首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pantoprazole (PAN) is a proton pump inhibitor that is administered as a racemic mixture. The pharmacokinetics of PAN enantiomers were investigated in extensive metabolizers (EMs) and apparent poor metabolizers (PMs) of PAN who received a single 40, 60, or 80 mg oral dose of racemic PAN as enteric-coated formulation. In the EMs, the serum concentrations of (−)-PAN were slightly higher than those of (+)-PAN at each dose level. The (+)/(−) ratios for the area under the concentration-time curve (AUC) and the half-life were 0.58–0.89 and 0.62–0.88, respectively. In the PMs, the serum concentrations of both enantiomers were much higher than those in the EMs at each dose level and significant differences in pharmacokinetics of (+)- and (−)-PAN were observed. The half-lives for (+)-PAN were 2.67–3.77 times longer than those for (−)-PAN. The AUCs for (+)-PAN were 2.65–3.45 times greater than those for (−)-PAN. Therefore, the metabolism of (+)-PAN is impaired to a greater extent than (−)-PAN in the PMs, which resulted in the stereoselective disposition of PAN in the PMs. It has been suggested that the EMs and the PMs of PAN could be differentiated by determining the (+)/(−) enantiomer ratio in serum at one time point, possibly 2–6 h after oral dosing, because the (+)/(−) enantiomer ratios in the PMs were opposite those in the EM subjects. Chirality 9:17–21, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

2.
The pharmacokinetics and metabolic chiral inversion of the S(+)‐ and R(−)‐enantiomers of tiaprofenic acid (S‐TIA, R‐TIA) were assessed in vivo in rats, and in addition the biochemistry of inversion was investigated in vitro in rat liver homogenates. Drug enantiomer concentrations in plasma were investigated following administration of S‐TIA and R‐TIA (i.p. 3 and 9 mg/kg) over 24 hr. Plasma concentrations of TIA enantiomers were determined by stereospecific HPLC analysis. After administration of R‐TIA it was found that 1) there was a time delay of peak S‐TIA plasma concentrations, 2) S‐TIA concentrations exceeded R‐TIA concentrations from ∼2 hr after dosing, 3) Cmax and AUC(0‐∞) for S‐TIA were greater than for R‐TIA following administration of S‐TIA, and 4) inversion was bidirectional but favored inversion of R‐TIA to S‐TIA. Bidirectional inversion was also observed when TIA enantiomers were incubated with liver homogenates up to 24 hr. However, the rate of inversion favored transformation of the R‐enantiomer to the S‐enantiomer. In conclusion, stereoselective pharmacokinetics of R‐ and S‐TIA were observed in rats and bidirectional inversion in rat liver homogenates has been demonstrated for the first time. Chiral inversion of TIA may involve metabolic routes different from those associated with inversion of other 2‐arylpropionic acids such as ibuprofen. Chirality 11:103–108, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
The purposes of this work were (1) to develop a high performance liquid chromatographic (HPLC) assay for the enantiomers of thalidomide in blood, (2) to study their inversion and degradation in human blood, and (3) to study the pharmacokinetics of (+)-(R)- and (?)-(S)-thalidomide after oral administration of the separate enantiomers or of the racemate to healthy male volunteers. The enantiomers of thalidomide were determined by direct resolution on a tribenzoyl cellulose column. Mean rate constants of chiral inversion of (+)-(R)-thalidomide and (?)-(S)-thalidomide in blood at 37°C were 0.30 and 0.31 h?1, respectively. Rate constants of degradation were 0.17 and 0.18 h?1. There was rapid interconversion in vivo in humans, the (+)-(R)-enantiomer predominating at equilibrium. The pharmacokinetics of (+)-(R)- and (?)-(S)-thalidomide could be characterized by means of two one-compartment models connected by rate constants for chiral inversion. Mean rate constants for in vivo inversion were 0.17 h?1 (R to S) and 0.12 h?1 (S to R) and for elimination 0.079 h?1 (R) and 0.24 h?1 (S), i.e., a considerably faster rate of elimination of the (?)-(S)-enantiomer. Putative differences in therapeutic or adverse effects between (+)-(R)- and (?)-(S)-thalidomide would to a large extent be abolished by rapid interconversion in vivo. © 1995 Wiley-Liss, Inc.  相似文献   

4.
A direct, isocratic, and simple reversed-phase HPLC method was described for the separation of enantiomers of the proton pump inhibitor, rac-pantoprazole (PAN) using cellulose-based chiral stationary phases (Chiralcel OD-R and Chiralcel OJ-R). Some structurally related chiral benzimidazole sulfoxides, rac-omeprazole (OME) and raclansoprazole (LAN), were also studied. Chiralcel OJ-R was successful in the resolution of enantiomers of rac-PAN and rac-OME, while Chiralcel OD-R was most suitable for resolving the enantiomers of rac-LAN. Highest enantioselectivity to rac-PAN and rac-OME was achieved on Chiralcel OJ-R by using acetonitrile as an organic modifier, whereas methanol afforded better resolution of rac-LAN on Chiralcel OD-R than acetonitrile. Increases in buffer concentration and column temperature decreased retention and did not improve the resolution of the enantiomers on both columns. Using a mixture of 50 mM sodium perchlorate solution and acetonitrile as a mobile phase at a flow rate of 0.5 ml/min, maximum separation factors of 1.26 and 1.13 were obtained for the enantiomers of rac-PAN and rac-OME using a Chiralcel OJ-R column, while maximum separation factor of 1.16 was obtained for the enantiomers of rac-LAN using a Chiralcel OD-R column. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The present study was an attempt to elucidate the relationship between stereoselective pharmacokinetics and protein binding of KE-298 and its active metabolites, deacetyl-KE-298 (M-1) and S-methyl-KE-298 (M-2). Metabolic chiral inversion was also investigated. The levels of unchanged KE-298 in plasma after oral administration of (+)-(S)-KE-298 to rats were lower than those of (−)-(R)-KE-298, whereas the levels of M-1 and M-2 after administration of (+)-(S)-KE-298 were higher than after (−)-(R)-KE-298. In vitro, rat plasma protein binding of (+)-(S)-KE-298 was lower than that of (−)-(R)-KE-298. In contrast, the binding of (+)-(S)-M-1 and (+)-(S)-M-2 was higher than that of (−)-(R)-M-1 and (−)-(R)-M-2. Displacement studies revealed that the (+)-(S) and (−)-(R)-enantiomers of KE-298 and their metabolites bound to the warfarin binding site on rat serum albumin. These results suggest that the stereoselective plasma levels in KE-298 and its metabolites were closely related to enantiomeric differences in protein binding, attributed to quantitative differences in binding to albumin rather than to the different binding sites. Unidirectional chiral inversion was detected after oral administration of either (−)-(R)-KE-298 or (−)-(R)-M-2 to rats both yielding (+)-(S)-M-2. Chirality 9:22–28, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

6.
Zhu CJ  Zhang JT 《Chirality》2003,15(8):668-673
The pharmacokinetics of clausenamide (CLA) enantiomers and their metabolites were investigated in Wistar rat. After intravenous and oral administration at a dose of 80 and 160 mg/kg each enantiomer, plasma concentrations of (-)- or (+)-CLA and its major metabolites were simultaneously determined by reverse-phase HPLC with UV detection. Notably, stereoselective differences in pharmacokinetics were found. The mean plasma levels of (+)-CLA were higher at almost all time points than those of (-)-CLA. (+)-CLA also exhibited greater t(max), C(max), t(1/2beta), AUC(0-12h), and AUC(0--> infinity) and smaller CL (or CL/F) and V(d) (or V(d)/F), than its antipode. The (+)/(-) isomer ratios for t(1/2beta), t(max), AUC(0-12 h), and AUC(0--> infinity), which ranged from 1.26 to 2.08. The ratio for CL (or CL/F) was about 0.5, and there were significant differences in these values between CLA enantiomers (P < 0.05), implying that the absorption, distribution, and elimination of (-)-CLA were more rapid than those of (+)-CLA. Similar findings for (-)-7-OH-CLA, the major metabolite of (-)-CLA, and (+)-4-OH-CLA, the major metabolite of (+)-CLA, can be also seen in rat plasma. The contributing factors for the differences in stereoselective pharmacokinetics of CLA enantiomers appeared to be involved in their different plasma protein binding, first-pass metabolism and interaction with CYP enzymes, especially with their metabolizing enzyme CYP 3A isoforms.  相似文献   

7.
Pharmacokinetic studies are reported after single oral administration of 3 mg/kg of stereochemically pure (S)-ketoprofen [(S)-KP] and (R)-ketoprofen [(R)-KP] to three male Cynomolgus monkeys and after repeated administration for 6 months of 3, 15 and 75 mg/kg/day of (S)-KP to both male and female monkeys. A high-performance liquid chromatographic (HPLC) analysis was performed without derivatization of the samples, using a chiral column. The pharmacokinetic parameters for (S)-KP after administration of (S)-KP and for (R)-KP after administration of (R)-KP were, respectively, elimination half-life 2.32 ± 0.36 and 1.64 ± 0.40 h; oral clearance 3.50 ± 0.66 and 7.50 ± 3.20 ml/min/kg; apparent volume of distribution 0.74 ± 0.24 and 1.16 ± 0.76 liter/kg; mean residence time 1.79 ± 0.77 and 1.41 ± 0.65 h; area under the concentration/time curve 14.16 ± 2.93 and 7.31 ± 2.98 μg·h/ml. Forty-nine percent unidirectional bioinversion of (R)-KP to (S)-KP was observed in this species and the pharmacokinetic parameters for the (S)-KP resulting from this inversion were also calculated. In the study of 6-month repeated administration of (S)-KP, linear pharmacokinetic behavior and no evidence of drug accumulation were observed at the three dose levels. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The nonsteroidal antiinflammatory drug oxindanac exists as two enantiomers, with most of its pharmacological activity residing in the (S)-isomer. The behavior of its enantiomers was investigated in dogs. Bidirectional inversion occurred in heparinised plasma and blood, with a ratio of enantiomers [S:R] of 7.3:1 being achieved at equilibrium after incubation for 24 h at 37°C. There was no detectable inversion of either isomer in plasma incubated at 4°C for up to 8 h or in aqueous solution at 37°C for up to 36 h. Bidirectional inversion also occurred in vivo, with a ratio of plasma AUC (0 ∞)s [S:R] of 8.1:1. The ratio of enantiomers reached equilibrium within 2 hr following (S)- or rac-oxindanac, and within 8 h following (R)-oxindanac. Elimination t½s of the isomers were the same (R, 12.1 h, S, 13.3 h). There were no differences in the ratio of enantiomers following oral or intravenous application, suggesting that a systemic site for inversion was predominant. Although concentrations of the respective isomers were similar at equilibrium following administration of either (R)-, (S)-, or rac-oxindanac, AUC (0 ∞)s differed due to the delay in reaching equilibrium. The extent of inversion to the (S)-isomer was 100, 73.2, and 60.7% after administration of (S)-, rac-, and (R)-oxindanac, respectively. Although pharmacological activity might be equivalent at equilibrium following administration of either (R)-, (S)-, or rac-oxindanac; efficacy at early time points should be superior in the order (S) > racemate > (R). In conclusion both enantiomers of oxindanac undergo conversion to their respective antipodes in dogs, although the inversion of R to S is more efficient than that of S to R. This bidirectional inversion occurred in vivo, and in vitro in plasma and blood. © 1994 Wiley-Liss, Inc.  相似文献   

9.
This work reports the result of the enantioselective disposition of pantoprazole, omeprazole, and lansoprazole in a same group of Brazilian health subjects. Ten nongenotyped healthy subjects were used for this study. Each subject received a single oral dose of 80 mg of pantoprazole, 40 mg of omeprazole, and 30 mg of lansoprazole, and the plasma concentrations of the enantiomers were measured for 8 h postdose. For pantoprazole and omeprazole, among the 10 volunteers investigated, only one volunteer (Subject # 4) presented higher plasma concentrations of the (+)-enantiomer than those of (-)-enantiomer. Nevertheless, the area under the concentration-time curve of the (+)-lansoprazole was higher than those the (-)-lansoprazole for all subjects. The comparison of proton pump inhibitors' enantiomers disposition from a single group volunteer demonstrated that pantoprazole and omeprazole can be used to differentiate extensive from poor CYP2C19 metabolizer while lansoprazole cannot do it.  相似文献   

10.
Chen Y  Liu XQ  Zhong J  Zhao X  Wang Y  Wang G 《Chirality》2006,18(10):799-802
The pharmacokinetics of ornidazole (ONZ) were investigated following i.v. administration of racemic mixture and individual enantiomers in beagle dogs. Plasma concentrations of ONZ enantiomers were analyzed by chiral high-performance liquid chromatography (HPLC) on a Chiralcel OB-H column with quantification by UV at 310 nm. Notably, the mean plasma levels of (-)-ONZ were higher in the elimination phase than those of (+)-ONZ. (-)-ONZ also exhibited greater t1/2, MRT, AUC(0-t) and smaller CL, than those of its antipode. The area under the plasma concentration-time curve (AUC(0-t)) of (-)-ONZ was about 1.2 times as high as that of (+)-ONZ. (+)-ONZ total body clearance (CL) was 1.4 times than its optical antipode. When given separately, there were significant differences in the values of AUC(0-infinity) and CL between ONZ enantiomers (P < 0.05), indicating that elimination of (+)-ONZ was more rapid than that of (-)-ONZ. No significant differences were found between the estimates of the pharmacokinetic parameters of (+)-ONZ or (-)-ONZ, obtained following administration as the individual and as a racemic mixture. This study demonstrates that the elimination of ONZ enantiomers is stereoselective and chiral inversion and enantiomer/enantiomer interaction do not occur when the enantiomers are given separately and as racemic mixture.  相似文献   

11.
Guan J  Yang J  Li J  Li X  Li F 《Chirality》2009,21(6):613-618
The enantioselective pharmacokinetics of tenatoprazole were studied in Wistar rats after the administration of a single oral dose of rac-tenatoprazole. Serial plasma samples were collected; and the pharmacokinetic behavior of each enantiomer was characterized using a sequential achiral and chiral liquid chromatographic method. Tenatoprazole was extracted from a small aliquot of plasma (100 microl) by one-step extraction using hexane-dichloromethane-isopropanol (20:10:1, v/v/v) as extract solvent. Plasma drug concentration-time data were analyzed for each enantiomer by using a noncompartmental method. The AUC(0-infinity) and C(max) values of (+)-tenatoprazole were significantly greater than those of (-)-tenatoprazole (P < 0.001). The mean AUC(0-infinity) value of (+)-tenatoprazole was 7.5 times greater than that of (-)-tenatoprazole after oral administration of rac-tenatoprazole to rats at a dose of 5 mg/kg. There are also significant differences in t(1/2) and CL/F (P < 0.01 and P < 0.001, respectively) values between enantiomers. This study suggests that the pharmacokinetics of tenatoprazole are enantioselective in rats.  相似文献   

12.
The pharmacokinetics of the enantiomers of the non-steroidal anti-inflammatory drug pirprofen were studied in male Sprague-Dawley rats after oral and intravenous (iv) doses of the racemate. No significant differences were detected between the enantiomers after oral or iv dosing in t½, Vd, or ∑Xu. However, the R:S area under the plasma concentration (AUC) ratio after oral doses (0.92 ± 0.13) was slightly but significantly lower than after matching iv doses (1.05 ± 0.036). The absolute bioavailability of the active S-enantiomer (78.5%) after oral doses was higher than the inactive R-enantiomer (69.3%). The plasma protein binding of both enantiomers was saturable over a fivefold range of plasma concentrations. At higher plasma concentrations, the S-enantiomer was less bound than the R-enantiomer. In an in vitro experiment using everted rat jejunum, no chiral inversion was discernible. The dependency of the AUC ratio of the enantiomers on the route of administration may be due to stereoselective first-pass metabolism. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Zhang Y  Shi K  Wen J  Fan G  Chai Y  Hong Z 《Chirality》2012,24(3):239-244
Tetrahydroberberine (THB), a racemic mixture of (+)‐ and (?)‐enantiomer, is a biologically active ingredient isolated from a traditional Chinese herb Rhizoma corydalis (yanhusuo). A chiral high performance liquid chromatography method has been developed for the determination of THB enantiomers in rat plasma. The enantioseparation was carried out on a Chiral®‐AD column using methanol:ethanol (80:20, v/v) as the mobile phase at the flow rate 0.4 ml/min. The ultraviolet detection was set at 230 nm. The calibration curves were linear over the range of 0.01–2.5 μg/ml for (+)‐THB and 0.01‐5.0 μg/ml for (?)‐THB, respectively. The lower limit of quantification was 0.01 μg/ml for both (+)‐THB and (?)‐THB. The stereoselective pharmacokinetics of THB enantiomers in rats was studied after oral and intravenous administration at a dose of 50 and 10 mg/kg racemic THB (rac‐THB). The mean plasma levels of (?)‐THB were higher at almost all time points than those of (+)‐THB. (?)‐THB also exhibited greater Cmax, and AUC0–∞, smaller CL and Vd, than its antipode. The (?)/(+)‐enantiomer ratio of AUC0–∞ after oral and intravenous administration were 2.17 and 1.43, respectively. These results indicated substantial stereoselectivity in the pharmacokinetics of THB enantiomers in rats. Chirality, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Qiu J  Wang Q  Zhu W  Jia G  Wang X  Zhou Z 《Chirality》2007,19(1):51-55
A chiral high-performance liquid chromatography method with diode array detector was developed and validated for stereoselective determination of benalaxyl (BX) in rabbit plasma. Good separation was achieved at 20 degrees C using cellulose tris-(3,5-dimethylphenylcarbamate) as chiral stationary phase, a mixture of n-hexane and 2-propanol (97:3) as mobile phase at a flow rate of 1.0 ml/min. The assay method was linear over a range of concentrations (0.25-25 microg/ml) in plasma and the mean recovery was greater than 90% for both enantiomers. The limits of quantification and detection for both enantiomers in plasma were 0.25 and 0.1 microg/ml, respectively. Intra- and interday relative standard deviations (RSDs) did not exceed 10% for three-tested concentrations. The method was successfully applied to pharmacokinetic studies of BX enantiomers in rabbits. The result suggested that the pharmacokinetics of BX enantiomers was stereoselective in rabbits.  相似文献   

15.
Wang H  Ma C  Zhou J  Liu XQ 《Chirality》2009,21(5):531-538
A specific and relatively sensitive high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) was developed for the quantitative analysis of tiopronin enantiomers in rat plasma. The method is based on the derivatization of (+)-tiopronin and (-)-tiopronin with 2,3,4,6-tetra-O-acetyl-beta-glucopyranosyl isothiocyanate (GITC) in acetonitrile. The separation of resulting diastereomic derivatives was performed on C18 column (150 mm x 2.0 mm ID, packed with 5.0 mum C(18) silica RP particle), using a mobile phase of methanol/water (containing 5.3 mM formic acid) with gradient elution. LC-MS was performed in the selected ion monitoring and positive ion mode using target ions at m/z: 575 for the diastereomic derivatives of tiopronin and m/z: 603 for the derivative of N-isobutyryl-D-cysteine (internal standard). The method was validated in terms of specificity, linearity, sensitivity, precision, accuracy, matrix effect, and stability. The calibration curves were linear over the concentration range of 0.025-5 microg/ml for both enantiomers of tiopronin. For both enantiomers of tiopronin, the interbatch and intrabatch variability values were less than 15%, and the accuracy was within +/-17% in terms of relative error. The method was successfully applied to a pharmacokinetic study of rac-tiopronin in rat.  相似文献   

16.
A stereospecific high-performance liquid chromatographic (HPLC) method was developed for the quantitation of the enantiomers of venlafaxine, an antidepressant, in dog, rat, and human plasma. The procedure involves derivatization of venlafaxine with the chiral reagent, (+)-S-naproxen chloride, and a postderivatization procedure. The method was linear in the range of 50 to 5,000 ng of each enantiomer per ml of plasma. No interference by endogenous substances or known metabolites of venlafaxine occurred. Studies to characterize the disposition of the enantiomers of venlafaxine were conducted in dog, rat, and human, following oral administration of venlafaxine. The Cmax, area under the curve (AUC) and (S)/(R) concentration ratios of the (R)- and (S)-enantiomers were compared. In rats, the mean plasma ratio of (S)-venlafaxine to that of (R)-venlafaxine over 0.5 to 6.0 h varied from 2.97 to 8.50 with a mean value of 5.51 +/- 2.45. The Cmax, AUC0-infinity, and t 1/2 values of the (R)- and (S)-enantiomers in dogs were not significantly different from one another (P greater than 0.1). The mean ratios [(S)/(R)] of enantiomers of venlafaxine in human over a 2 to 6 h interval ranged from 1.33 to 1.35 with an overall ratio of 1.34 +/- 0.26 (n = 12). These ratios of the enantiomers [(S)/(R)] were not statistically different from unity (P greater than 0.1) indicating that the disposition of venlafaxine enantiomers in humans is not stereoselective and is more similar to that in dogs than that in rats.  相似文献   

17.
The R enantiomers of some of the 2-arylpropionic acid non-steroidal antiinflammatory drugs (NSAIDs) are known to undergo metabolic chiral inversion to their more pharmacologically active antipodes. This process is drug and species dependent and usually unidirectional. The S to R chiral inversion, on the other hand, is rare and has been observed, in substantial extents, only for ibuprofen in guinea pigs and 2-phenylpropionic acid in dogs. After i.p. administration of single doses of racemic ketoprofen or its optically pure enantiomers to male CD-1 mice and subsequent study of the concentration time-course of the enantiomers, we noticed substantial chiral inversion in both directions. Following racemic doses, no stereoselectivity in the plasma-concentration time courses was observed. After dosing with optically pure enantiomer, the concentration of the administered enantiomer predominated during the absorption phase. During the terminal elimination phase, however, the enantiomers had the same concentrations. Our observation is suggestive of a rapid and reversible chiral inversion for ketoprofen enantiomers in mice. Chirality 9:29–31, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Pharmacokinetics of ibuprofen enantiomers in dogs   总被引:1,自引:0,他引:1  
Inversion of inactive (R)-ibuprofen to active (S)-ibuprofen has been suggested to occur presystemically only. In order to investigate the site of inversion in dogs we administered both enantiomers either intravenously or intraduodenally (10 mg/kg) to adult, male beagle dogs (n = 3) in a crossover design. Plasma, urine, and bile were collected for up to 6 h and analyzed stereospecifically by HPLC, according to a previously published method. Pharmacokinetic parameters were calculated using a linear computer program. Absorption after intraduodenal administration occurred rapidly, resulting in maximum plasma concentrations 0.2 h after giving the enantiomer. Approximately 70% of the (R)-enantiomer (according to AUC) was inverted to the S-enantiomer independent of route of administration. No R-ibuprofen could be detected in plasma after (S)-ibuprofen administration. Mean residence time was found to be 2 to 3 times longer for (S)- than for (R)-ibuprofen. Total systemic clearance from plasma was twice as high for (R)- than for (S)-ibuprofen. There were no differences between plasma clearances after intravenous and intraduodenal administration. Between 8 and 17% of dose was recovered in bile [especially as free and conjugated (S)-ibuprofen] and 3-12% in urine [as (S)-ibuprofen, hydroxy- and carboxyibuprofen, free and conjugated forms]. Small amounts of (R)-ibuprofen were detected in bile after intraduodenal administration of (R)-ibuprofen only (1.8% of dose). In short, the unidirectional inversion of R-ibuprofen appears to occur systemically rather than presystemically in dogs.  相似文献   

19.
An enantioselective HPLC bioassay has been developed relying on extraction of (R)- and (S)-atenolol from alkalinized plasma or serum (pH > 12) into dichloromethane containing 5% (v/v) 1-butanol followed by an achiral derivatization of the drug with phosgene leading to (R)- and (S)-oxazolidine-2-one derivatives. Under these conditions there was quantitative conversion of the acetamido group to the corresponding nitrile. These stable derivatives were separated on a (R,R)-diaminocylohexane-dinitrobenzoyl chiral stationary phase [(R,R)-DACH-DNB] using dichloromethane/methanol 98/2 as mobile phase. Determination limits of 0.5 ng for (R)- and 0.6 ng for (S)-atenolol could be achieved using fluorimetric detection. The assay was applied to a human pharmacokinetic study which was performed in a randomized cross-over, double-blind fashion in 12 healthy volunteers, administering single oral doses of 100 mg (R,S)-, 50 mg (R)-, and 50 mg (S)-atenolol AUC0–24 and Cmax values of (R)-atenolol were slightly but significant higher than those of (S)-atenolol. The R/S ratios were 1.09 for AUC(R)/AUC(S) and 1.03 for Cmax (R)/Cmax(S) (P < 0.01) respectively after administration of the racemic drug. However, there were no differences between AUC, Cmax, and t½ values of each enantiomer, whether they were administered as single enantiometers or in the form of its racemic mixture. © 1993 Wiley-Liss, Inc.  相似文献   

20.
The chiral inversion and pharmacokinetics of two enantiomers of trantinterol, a new β2 agonist, were studied in rats dosed (+)‐ or (?)‐trantinterol separately. Plasma concentrations of (+)‐ and (?)‐trantinterol were measured by chiral stationary phase liquid chromatography tandem mass spectroscopy (LC‐MS/MS). The apparent inversion ratio was calculated as the ratio of AUC0‐t of (?)‐trantinterol or (+)‐trantinterol inverted from their antipodes to the sum of the AUC0‐t of (?)‐ and (+)‐trantinterol. Following single intravenous administration, both given enantiomers declined in similar plasma concentrations, suggesting that the two enantiomers have approximately the same disposition kinetics by the route of intravenous administration. However, after single oral administration, plasma concentrations of uninverted (?)‐trantinterol at many timepoints were significantly higher than those of uninverted (+)‐trantinterol, suggesting that the two enantiomers undergo apparently different absorption or metabolism after oral administration. Significant bidirectional chiral inversion occurred after intravenous and oral administration of (+)‐ or (?)‐trantinterol. After dosing with optically pure enantiomer, the concentration of the administered enantiomer predominated in vivo. The AUC0‐36 of (+)‐trantinterol after intravenous and oral dosing of (?)‐trantinterol were 16.6 ± 5.2 and 33.3 ± 16%, respectively of those of total [(+) + (?)] trantinterol. The AUC0‐36 of (?)‐trantinterol after intravenous and oral dosing of (+)‐trantinterol were 19.6 ± 8.8 and 37.9 ± 4.5%, respectively, of those of total [(?) + (+)] trantinterol. After intravenous administration of (+)‐ and (?)‐trantinterol the chiral inversion ratios of the two enantiomers were not significantly different and similar results were found for oral administration. The extent of chiral inversion after intravenous administration was apparently lower, indicating that the bidirectional chiral inversion was not only systemic but also presystemic. Chirality 25:934–938, 2013.© 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号