首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linoleic acid (LA) incubated with a homogenate of Lentinula edodes or Tricholoma matsutake mushroom significantly increased the amount of (R)-1-octen-3-ol. The alcohol was identified as (S)-10-HODE with 90-87% and >99% enantiomeric excess (ee), respectively. During the incubation of LA with these homogenates in the presence of glutathione-glutathione peroxidase (GSH-GPx), which can reduce hydroperoxy fatty acids to the corresponding hydroxy acids, the formation of (R)-1-octen-3-ol was significantly inhibited, whereas the amount of 10-hydroxy-(8E,12Z)-8,12-octadecadienoic acid (10-HODE) was significantly increased. The acid was identified as (S)-10-HODE with 92-88% ee and >99% ee, respectively. The decrease in the amount of alcohol was approximately the same as the increase in amount of HODE in both mushrooms. These results indicate a stereochemical correlation between (R)-1-octen-3-ol and (S)-10-hydroperoxy-(8E,12Z)-8,12-octadecadienoic acid [(S)-10-HPODE] in both mushrooms.  相似文献   

2.
Both (R)- and (S)-4-hydroxypentylaminoacetamide have been synthesized by reductive amination of glycinamide on the γ-valerolactols corresponding to (R)- and (S)-γ-valerolactone, respectively. These enantiomeric lactones were readily obtained in high enantiomeric excess (ee) by enzymic porcine pancreatic lipase (PPL) kinetic resolution of rac-methyl γ-hydroxyvalerate. © 1992 Wiley-Liss, Inc.  相似文献   

3.
β-methylaspartate ammonia-lyase, EC 4.3.1.2, (β-methylaspartase) from Clostridium tetanomorphum was used to produce a 40/60 molar ratio of (2S,3R) and (2S,3S)-3-methylaspartic acids, 2a and 2b , respectively, from mesaconic acid 1 as substrate, on a large scale. To prepare (3R,4R)-3-methyl-4-(benzyloxycarbonyl)-2-oxetanone (benzyl 3-methylmalolactonate) 6, 2a and 2b were transformed, in the first step, into 2-bromo-3-methylsuccinic acids 3a and 3b and separated. After three further steps, (2S,3S)- 3a yielded the α,β-substituted β-lactone (3R,4R) 6 with a very high diastereoisomeric excess (>95% by chiral gas chromatography). The corresponding crystalline polymer, poly[benzyl β-(2R,3S)-3-methylmalate] 8 , prepared by an anionic ring opening polymerization, was highly isotactic as determined by 13C NMR. Catalytic hydrogenolysis of lactone 6 yielded (3R,4R)-3-methyl-4-carboxy-2-oxetanone (3-methylmalolactonic acid) 7 , to which reactive, chiral, or bioactive molecules can be attached through ester bonds leading to polymers with possible therapeutic applications. Because of the ability of β-methylaspartase to catalyse both syn- and anti-elimination of ammonia from (2S,3RS)-3-methylaspartic acid 2ab at different rates, the (2S,3R)-stereoisomer 2a was retained and isolated for further reactions. These results permit the use of the chemoenzymatic route for the preparation of both optically active and racemic polymers of 3-methylmalic acid with well-defined enantiomeric and diastereoisomeric compositions. Chirality 10:727–733, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Novozyme 435 could be a highly efficient catalyst in the asymmetric acylation of (R,S)-3-n-butylphthalide in tetrahydrofuran-hexane solvents. The effect of various reaction parameters such as agitation velocity, water content, mixed media, temperature, concentration of Novozyme 435, molar ratio of acetic anhydride to (R,S)-3-n-butylphthalide, reaction time, enantiomeric excess of substrate (ee(S)), enantiomeric excess of product (ee(P)), and enantioselective ratio (E) were studied. Tetrahydrofuran markedly improved (R,S)-3-n-butylphthalide conversion, enantiomeric excess of remaining 3-n-butylphthalide, and enantiomeric ratio. The optimum media were 50% (v/v) tetrahydrofuran and 50% (v/v) hexane. Other ideal reaction conditions were an agitation velocity of 150 rpm, 0.4% (v/v) water content, temperature of 30 °C, 8 mg/mL dosage of Novozyme 435, 8:1 (0.4 mmol: 0.05 mmol) molar ratio of acetic anhydride to (R,S)-3-n-butylphthalide, and a reaction time of 48 hr. Under the optimum conditions, 96.4% ee(S) and 49.3% conversion of (R,S)-3-n-butylphthalide were achieved. In addition, enantiomeric excess of the product was above 98.0%.  相似文献   

5.
Sporidiobolus salmonicolor is an aroma-producing yeast which gives a peach-like smell to the culture media. The enantiomeric ratios of the five γ-lactones produced by this yeast cultivated in two different media were determined by multidimensional gas chromatography (MDGC) on a fused silica capillary column coupled to a modified β-cyclodextrin column. These ratios remain constant during growth and are not affected by the composition of the medium. The (R)-enantiomer is highly predominant (99%) for γ-decalactone and predominant (68–88%) for γ-octalactone, γ-nonalactone, and (Z6)-γ-dodecenolactone. A ratio close to racemic was found for γ-dodecalactone. A discussion on the metabolic origin of these lactones is based on the analysis of the enantiomeric ratios obtained. With respect to consumers' preference for products considered as “natural,” microbial lactone production may represent a valuable alternative to fruit flavors. The enantiomeric lactone ratios produced by Sporidiobolus salmonicolor are compared with those reported from some fruits. Chirality 9:667–671, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
A stress-induced fatty acid [FIF; 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid] incubated with (-)-norepinephrine (NE) strongly induces flower formation in Lemna paucicostata [Yokoyama et al. (2000), Plant Cell Physiol. 41: 110). The increase of flower-inducing activity was well correlated with the decrease in FIF in the incubation mixture, and the reaction proceeded rapidly at higher pH. We detected small amounts of many active components in the mixture after incubation by HPLC analysis. In this study, two major components, named FN1 and FN2, of the reaction mixture were isolated, and their absolute stereostructures were determined. FN1 showed a strong flower-inducing activity and was identified as a tricyclic alpha-ketol fatty acid, 9(R)-11-[(2'R,8'R,10'S,11'S)-2',8'-dihydroxy-7'-oxo-11'-[(Z)-2-pentenyl]-9'-oxa-4'-azatricyclo[6.3.1.0(1.5)]dodec- 5'en-10'-yl]-9-hydroxy-10-oxoundecanoic acid [corrected]. FN2, the C-9 epimer of FN1, showed no flower-inducing activity. The absolute stereostructure of FIF was also determined by a modification of Mosher's method. The 9-hydroxyl group was found to be predominantly 9R, with an enantiomeric excess of 40% (70% 9R and 30% 9S). FN1 was derived from 9R-type FIF and FN2 from 9S-type FIF. Various catecholamines and related substances were investigated for the ability to develop flower-inducing activity upon incubation with FIF. The essential structures were catechol and ethylamine groups (dopamine).  相似文献   

7.
When long-chain unsaturated fatty acids such as oleic, linoleic, and linolenic acid were incubated with crude enzymes from the marine green alga Ulva pertusa, the corresponding (R)-2-hydroperoxy acids were formed with a high enantiomeric excess (>99%).  相似文献   

8.
A comparative study of four peptidomimetics of the sequence Phe-Met-Arg-Phe-amide (FMRFa) was performed to compare the conformational bias caused by trans-2,3-methanomethionine and α-methylmethionine stereoisomers. The specific compounds studied were F[(2S,3S)-cyclo-M] RFa, F[(2R,3R)-cyclo-M]RFa, F[(S)-α-MeM]RFa, and F[(R)-α-MeM]RFa. Molecular simulations based on CHARMm 22 indicate that γ-turn, inverse γ-turn, and α-helical conformations about the cyclo-M residue are accessible to the two F[cyclo-M]RFa stereoisomers. Similar calculations for F[(S)-α-MeM]RFa, and F[(R)-α-MeM]RFa indicate that the α-methylamino acids tend to favor α-helical conformations. The nmr data is presented for the four peptidomimetics. Most informative were the rotating frame nuclear Overhauser effect cross peaks between the NH protons proximal to the methionine surrogates, and the Cβ hydrogens. Overall, these nmr data indicate F[(2S,3S)-cyclo-M]RFa and F[(2R,3R)-cyclo-M]RFa preferentially adopt inverse γ-turn and γ-turn conformations, respectively, whereas F[(S)-α-MeM]RFa and F[(R)-α-MeM]RFa tend to form partial left- and right-handed helical structures (although energy differences between the two turn structures, and between the two helical structures are likely to be small). It is suggested that the wider NH-Cα-CO angle of cyclopropane amino acids and their more severe steric requirements around the Cβ carbons force the peptidomimetic N- and C-termini into the same region of conformational space. This favors C7 turns in the cyclopropane amino acid series relative to the less constrained α-methyl derivatives. © 1997 John Wiley & Sons, Inc. Biopoly 42: 439–453, 1997  相似文献   

9.
The effect of environment on the growth of Verticillium lecanii and its metabolic transformation of racemic ibuprofen are reported. The growth of V. lecanii exhibited a lag phase of up to 12 h followed by a period of rapid growth for up to 4 d. The optimal conditions for growth of the micro-organism were determined to be 24°C at pH 7.0 with a culture volume of up to one-tenth of the culture flask volume.
The metabolic oxidation of (R,S)-ibuprofen occurred in both growing cultures and washed cell suspensions of V. lecanii. Examination of the stereochemical composition of the remaining substrate indicated that under both conditions the oxidation was substrate stereoselective for the R-enantiomer of the drug. Using growing cultures of the micro-organism, quantitative conversion of the substrate to the metabolite was achieved following incubation for 14 d. Examination of the enantiomeric composition of the metabolic product indicated an excess of the S-isomer (ratio S/R = 2.1). The possible mechanisms for the apparent anomaly in the stereoselectivity of (R,S)-ibuprofen metabolism and the enantiomeric composition of the metabolite are discussed.  相似文献   

10.
Abstract

The asymmetric acylation of (R, S)-3-n-butylphthalide could be efficiently catalyzed by Novozyme 435. The effect of various reaction parameters such as water activity, temperature, molar ratio of acetic anhydride to (R, S)-3-n-butylphthalide, and reaction time on the asymmetric acylation were studied. The optimums of the reaction parameters were water activity 0.62, temperature 30°C, molar ratio of acetic anhydride to (R, S)-3-n-butylphthalide 8:1, and reaction time 48 h, respectively. Under the optimum conditions, enantiopure 3-n-butylphthalide with an optical purity of 95.7% enantiomeric excess and 49.1% yield could be obtained. Furthermore, the enantiomeric excess of product was over 98%.  相似文献   

11.
The stereochemistry of C18 unsaturated fatty acids epoxidation catalyzed by detergent-solubilized and partially purified soybean peroxygenase was determined by chiral phase HPLC. Linoleic acid was oxidized into 9, 10- and 12,13-cis-epoxyoctadecenoic acids with a high enantiofacial selectivity. A 5.2:1 and 2.3:1 ratio respectively in favor of the 9(R), 10(S)- and 12(R), 13(S)-epoxy enantiomers was observed. These epoxy-derivatives of linoleic acid have the chirality of metabolites known to be involved in plant defense against fungi. This finding is of importance in establishing a physiological role for the peroxygenase.  相似文献   

12.
A purified and partially characterized novel NADP+-dependent oxidoreductase from Clostridium tyrobutyricum DSM 1460 was applied for the preparative reduction of several 3-oxo acids to (S)-3-hydroxy acids. (R)-3-Hydroxybutyrate was prepared by the same enzyme selectively dehydrogenating the S enantiomer of (R,S)-3-hydroxybutyrate. The enantiomeric purity of the (S)- and (R)-3-hydroxy acids was at least 98% enantiomeric excess (e.e). NADPH for reductions and NADP+ for dehydrogenations were regenerated by applying artificial mediator accepting pyridine nucleotide oxidoreductases in the form of a crude extract of C. thermoaceticum cells. For NADP+ regeneration also the system 2-oxoglutarate/glutamate dehydrogenase was used for comparison. Instead of the purified (S)-3-hydroxycarboxylate oxidoreductase, resting cells of C. tyrobutyricum were also applied for reductions and dehydrogenations with substrate concentrations of 200–400 mM leading to products with e.e. values above 96%.Dedicated to Prof. H.G. Floss on the occasion of his 60th birthday  相似文献   

13.
A full length cDNA encoding a new cytochrome P450-dependent fatty acid hydroxylase (CYP94A5) was isolated from a tobacco cDNA library. CYP94A5 was expressed in S. cerevisiae strain WAT11 containing a P450 reductase from Arabidopsis thaliana necessary for catalytic activity of cytochrome P450 enzymes. When incubated for 10 min in presence of NADPH with microsomes of recombinant yeast, 9,10-epoxystearic acid was converted into one major metabolite identified by GC/MS as 18-hydroxy-9,10-epoxystearic acid. The kinetic parameters of the reaction were Km,app = 0.9 +/- 0.2 microM and Vmax,app = 27 +/- 1 nmol x min(-1) x nmol(-1) P450. Increasing the incubation time to 1 h led to the formation of a compound identified by GC/MS as 9,10-epoxy-octadecan-1,18-dioic acid. The diacid was also produced in microsomal incubations of 18-hydroxy-9,10-epoxystearic acid. Metabolites were not produced in incubations with microsomes of yeast transformed with a control plasmid lacking CYP94A5 and their production was inhibited by antibodies raised against the P450 reductase, demonstrating the involvement of CYP94A5 in the reactions. The present study describes a cytochrome P450 able to catalyze the complete set of reactions oxidizing a terminal methyl group to the corresponding carboxyl. This new fatty acid hydroxylase is enantioselective: after incubation of a synthetic racemic mixture of 9,10-epoxystearic acid, the chirality of the residual epoxide was 40/60 in favor of 9R,10S enantiomer. CYP94A5 also catalyzed the omega-hydroxylation of saturated and unsaturated fatty acids with aliphatic chain ranging from C12 to C18.  相似文献   

14.
Summary Pig liver esterase (EC 3.1.1.1) catalyzed hydrolysis of the dimetrhy ester of meso-cis-1,2-cyclohexanedicarboxylic acid yielded the optically pure (1S,2R)-monoester. The corresponding diethyl ester yielded racemic monoester.The diethyl ester of racemic trans-1,2-cyclohexanedicarboxylic acid was kinetically resolved by partial hydrolysis with subtilisin (EC 3.4.21.14) or pig liver esterase. The (1R,2R)-monoester had an enantiomeric excess of 45% and was obtained in an enantiomerically pure form through recrystallisation. The remaining (1S,2S)-diester exhibited an enantiomeric excess of 83%. The nature of the ester function (methyl, ethyl, and propyl esters) had a great influence on the enantiomeric excess obtained and on the kinetic parameters.  相似文献   

15.
S K Yang  K Liu  F P Guengerich 《Chirality》1990,2(3):150-155
Rates of hydrolysis of racemic and enantiomeric oxazepam 3-acetates (OXA) by esterases in human and rat liver microsomes and rat brain S9 fraction were compared. When rac-OXA was the substrate, esterases in human and rat liver microsomes were highly enantioselective toward (R)-OXA. In contrast, esterases in rat brain S9 fraction were highly enantioselective toward (S)-OXA. Hydrolysis rates of rac-OXA were highly dependent on the amount of esterases used. At 0.05 mg protein equivalent of esterases and 150 nmol of rac-OXA per ml of incubation mixture, the (R)-OXA was hydrolyzed 3.6-fold and 18.5-fold faster than (S)-OXA by rat and human liver microsomes, respectively. The specific activities (nmol of OXA hydrolyzed/mg microsomal protein/min) of liver microsomes in the hydrolysis of enantiomerically pure (R)-OXA were approximately 120 (rat) and 1,980 (human), and in the hydrolysis of enantiomerically pure (S)-OXA were 4 (rat) and 7 (human), respectively. In the incubation of rac-OXA with rat brain S9 fraction, (S)-OXA was hydrolyzed approximately 6-fold faster than (R)-OXA. Results also indicated an enantiomeric interaction in the hydrolysis of rac-OXA by esterases in rat and human liver microsomes; the presence of (R)-OXA stimulated the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA inhibited the hydrolysis of (R)-OXA. In rat brain S9 fraction, the presence of (R)-OXA inhibited the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA appeared to have stimulated the hydrolysis of (R)-OXA.  相似文献   

16.
8-Hydroxyoctadeca-9Z,12Z-dienoic acid (8-HODE) and 10-hydroxyoctadeca-8E,12Z-octadecadienoic acid (10-HODE) are produced by fungi, e.g., 8R-HODE by Gaeumannomyces graminis (take-all of wheat) and Aspergillus nidulans, 10S-HODE by Lentinula edodes, and 10R-HODE by Epichloe typhina. Racemic [8-(2)H]8-HODE and [10-(2)H]10-HODE were prepared by oxidation of 8- and 10-HODE to keto fatty acids by Dess-Martin periodinane followed by reduction to hydroxy fatty acids with NaB(2)H(4). The hydroxy fatty acids were analyzed by chiral phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with 8R-HODE and 10S-HODE as standards. 8R-HODE eluted after 8S-HODE on silica with cellulose tribenzoate (Chiralcel OB-H), and 10S-HODE eluted before 10R-HODE on silica with an aromatic chiral selector (Reprosil Chiral-NR). 5S,8R-Dihydroxyoctadeca-9Z,12Z-dienoic acid (5S,8R-DiHODE) is formed from 18:2n-6 by A. nidulans and 8R,11S-dihydroxyoctadeca-9Z,12Z-dienoic acid (8R,11S-DiHODE) by Agaricus bisporus. 8R-Hydroperoxylinoleic acid (8R-HPODE) can be transformed to 5S,8R-DiHODE and 8R,11-DiHODE by Aspergillus spp., and 8R,13-dihydroxy-9Z,11E-dienoic acid (8R,13-DiHODE) can also be detected. We prepared racemic [5,8-(2)H(2)]5,8- and [8,11-(2)H(2)]8,11-DiHODE by oxidation and reduction as above and 8R,13S- and 8R,13R-DiHODE by oxidation of 8R-HODE by S and R lipoxygenases. The diastereoisomers were separated and identified by normal phase HPLC-MS/MS analysis. We used the methods for steric analysis of fungal oxylipins. Aspergillus spp. produced 8R-HODE (>95% R), 10R-HODE (>70% R), and 5S,8R- and 8R,11S-DiHODE with high stereoselectivity (>95%), whereas 8R,13-DiHODE was likely formed by nonenzymatic hydrolysis of 8R,11S-DiHODE.  相似文献   

17.
(R)- and (S)-Methyl 2-(phenoxy)propionate and their acids could be separated simultaneously by a Chiralcel OD or OK column, while (R)- and (S)-methyl 2-(4-chlorophenoxy)propionate and their acids were separated concurrently only by an OK column. This is a novel and facile way to measure the enantiomeric excesses of the remaining substrate and product in the reaction of enzymatic resolution; enantiomeric ratios could then be calculated.  相似文献   

18.
Copper(II) complexes of (S)-phenylalaninamide have been successfully used for the direct enantiomeric separation of unmodified (R,S)-α-hydroxy acids in reversed phase high-performance liquid chromatography (RP-HPLC). The effect of various parameters (pH, eluent polarity, selector concentration) on enantioselectivity is discussed. Evidence is provided that a mechanism of ligand exchange is actually occurring during the chromatographic separation. The method is very convenient and easy to use, and the chiral selector is commercially available and can be recovered at the end of the analysis. A conventional achiral RP-ODS-2 column is used and no pretreatment of the samples is required. This method allows the accurate determination of the enantiomeric excess of α-hydroxy acids in synthetic and biological samples. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Phenylacetaldehyde reductase (PAR) produced by styrene-assimilating Corynebacterium strain ST-10 was used to synthesize chiral alcohols. This enzyme with a broad substrate range reduced various prochiral aromatic ketones and beta-ketoesters to yield optically active secondary alcohols with an enantiomeric purity of more than 98% enantiomeric excess (e.e.). The Escherichia coli recombinant cells which expressed the par gene could efficiently produce important pharmaceutical intermediates; (R)-2-chloro-1-(3-chlorophenyl)ethanol (28 mg.mL-1) from m-chlorophenacyl chloride, ethyl (R)-4-chloro-3-hydroxy butanoate) (28 mg.mL-1) from ethyl 4-chloro-3-oxobutanoate and (S)-N-tert-butoxycarbonyl(Boc)-3-pyrrolidinol from N-Boc-3-pyrrolidinone (51 mg.mL-1), with more than 86% yields. The high yields were due to the fact that PAR could concomitantly reproduce NADH in the presence of 3-7% (v/v) 2-propanol in the reaction mixture. This biocatalytic process provided one of the best asymmetric reductions ever reported.  相似文献   

20.
Racemic indan derivatives have been resolved by the hydrolysis of amide bonds using Corynebacterium ammoniagenes IFO12612 to produce (S)-amine and (R)-amides. In the kinetic resolution of 1 (N-12-(6-methoxy-indan-1-yl)ethyl]acetamide), it was possible to run the reaction to 44% conversion on a 10-g scale, obtaining (S)-amine 4 ((S)-2-(6-methoxy-indan-1-yl)ethylamine) at >99% enantiomeric excess (ee) and (R)-1 at 98% ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号