemical evolution by natural selection. We reject those notions as either logically flawed or at best insufficient in the absence of natural selection. Finally, a finite population model without elitism shows the practical evolutionary constraints for achieving chemical evolution by natural selection in the lab.  相似文献   

17.
Diversifying selection between populations that inhabit different environments can promote lineage divergence within species and ultimately drive speciation. The mitochondrial genome (mitogenome) encodes essential proteins of the oxidative phosphorylation (OXPHOS) system and can be a strong target for climate‐driven selection (i.e., associated with inhabiting different climates). We investigated whether Pleistocene climate changes drove mitochondrial selection and evolution within Australian birds. First, using phylogeographic analyses of the mitochondrial ND2 gene for 17 songbird species, we identified mitochondrial clades (mitolineages). Second, using distance‐based redundancy analyses, we tested whether climate predicts variation in intraspecific genetic divergence beyond that explained by geographic distances and geographic position. Third, we analysed 41 complete mitogenome sequences representing each mitolineage of 17 species using codon models in a phylogenetic framework and a biochemical approach to identify signals of selection on OXPHOS protein‐coding genes and test for parallel selection in mitolineages of different species existing in similar climates. Of 17 species examined, 13 had multiple mitolineages (range: 2–6). Climate was a significant predictor of mitochondrial variation in eight species. At least two amino acid replacements in OXPHOS complex I could have evolved under positive selection in specific mitolineages of two species. Protein homology modelling showed one of these to be in the loop region of the ND6 protein channel and the other in the functionally critical helix HL region of ND5. These findings call for direct tests of the functional and evolutionary significance of mitochondrial protein candidates for climate‐associated selection.  相似文献   

18.
The impact of sexual selection on the adaptive process remains unclear. On the one hand, sexual selection might hinder adaptation by favouring costly traits and preferences that reduce nonsexual fitness. On the other hand, condition dependence of success in sexual selection may accelerate adaptation. Here, we used replicate populations of Drosophila melanogaster to artificially select on male desiccation resistance while manipulating the opportunity for precopulatory sexual selection in a factorial design. Following five generations of artificial selection, we measured the desiccation resistance of males and females to test whether the addition of sexual selection accelerated adaptation. We found a significant interaction between the effects of natural selection and sexual selection: desiccation resistance was highest in populations where sexual selection was allowed to operate. Despite only selecting on males, we also found a correlated response in females. These results provide empirical support for the idea that sexual selection can accelerate the rate of adaptation.  相似文献   

19.
In primates it is useful to distinguish three basic types of bipedal posture: (1) agonial, with extended hips and knees as in modern humans, (2) monogonial, with flexed hips but extended knees. and (3) digonial, with flexed hips and knees as in pongids. Early hominids retained an ancestral, forwardly inclined posture of the neck and head. Therefore the body posture of australopithednes must have differed from that in modem man, in which the centre of gravity of the head can be aligned with that of the body, other major centra of gravity, and important axes of rotation in a single frontal plane. It is suggested that in australopithednes the gravitational tilt of the head was counterbalanced by bent hips in association with hyperextended knees (monogonial posture). In australopithecines the increase in brain weight would have counteracted an improvement in the balance of the head. After the neck had assumed a more vertical posture as a consequence of shortening of the face, selection for an improved balance system in the bipedal posture favoured an increase in the weight of the postcondylar portion of the head, accentuated by selection for a posterior shift of the superior nuchal line in order to minimise the force of the nuchal muscles. At this stage the evolutionary increase in brain weight may have been largely a by-product of the process towards perfecting the bipedal posture. When the centre of gravity of the head had first become aligned with that of the body, the conditions of balance of the head had become favourable for a dramatic increase of brain size, as a result of selection for greater learning and storage capacity of the brain.  相似文献   

20.
Anadromous Chinook salmon populations vary in the period of river entry at the initiation of adult freshwater migration, facilitating optimal arrival at natal spawning. Run timing is a polygenic trait that shows evidence of rapid parallel evolution in some lineages, signifying a key role for this phenotype in the ecological divergence between populations. Studying the genetic basis of local adaptation in quantitative traits is often impractical in wild populations. Therefore, we used a novel approach, Random Forest, to detect markers linked to run timing across 14 populations from contrasting environments in the Columbia River and Puget Sound, USA. The approach permits detection of loci of small effect on the phenotype. Divergence between populations at these loci was then examined using both principle component analysis and FST outlier analyses, to determine whether shared genetic changes resulted in similar phenotypes across different lineages. Sequencing of 9107 RAD markers in 414 individuals identified 33 predictor loci explaining 79.2% of trait variance. Discriminant analysis of principal components of the predictors revealed both shared and unique evolutionary pathways in the trait across different lineages, characterized by minor allele frequency changes. However, genome mapping of predictor loci also identified positional overlap with two genomic outlier regions, consistent with selection on loci of large effect. Therefore, the results suggest selective sweeps on few loci and minor changes in loci that were detected by this study. Use of a polygenic framework has provided initial insight into how divergence in a trait has occurred in the wild.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号