首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The chiral inversion and pharmacokinetics of two enantiomers of trantinterol, a new β2 agonist, were studied in rats dosed (+)‐ or (?)‐trantinterol separately. Plasma concentrations of (+)‐ and (?)‐trantinterol were measured by chiral stationary phase liquid chromatography tandem mass spectroscopy (LC‐MS/MS). The apparent inversion ratio was calculated as the ratio of AUC0‐t of (?)‐trantinterol or (+)‐trantinterol inverted from their antipodes to the sum of the AUC0‐t of (?)‐ and (+)‐trantinterol. Following single intravenous administration, both given enantiomers declined in similar plasma concentrations, suggesting that the two enantiomers have approximately the same disposition kinetics by the route of intravenous administration. However, after single oral administration, plasma concentrations of uninverted (?)‐trantinterol at many timepoints were significantly higher than those of uninverted (+)‐trantinterol, suggesting that the two enantiomers undergo apparently different absorption or metabolism after oral administration. Significant bidirectional chiral inversion occurred after intravenous and oral administration of (+)‐ or (?)‐trantinterol. After dosing with optically pure enantiomer, the concentration of the administered enantiomer predominated in vivo. The AUC0‐36 of (+)‐trantinterol after intravenous and oral dosing of (?)‐trantinterol were 16.6 ± 5.2 and 33.3 ± 16%, respectively of those of total [(+) + (?)] trantinterol. The AUC0‐36 of (?)‐trantinterol after intravenous and oral dosing of (+)‐trantinterol were 19.6 ± 8.8 and 37.9 ± 4.5%, respectively, of those of total [(?) + (+)] trantinterol. After intravenous administration of (+)‐ and (?)‐trantinterol the chiral inversion ratios of the two enantiomers were not significantly different and similar results were found for oral administration. The extent of chiral inversion after intravenous administration was apparently lower, indicating that the bidirectional chiral inversion was not only systemic but also presystemic. Chirality 25:934–938, 2013.© 2013 Wiley Periodicals, Inc.  相似文献   

2.
Pantoprazole (PAN) is a proton pump inhibitor that is administered as a racemic mixture. The pharmacokinetics of PAN enantiomers were investigated in extensive metabolizers (EMs) and apparent poor metabolizers (PMs) of PAN who received a single 40, 60, or 80 mg oral dose of racemic PAN as enteric-coated formulation. In the EMs, the serum concentrations of (−)-PAN were slightly higher than those of (+)-PAN at each dose level. The (+)/(−) ratios for the area under the concentration-time curve (AUC) and the half-life were 0.58–0.89 and 0.62–0.88, respectively. In the PMs, the serum concentrations of both enantiomers were much higher than those in the EMs at each dose level and significant differences in pharmacokinetics of (+)- and (−)-PAN were observed. The half-lives for (+)-PAN were 2.67–3.77 times longer than those for (−)-PAN. The AUCs for (+)-PAN were 2.65–3.45 times greater than those for (−)-PAN. Therefore, the metabolism of (+)-PAN is impaired to a greater extent than (−)-PAN in the PMs, which resulted in the stereoselective disposition of PAN in the PMs. It has been suggested that the EMs and the PMs of PAN could be differentiated by determining the (+)/(−) enantiomer ratio in serum at one time point, possibly 2–6 h after oral dosing, because the (+)/(−) enantiomer ratios in the PMs were opposite those in the EM subjects. Chirality 9:17–21, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

3.
The present study was an attempt to elucidate the relationship between stereoselective pharmacokinetics and protein binding of KE-298 and its active metabolites, deacetyl-KE-298 (M-1) and S-methyl-KE-298 (M-2). Metabolic chiral inversion was also investigated. The levels of unchanged KE-298 in plasma after oral administration of (+)-(S)-KE-298 to rats were lower than those of (−)-(R)-KE-298, whereas the levels of M-1 and M-2 after administration of (+)-(S)-KE-298 were higher than after (−)-(R)-KE-298. In vitro, rat plasma protein binding of (+)-(S)-KE-298 was lower than that of (−)-(R)-KE-298. In contrast, the binding of (+)-(S)-M-1 and (+)-(S)-M-2 was higher than that of (−)-(R)-M-1 and (−)-(R)-M-2. Displacement studies revealed that the (+)-(S) and (−)-(R)-enantiomers of KE-298 and their metabolites bound to the warfarin binding site on rat serum albumin. These results suggest that the stereoselective plasma levels in KE-298 and its metabolites were closely related to enantiomeric differences in protein binding, attributed to quantitative differences in binding to albumin rather than to the different binding sites. Unidirectional chiral inversion was detected after oral administration of either (−)-(R)-KE-298 or (−)-(R)-M-2 to rats both yielding (+)-(S)-M-2. Chirality 9:22–28, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

4.
The pharmacokinetics of the enantiomers of the non-steroidal anti-inflammatory drug pirprofen were studied in male Sprague-Dawley rats after oral and intravenous (iv) doses of the racemate. No significant differences were detected between the enantiomers after oral or iv dosing in t½, Vd, or ∑Xu. However, the R:S area under the plasma concentration (AUC) ratio after oral doses (0.92 ± 0.13) was slightly but significantly lower than after matching iv doses (1.05 ± 0.036). The absolute bioavailability of the active S-enantiomer (78.5%) after oral doses was higher than the inactive R-enantiomer (69.3%). The plasma protein binding of both enantiomers was saturable over a fivefold range of plasma concentrations. At higher plasma concentrations, the S-enantiomer was less bound than the R-enantiomer. In an in vitro experiment using everted rat jejunum, no chiral inversion was discernible. The dependency of the AUC ratio of the enantiomers on the route of administration may be due to stereoselective first-pass metabolism. © 1993 Wiley-Liss, Inc.  相似文献   

5.
In this study, the stereoselective pharmacokinetics of doxazosin enantiomers and their pharmacokinetic interaction were studied in rats. Enantiomer concentrations in plasma were measured using chiral high‐pressure liquid chromatography (HPLC) with fluorescence detection after oral or intravenous administration of (–)‐(R)‐doxazosin 3.0 mg/kg, (+)‐(S)‐doxazosin 3.0 mg/kg, and rac‐doxazosin 6.0 mg/kg. AUC values of (+)‐(S)‐doxazosin were always larger than those of (–)‐(R)‐doxazosin, regardless of oral or intravenous administration. The maximum plasma concentration (Cmax) value of (–)‐(R)‐doxazosin after oral administration was significantly higher when given alone (110.5 ± 46.4 ng/mL) versus in racemate (53.2 ± 19.7 ng/mL), whereas the Cmax value of (+)‐(S)‐doxazosin did not change significantly. The area under the curve (AUC) and Cmax values for (+)‐(S)‐doxazosin after intravenous administration were significantly lower, and its Cl value significantly higher, when given alone versus in racemate. We speculate that (–)‐(R)‐doxazosin increases (+)‐(S)‐doxazosin exposure probably by inhibiting the elimination of (+)‐(S)‐doxazosin, and the enantiomers may be competitively absorbed from the gastrointestinal tract. In conclusion, doxazosin pharmacokinetics are substantially stereospecific and enantiomer–enantiomer interaction occurs after rac‐administration. Chirality 27:738–744, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Myocardial uptake of thiopental enantiomers by an isolated perfused rat heart preparation was examined after perfusion with protein-free perfusate. Outflow perfusate samples were collected at frequent intervals for 20 min during single-pass perfusion with 10 μg/ml racemic thiopental (washin phase) and for another 45 min during perfusion with drug-free perfusate (washout phase). (+)- and (−)-thiopental concentrations were assayed by chiral high-performance liquid chromatography. Heart rate, perfusion pressure, and electrocardiogram were also monitored. During the washin phase, there was no significant difference between the mean values of the equilibration rate constants of (+)- and (−)-thiopental enantiomers (0.44 ± 0.07 min−1 and 0.43 ± 0.09 min−1, respectively, P > 0.05). Mean volumes of distribution of (+)- and (−)-thiopental enantiomers were similar (6.34 ± 1.20 and 6.45 ± 1.29 ml/g for the washin phase and 7.22 ± 0.71 and 7.47 ± 0.81 ml/g for the washout phase, respectively, P > 0.05). This indicates that tissue accumulation of thiopental enantiomers in the isolated perfused rat heart was not stereoselective. Uptake of thiopental by the heart was perfusion flow rate-limited and independent of capillary permeability. These findings suggest that myocardial tissue concentration of racemic thiopental should be an accurate predictor of myocardial drug effect. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The pharmacokinetics and metabolic chiral inversion of the S(+)‐ and R(−)‐enantiomers of tiaprofenic acid (S‐TIA, R‐TIA) were assessed in vivo in rats, and in addition the biochemistry of inversion was investigated in vitro in rat liver homogenates. Drug enantiomer concentrations in plasma were investigated following administration of S‐TIA and R‐TIA (i.p. 3 and 9 mg/kg) over 24 hr. Plasma concentrations of TIA enantiomers were determined by stereospecific HPLC analysis. After administration of R‐TIA it was found that 1) there was a time delay of peak S‐TIA plasma concentrations, 2) S‐TIA concentrations exceeded R‐TIA concentrations from ∼2 hr after dosing, 3) Cmax and AUC(0‐∞) for S‐TIA were greater than for R‐TIA following administration of S‐TIA, and 4) inversion was bidirectional but favored inversion of R‐TIA to S‐TIA. Bidirectional inversion was also observed when TIA enantiomers were incubated with liver homogenates up to 24 hr. However, the rate of inversion favored transformation of the R‐enantiomer to the S‐enantiomer. In conclusion, stereoselective pharmacokinetics of R‐ and S‐TIA were observed in rats and bidirectional inversion in rat liver homogenates has been demonstrated for the first time. Chiral inversion of TIA may involve metabolic routes different from those associated with inversion of other 2‐arylpropionic acids such as ibuprofen. Chirality 11:103–108, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
《Life sciences》1994,54(10):PL173-PL177
Intraperitoneal administration of R(−)- amd S(+)-flurbiprofen resulted in dose dependent antinociceptive behavior in the rat paw formalin test. S(+)-flurbiprofen was significantly more potent than the non-cyclooxygenase inhibiting R(−)-enantiomer with a potency ratio of about 3 to 1. Chiral inversion was very low and does not seem to account for the action of R(−)-flurbiprofen. In a modified Randall Selitto assay also both enantiomers were active in a dose dependent manner following systemic administration. Following local administration into the inflamed paw only S(+)-flurbiprofen showed significant dose related antinociceptive effects. R(−)-flurbiprofen was unable to block prostaglandin E2 induced hyperalgesia following local administration. Consequently, a central site of action independent of prostaglandin synthesis inhibition has to be discussed with respect to antinociceptive activity following systemic administration.  相似文献   

9.
Reboxetine, (RS)-2-[(RS)-α-(2-ethoxyphenoxy)benzyl]morpholine methanesulphonate, is a racemic compound and consists of a mixture of the (R,R)- and (S,S)-enantiomers. The pharmacokinetics of reboxetine enantiomers were determined in a crossover study in three male beagle dogs. Each animal received the following oral treatments, separated by 1-week washout period: 10 mg/kg reboxetine, 5 mg/kg (R,R)- and 5 mg/kg (S,S)-. Plasma and urinary levels of the reboxetine enantiomers were monitored up to 48 h post-dosing using an enantiospecific HPLC method with fluorimetric detection (LOQ: 1.1 ng/ml in plasma and 5 ng/ml in urine for each enantiomer). After reboxetine administration mean tmax was about 1 h for both enantiomers. Cmax and AUC were about 1.5 times higher for the (R,R)- than for the (S,S)-enantiomer, mean values ± SD being 704 ± 330 and 427 ± 175 ng/ml for Cmax and 2,876 ± 1,354 and 1,998 ± 848 ng.h/ml for AUC, respectively. No differences between the (R,R)- and (S,S)-enantiomers were observed in t½ (3.9 h). Total recovery of the two enantiomers in urine was similar, the Ae (0–48 h) being 1.3 ± 0.7 and 1.1 ± 0.7% of the enantiomer dose for the (R,R)- and the (S,S)-enantiomers, respectively. No marked differences in the main plasma pharmacokinetic parameters were found for either enantiomer on administration of the single enantiomers or reboxetine. No chiral inversion was observed after administration of the separate enantiomers, as already observed in humans. Chirality 9:303–306, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
The stereoselective metabolism of the enantiomers of fenoxaprop‐ethyl (FE) and its primary chiral metabolite fenoxaprop (FA) in rabbits in vivo and in vitro was studied based on a validated chiral high‐performance liquid chromatography method. The information of in vivo metabolism was obtained by intravenous administration of racemic FE, racemic FA, and optically pure (−)‐(S)‐FE and (+)‐(R)‐FE separately. The results showed that FE degraded very fast to the metabolite FA, which was then metabolized in a stereoselective way in vivo: (−)‐(S)‐FA degraded faster in plasma, heart, lung, liver, kidney, and bile than its antipode. Moreover, a conversion of (−)‐(S)‐FA to (+)‐(R)‐FA in plasma was found after injection of optically pure (−)‐(S)‐ and (+)‐(R)‐FE separately. Either enantiomers were not detected in brain, spleen, muscle, and fat. Plasma concentration–time curves were best described by an open three‐compartment model, and the toxicokinetic parameters of the two enantiomers were significantly different. Different metabolism behaviors were observed in the degradations of FE and FA in the plasma and liver microsomes in vitro, which were helpful for understanding the stereoselective mechanism. This work suggested the stereoselective behaviors of chiral pollutants, and their chiral metabolites in environment should be taken into account for an accurate risk assessment. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
Aims: We have previously shown that the (±)‐[13C]‐pantoprazole breath test is a promising noninvasive probe of CYP2C19 activity. As part of that trial, plasma, breath test indices and CYP2C19 (*2, *3, and *17) genotype were collected. Here, we examined whether [13C]‐pantoprazole exhibits enantioselective pharmacokinetics and whether this enantioselectivity is correlated with indices of breath test. Methods: Plasma (−)‐ and (+)‐[13C]‐pantoprazole that were measured using a chiral HPLC were compared between CYP2C19 genotypes and correlated with breath test indices. Results: The AUC(0‐∞) of (+)‐[13C]‐pantoprazole in PM (*2/*2, n = 4) was 10.1‐ and 5.6‐fold higher that EM (*1/*1or *17, n = 10) and IM (*1/*2or *3, n = 10) of CYP2C19, respectively (P < 0.001). The AUC(0‐∞) of (−)‐[13C]‐pantoprazole only significantly differed between PMs and EMs (1.98‐fold; P = 0.05). The AUC(0‐∞) ratio of (+)‐/(−)‐[13C]‐pantoprazole was 3.45, 0.77, and 0.67 in PM, IM, and EM genotypes, respectively. Breath test index, delta over baseline show significant correlation with AUC(0‐∞) of (+)‐[13C]‐pantoprazole (Pearson's r = 0.62; P < 0.001). Conclusions: [13C]‐pantoprazole exhibits enantioselective elimination. (+)‐[13C]‐pantoprazole is more dependent on CYP2C19 metabolic status and may serve as a more attractive probe of CYP2C19 activity than (−)‐[13C]‐pantoprazole or the racemic mixture. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

12.
ML-1035, 4-amino-5-chloro-2-[2-(methylsulfinyl)ethoxy]-N-[2-(diethylamino)ethyl]benzamide, is a sulfoxide compound and a racemic gastroprokinetic agent with a chiral center at the sulfur atom. We have investigated the disposition kinetics of (R)-ML-1035 sulfoxide (R) and (S)-ML-1035 sulfoxide (S) after the single enantiomers and the racemic mixture were administered to rats in separate experiments. There was no noticeable chiral inversion after either enantiomer dose. Both enantiomers were rapidly absorbed. After dosing with enantiomers or with the racemate, the resulting plasma concentration-time curve of R was closely parallel to that of S in both intravenous and oral experiments, suggesting that the two enantiomers have approximately the same disposition kinetics. After intravenous enantiomer doses, only S underwent conversion to sulfide, suggesting that sulfidation in the liver is enantioselective. However, the enantioselective sulfidation after intravenous dosing did not introduce a difference in the global plasma disposition profiles between R and S, since the reduction reaction is a minor metabolic process. Other metabolic reactions such as sulfonation and mono-N-desethylations were not enantioselective. After oral administration, conversion to sulfide was observed for both enantioners, implicating the existence of a nonhepatic pathway in sulfidation. Administration of a prochiral sulfide dose was associated with an enantioselective sulfoxidation, in which the R/S concentration ratios increased as a function of time. In addition, enantiomeric interaction causing changes in pharmacokinetic parameters was observed after the oral racemate dose, while the interaction is negligible after an intravenous racemate dose, indicating a route dependency in enantiomeric interaction. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Enantiospecific disposition of pranoprofen in beagle dogs and rats   总被引:1,自引:0,他引:1  
Imai T  Nomura T  Aso M  Otagiri M 《Chirality》2003,15(4):312-317
The pharmacokinetic characteristics of pranoprofen enantiomer were examined and compared with the disposition of the corresponding isomer after the administration of racemic pranoprofen to beagle dogs and rats. The plasma levels of (+)-(S)-isomer were significantly higher than those of (-)-(R)-isomer in dogs and rats by either intravenous or oral administration. Although the oral bioavailability and absorption rate constant between the (-)-(R)- and (+)-(S)-form was the same, the elimination rate constant of the (+)-(S)-form was significantly lower than that of the (-)-(R)-form in both dogs and rats. This discrepancy can be explained on the basis of differences in protein binding and the metabolism of the two enantiomers. The (-)-(R)-isomer was predominantly conjugated depending on its higher free plasma level and its faster metabolic rate than the (+)-(S)-form, and thus was excreted more rapidly in the urine and bile in the form of pranoprofen glucuronide. Furthermore, a (-)-(R)- to (+)-(S)-inversion occurred to the extent of 14% in beagle dogs, but not in rats. This chiral inversion might be an important factor in the slow elimination of the (+)-(S)-form in dogs. The most efficient organ for chiral inversion was the liver, followed by kidney and intestine.  相似文献   

14.
The purposes of this work were (1) to develop a high performance liquid chromatographic (HPLC) assay for the enantiomers of thalidomide in blood, (2) to study their inversion and degradation in human blood, and (3) to study the pharmacokinetics of (+)-(R)- and (?)-(S)-thalidomide after oral administration of the separate enantiomers or of the racemate to healthy male volunteers. The enantiomers of thalidomide were determined by direct resolution on a tribenzoyl cellulose column. Mean rate constants of chiral inversion of (+)-(R)-thalidomide and (?)-(S)-thalidomide in blood at 37°C were 0.30 and 0.31 h?1, respectively. Rate constants of degradation were 0.17 and 0.18 h?1. There was rapid interconversion in vivo in humans, the (+)-(R)-enantiomer predominating at equilibrium. The pharmacokinetics of (+)-(R)- and (?)-(S)-thalidomide could be characterized by means of two one-compartment models connected by rate constants for chiral inversion. Mean rate constants for in vivo inversion were 0.17 h?1 (R to S) and 0.12 h?1 (S to R) and for elimination 0.079 h?1 (R) and 0.24 h?1 (S), i.e., a considerably faster rate of elimination of the (?)-(S)-enantiomer. Putative differences in therapeutic or adverse effects between (+)-(R)- and (?)-(S)-thalidomide would to a large extent be abolished by rapid interconversion in vivo. © 1995 Wiley-Liss, Inc.  相似文献   

15.
The disposition of hydroxychloroquine enantiomers has been investigated in nine patients with rheumatoid arthritis following administration of a single dose of the racemate. Blood concentrations of (?)-(R)-hydroxychloroquine exceed those of (+)-(S)-hydroxychloroquine following both an oral and intravenous dose of the racemate. Maximum blood concentrations of (?)-(R)-hydroxychloroquine were higher than (+)-(S) -hydroxychloroquine after oral dosing (121 ± 56 and 99 ± 42 ng/ml, respectively, P = 0.009). The time to maximum concentration and the absorption half-life, calculated using deconvolution techniques, were similar for both enantiomers. The fractions of the dose of each enantiomer absorbed were similar, 0.74 and 0.77 for (?)-(R)- and (+)-(S)-hydroxychloroquine, respectively (P = 0.77). The data suggest that absorption of hydroxychloroquine is not enantioselective. The stereoselective disposition of hydroxychloroquine appears to be due to enantioselective metabolism and renal clearance, rather than stereoselectivity in absorption and distribution. © 1994 Wiley-Liss, Inc.  相似文献   

16.
The pharmacokinetics of ibuprofen enantiomers were investigated in a crossover study in which seven healthy male volunteers received single oral doses of 800 mg racemic ibuprofen as a soluble granular formulation (sachet) containing L-arginine (designated trade name: Spedifen®), 400 mg (-)R-ibuprofen arginine or 400 mg (+)S-ibuprofen arginine. Plasma levels of both enantiomers were monitored up to 480 minutes after drug intake using an enantioselective analytical method (HPLC with ultraviolet detection) with a quantitation limit of 0.25 mg/l. Substantial inter-subject variability in the evaluated pharmacokinetic parameters was observed in the present study. After (+)S-ibuprofen arginine, the following mean pharmacokinetic parameters ±SD were calculated for (+)S-ibuprofen: tmax 28.6 ± 28.4 min; Cmax 36.2 ± 7.7 mg/l; AUC 86.4 ± 14.9 mg · h/l; t½ 105.2 ± 20.4 min. After (-)R-ibuprofen arginine, the following mean pharmacokinetic parameters were calculated for (+)S-ibuprofen and (-)R-ibuprofen, respectively: tmax 90.0 ± 17.3 and 50.5 ± 20.5 min; Cmax 9.7 ± 3.0 and 35.3 ± 5.0 mg/l; AUC 47.0 ± 17.2 and 104.7 ± 27.7 mg · h/l; t½ 148.1 ± 63.6 and 97.7 ± 23.3 min. After racemic ibuprofen arginine, the following mean pharmacokinetic parameters were calculated for (+)S- and (-)R-ibuprofen, respectively: tmax 30.7 ± 29.1 and 22.9 ± 29.8 min.; Cmax 29.9 ± 5.6 and 25.6 ± 4.4 mg/l; AUC 105.1 ± 23.0 and 65.3 ± 15.0 mg · h/l; t½ 136.6 ± 20.7 and 128.6 ± 45.0 min. Tmax values of S(+)- and (-)R-ibuprofen after a single dose of 400 mg of each enantiomer did not differ significantly from the corresponding parameters obtained after a single dose of 800 mg of racemic ibuprofen arginine, indicating that the absorption rate of (-)R- and (+)S-ibuprofen is not different when the two enantiomers are administered alone or as a racemic compound. An average of 49.3 ± 9.0% of a dose of the (-)R-ibuprofen arginine was bioinverted into its antipode during the study period (480 minutes post-dosing). The percent bioinversion during the first 30 minutes after (-)R-ibuprofen arginine intake averaged 8.1 ± 3.9%. The mean AUC of (+)S-ibuprofen calculated after 800 mg racemic ibuprofen arginine (105.1 ± 23.0 mg · h/l) was lower than the mean AUC value obtained by summing the AUCs of (+)S-ibuprofen after administration of 400 mg (+)S-ibuprofen arginine and 400 mg (-)R-ibuprofen arginine (133.4 ± 26.6 mg · h/l). In conclusion, the administration of Spedifen® resulted in very rapid absorption of the (+)S-isomer (eutomer) with tmax values much lower than those observed for this isomer when conventional oral solid formulations such as capsules or tablets of racemic ibuprofen are administered. This characteristic is particularly favourable in those conditions in which a very rapid analgesic effect is required. Chirality 9:297–302, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
It has been proposed that the chiral inversion of the 2-arylpropionic acids is due to the stereospecific formation of the (-)-R-profenyl-CoA thioesters which are putative intermediates in the inversion. Accordingly, amino acid conjugation, for which the CoA thioesters are obligate intermediates, should be restricted to those optical forms which give rise to the (-)-R-profenyl-CoA, i.e., the racemates and the (-)-(R)-isomers. We have examined this problem in dogs with respect to 2-phenylpropionic acid(2-PPA). Regardless of the optical configuration of 2-phenylpropionic acid administered, the glycine conjugate was the major urinary metabolite and this was shown to be exclusively the (+)-(S)-enantiomer by chiral HPLC. Both (-)-(R)- and (+)-(S)-2-phenylpropionic acid were present in plasma after the administration of either antipode, and further evidence of the chiral inversion of both enantiomers was provided by the presence of some 25% of the opposite enantiomer in the free 2-phenylpropionic acid and its glucuronide excreted in urine after administration of (-)-(R)- and (+)-(S)-2-phenylpropionic acid. The (+)-(S)-enantiomer underwent chiral inversion to the (-)-(R)-antipode when incubated with dog hepatocytes. These data suggests that both enantiomers of 2-phenylpropionic acid are substrates for canine hepatic acyl CoA ligase(s) and thus undergo chiral inversion, but that the CoA thioester of only (+)-(S)-2-phenylpropionic acid is a substrate for the glycine N-acyl transferase. These studies are presently being extended to the structure and species specificity of the reverse inversion and amino acid conjugation of profen NSAIDs.  相似文献   

18.
rac-Isradipine is a dihydropyridine type calcium antagonist. Its calcium entry blocking effect is due primarily to the (+)-(S)-enantiomer. This study describes a sensitive enantioselective method for the determination of isradipine in human serum. Following alkaline extraction into hexane, the enantiomers of isradipine are separated quantitatively by high-performance liquid chromatography on a Chiralcel OJ column at 39°C. The collected fractions were evaporated and assayed using capillary gas chromatography on a HP 50+ column with nitrogen selective detection. Using 2.0 ml of serum, 0.7 nmol/1 (0.26 ng/ml) of each enantiomer could be determined with acceptable precision. The method has successfully been used to measure (+)-(S)- and (−)-(R)-isradipine concentrations in samples from volunteers after intravenous and oral administration of isradipine. Chirality 10:808–812, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
The stereoselective pharmacokinetics of two enantiomers of [14C]-labeled KE-298 [2-acetylthiomethyl-4-(4-methylphenyl)-4-oxobutanonic acid] were investigated in rats. The blood levels of radioactivity after the oral administration of (+)-(S)-[14C]KE-298 were higher than that for (−)-(R)-[14C]KE-298; the AUC of the former was approximately twice that of the latter. No significant stereoselectivity was observed in absorption rate. The tissue/plasma level ratios at 30 min after oral administration of (−)-(R)-[14C]KE-298 in the liver and kidney, the major metabolic and/or excretory organs, were 2 to 3 times higher than those for (+)-(S)-[14C]KE-298. Neither was evidence of stereoselectivity found in the excretion of radioactivity. During incubation with isolated rat hepatocytes in vitro, the metabolic rates of KE-298 enantiomers were not significantly different. Plasma protein binding 30 min after the oral administration of (+)-(S)-[14C]KE-298 and (−)-(R)-[14C]KE-298 was 99.3% and 97.0%, respectively. Comparing the unbound fraction, (−)-(R)-[14C]KE-298 was approximately 4 times higher than (+)-(S)-[14C]KE-298. In order to make clear the relationship between stereoselective pharmacokinetics and protein binding for [14C]KE-298, the comparative pharmacokinetics of (+)-(S)-[14C]KE-298 and (−)-(R)-[14CC]KE-298 were investigated in analbuminemic rats. In these animals, no evidence of stereoselectivity was found for either blood level-time profiles or plasma protein binding. These results revealed that the stereoselective pharmacokinetics of KE-298 in rats might be due to enantiomeric differences in binding to plasma albumin. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Zhang Y  Shi K  Wen J  Fan G  Chai Y  Hong Z 《Chirality》2012,24(3):239-244
Tetrahydroberberine (THB), a racemic mixture of (+)‐ and (?)‐enantiomer, is a biologically active ingredient isolated from a traditional Chinese herb Rhizoma corydalis (yanhusuo). A chiral high performance liquid chromatography method has been developed for the determination of THB enantiomers in rat plasma. The enantioseparation was carried out on a Chiral®‐AD column using methanol:ethanol (80:20, v/v) as the mobile phase at the flow rate 0.4 ml/min. The ultraviolet detection was set at 230 nm. The calibration curves were linear over the range of 0.01–2.5 μg/ml for (+)‐THB and 0.01‐5.0 μg/ml for (?)‐THB, respectively. The lower limit of quantification was 0.01 μg/ml for both (+)‐THB and (?)‐THB. The stereoselective pharmacokinetics of THB enantiomers in rats was studied after oral and intravenous administration at a dose of 50 and 10 mg/kg racemic THB (rac‐THB). The mean plasma levels of (?)‐THB were higher at almost all time points than those of (+)‐THB. (?)‐THB also exhibited greater Cmax, and AUC0–∞, smaller CL and Vd, than its antipode. The (?)/(+)‐enantiomer ratio of AUC0–∞ after oral and intravenous administration were 2.17 and 1.43, respectively. These results indicated substantial stereoselectivity in the pharmacokinetics of THB enantiomers in rats. Chirality, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号