首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although S-nitrosothiols are regarded as important elements of many NO-dependent signal transduction pathways, the physiological mechanism of their formation remains elusive. Here, we demonstrate a novel mechanism by which cytochrome c may represent an efficient catalyst of S-nitrosation in vivo. In this mechanism, initial binding of glutathione to ferric cytochrome c is followed by reaction of NO with this complex, yielding ferrous cytochrome c and S-nitrosoglutathione (GSNO). We show that when submitochondrial particles or cell lysates are exposed to NO in the presence of cytochrome c, there is a robust formation of protein S-nitrosothiols. In the case of submitochondrial particles protein S-nitrosation is paralleled by an inhibition of mitochondrial complex I. These observations raise the possibility that cytochrome c is a mediator of S-nitrosation in biological systems, particularly during hypoxia, and that release of cytochrome c into the cytosol during apoptosis potentially releases a GSNO synthase activity that could modulate apoptotic signaling.  相似文献   

2.
The secretion and extracellular transport of Wnt protein are thought to be well-regulated processes. Wnt is known to be acylated with palmitic acid at a conserved cysteine residue (Cys77 in murine Wnt-3a), and this residue appears to be required for the control of extracellular transport. Here, we show that murine Wnt-3a is also acylated at a conserved serine residue (Ser209). Of note, we demonstrated that this residue is modified with a monounsaturated fatty acid, palmitoleic acid. Wnt-3a defective in acylation at Ser209 is not secreted from cells in culture or in Xenopus embryos, but it is retained in the endoplasmic reticulum (ER). Furthermore, Porcupine, a protein with structural similarities to membrane-bound O-acyltransferases, is required for Ser209-dependent acylation, as well as for Wnt-3a transport from the ER for secretion. These results strongly suggest that Wnt protein requires a particular lipid modification for proper intracellular transport during the secretory process.  相似文献   

3.
Calpha-formylglycine is the catalytic residue of sulfatases. Formylglycine is generated by posttranslational modification of a cysteine (pro- and eukaryotes) or serine (prokaryotes) located in a conserved (C/S)XPXR motif. The modifying enzymes are unknown. AtsB, an iron-sulfur protein, is strictly required for modification of Ser(72) in the periplasmic sulfatase AtsA of Klebsiella pneumoniae. Here we show (i) that AtsB is a cytosolic protein acting on newly synthesized serine-type sulfatases, (ii) that AtsB-mediated FGly formation is dependent on AtsA's signal peptide, and (iii) that the cytosolic cysteine-type sulfatase of Pseudomonas aeruginosa can be converted into a substrate of AtsB if the cysteine is substituted by serine and a signal peptide is added. Thus, formylglycine formation in serine-type sulfatases depends both on AtsB and on the presence of a signal peptide, and AtsB can act on sulfatases of other species. AtsB physically interacts with AtsA in a Ser(72)-dependent manner, as shown in yeast two-hybrid and GST pull-down experiments. This strongly suggests that AtsB is the serine-modifying enzyme and that AtsB relies on a cytosolic function of the sulfatase's signal peptide.  相似文献   

4.

Background

Despite the presence of papillary structures and papillary tumors in humans, the mechanism of papillae formation is unknown. We describe herein a novel role for Niemann-Pick disease type 2C (NPC2) protein, a cholesterol binding protein in the lysosome, in papillae formation.

Methodology/Principal Finding

We examined NPC2 protein expression in surgical samples of papillary tissues by immunohistochemical stain, and all papillary tissues expressed NPC2 protein in the epithelium. To examine our hypothesis of NPC2 protein-mediated papillae formation, we carried out xenograft experiments using wild H460 cells (large cell lung carcinoma cell line) that constitutively expressed abundant NPC2 protein and NPC2 protein-depleted H460 cells by NPC2 shRNA. The xenografts of wild H460 cells and empty shRNA vector cells showed distinct papillae formation, whereas NPC2 protein-depleted H460 cells displayed markedly reduced or no papillae. Since all papillary tissues have open spaces we examined whether NPC2 protein might also contribute to the creation of open spaces. The TUNEL assay in the xenografts of wild and empty shRNA vector H460 cells showed massive cell death, and NPC2 protein-depleted cells displayed minimal cell death. Measurement of caspase 3/7 activities in cultured H460 cells supported NPC2 protein-mediated apoptotic cell death. The presence of excess NPC2 protein, however, did not always produce papillae as seen in the xenografts of CHO cells that were stably transfected with NPC2.

Conclusions/Significance

The NPC2 protein of certain cells forms papillae coupled with apoptosis that creates open space. This protein may have future applications to modulate papillae formation and papillary growth in tumor tissues.  相似文献   

5.
The cellular prion protein (PrPC) is a membrane-bound glycoprotein especially abundant in the central nervous system (CNS). The scrapie prion protein (PrPSc, also termed prions) is responsible of transmissible spongiform encephalopathies (TSE), a group of neurodegenerative diseases which affect humans and other mammal species, although the presence of PrPC is needed for the establishment and further evolution of prions.The present work compares the expression and localization of PrPC between healthy human brains and those suffering from Alzheimer disease (AD).In both situations we have observed a rostrocaudal decrease in the amount of PrPC within the CNS, both by immunoblotting and immunohistochemistry techniques. PrPC is higher expressed in our control brains than in AD cases. There was a neuronal loss and astogliosis in our AD cases. There was a tendency of a lesser expression of PrPC in AD cases than in healthy ones. And in AD cases, the intensity of the expression of the unglycosylated band is higher than the di- and monoglycosylated bands.With regards to amyloid plaques, those present in AD cases were positively labeled for PrPC, a result which is further supported by the presence of PrPC in the amyloid plaques of a transgenic line of mice mimicking AD.The work was done according to Helsinki Declaration of 1975, and approved by the Ethics Committee of the Faculty of Medicine of the University of Navarre.Key words: cellular prion protein, Alzheimer disease, transgenic mice  相似文献   

6.
Protein modification and its biological role   总被引:3,自引:0,他引:3  
The modifications present on a polypeptide play an important role in determining its eventual fate. Modifications, particularly proteolysis, are important in the generation of biological activity. Modifications are used to "target" particular polypeptides to specific cellular locations. Protein modification also plays a role in determining the rate of polypeptide degradation. Cells have developed elaborate systems for the modification of their proteins because these modifications serve important biological functions.  相似文献   

7.
8.
Participation of an acidic group in the chymotrypsin catalysis   总被引:4,自引:0,他引:4  
  相似文献   

9.
10.
Deoxycytidylate (dCMP) hydroxymethylase from Escherichia coli infected with a T-4 bacteriophage amber mutant has been purified to homogeneity. It is a dimer with a subunit molecular weight of 28,000. Chemical modification of the homogeneous enzyme with N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) leads to complete loss of enzyme activity. dCMP can protect the enzyme against NEM inactivation, but the dihydrofolate analogues methotrexate and aminopterin alone do not afford similar protection. Compared to dCMP alone, dCMP plus either methotrexate or aminopterin greatly enhances protection against NEM inactivation. DTNB inactivation is reversed by dithiothreitol. For both reagents, inactivation kinetics obey second-order kinetics. NEM inactivation is pH dependent with a pKa for a required thiol group of 9.15 +/- 0.11. Complete enzyme inactivation by both reagents involves the modification of one thiol group per mole of dimeric enzyme. There are two thiol groups in the totally denatured enzyme modified by either NEM or DTNB. Kinetic analysis of NEM inactivation cannot distinguish between these two groups; however, with DTNB kinetic analysis of 2-nitro-5-thiobenzoate release shows that enzyme inactivation is due to the modification of one fast-reacting thiol followed by the modification of a second group that reacts about 5-6-fold more slowly. In the presence of methotrexate, the stoichiometry of dCMP binding to the dimeric enzyme is 1:1 and depends upon a reduced thiol group. It appears that the two equally sized subunits are arranged asymmetrically, resulting in one thiol-containing active site per mole of dimeric enzyme.  相似文献   

11.
Opioid receptor pharmacology in vivo has predicted a greater number of receptor subtypes than explained by the profiles of the three cloned opioid receptors, and the functional dependence of the receptors on each other shown in gene-deleted animal models remains unexplained. One mechanism for such findings is the generation of novel signaling complexes by receptor hetero-oligomerization, which we previously showed results in significantly different pharmacology for mu and delta receptor hetero-oligomers compared with the individual receptors. In the present study, we show that deltorphin-II is a fully functional agonist of the mu-delta heteromer, which induced desensitization and inhibited adenylyl cyclase through a pertussis toxin-insensitive G protein. Activation of the mu-delta receptor heteromer resulted in preferential activation of Galpha(z), illustrated by incorporation of GTPgamma(35)S, whereas activation of the individually expressed mu and delta receptors preferentially activated Galpha(i). The unique pharmacology of the mu-delta heteromer was dependent on the reciprocal involvement of the distal carboxyl tails of both receptors, so that truncation of the distal mu receptor carboxyl tail modified the delta-selective ligand-binding pocket, and truncation of the delta receptor distal carboxyl tail modified the mu-selective binding pocket. The distal carboxyl tails of both receptors also had a significant role in receptor interaction, as evidenced by the reduced ability to co-immunoprecipitate when the carboxyl tails were truncated. The interaction between mu and delta receptors occurred constitutively when the receptors were co-expressed, but did not occur when receptor expression was temporally separated, indicating that the hetero-oligomers were generated by a co-translational mechanism.  相似文献   

12.
Baenziger JU 《Cell》2003,113(4):421-422
The posttranslational conversion of cysteine to C(alpha)-formylglycine in the catalytic site of mammalian sulfatases is deficient in the rare but devastating disorder multiple sulfatase deficiency (MSD). Two papers in this issue of Cell report the cloning of a gene responsible for this activity.  相似文献   

13.
14.
15.
Streptococcus pyogenes interacts with host fibronectin via distinct surface components. One of these components is the Sfbl protein (streptococcal fibronectin-binding protein, now specified as class I), an adhesin that represents a protein family with characteristic features. Here we present the complete structure of a novel fibronectin-binding protein of S. pyogenes , designated SfbII, which is distinct from the previously described Sfbl proteins. The sfbII gene originated from a λ EMBL3 library of chromosomal DNA from group A streptococcal strain A75 and coded for a 113kDa protein exhibiting features of membrane-anchored surface proteins of Gram-positive cocci. The expression of biologically active fusion proteins allowed the determination of the location of the fibronectin-binding domain within the C-terminal part of the protein. It consisted of two and a half repeats which share common motifs with fibronectin-binding repeats of other streptococcal and staphylococcal proteins. Purified recombinant fusion protein containing this domain competitively inhibited the binding of fibronectin to the parental S. pyogenes strain. Furthermore, polyclonal antibodies against the binding domain specifically blocked the Sfbll receptor site on the streptococcal surface. No cross-reactivity could be detected between anti-Sfbll antibodies and the sfbl gene product, and vice versa, indicating that the two proteins do not share common immunogenic epitopes. Southern hybridization experiments performed with specific sfbll gene probes revealed the presence of the sfbll gene in more than 55% of 93 streptococcal isolates tested. The majority of the strains also harboured the sfbl gene, and 86% carried at least one of the two sfb genes.  相似文献   

16.
Early studies of enzyme-catalysed hydride transfer reactions indicated kinetic anomalies that were initially interpreted in the context of a 'tunnelling correction'. An alternate model for tunnelling emerged following studies of the hydrogen atom transfer catalysed by the enzyme soybean lipoxygenase. This invokes full tunnelling of all isotopes of hydrogen, with reaction barriers reflecting the heavy atom, environmental reorganization terms. Using the latter approach, we offer an integration of the aggregate data implicating hydrogen tunnelling in enzymes (i.e. deviations from Swain-Schaad relationships and the semi-classical temperature dependence of the hydrogen isotope effect). The impact of site-specific mutations of enzymes plays a critical role in our understanding of the factors that control tunnelling in enzyme reactions.  相似文献   

17.
Extracts of Morquio fibroblasts lack N-acetylgalactosamine 6-sulfate sulfatase activity, but exhibit normal levels of N-acetylglucosamine 6-sulfate sulfatase activity. Thus, the enzyme defective in Morquio's disease is a sulfatase specific for the 6-sulfate linked to sugars with the galactose configuration. Hydrolysis of ester sulfate by this enzyme is limited to 6-sulfate groups occurring at the non-reducing terminal.  相似文献   

18.
The location, timing and intensity of Nodal signalling are all critical for proper patterning of the vertebrate embryo. Genetic evidence from mouse and zebrafish indicates that EGF-CFC family members are essential for Nodal ligands to signal. However, the Xenopus EGF-CFC, FRL1, has been implicated in Wnt signalling and in activation of Erk MAP kinase. Here, we identify two additional Xenopus EGF-CFCs, XCR2 and XCR3. We have focused on the role of XCR1/FRL1 and XCR3, which are both expressed at gastrula stages when Nodal signalling is active. We demonstrate spatial and temporal regulation of XCR1 protein expression, whereas XCR3 appears to be expressed ubiquitously. Using gain and loss of function approaches, we show that XCR1 and XCR3 are required for Nodal-related ligands to signal during early Xenopus development. Moreover, different Nodal-related ligands require different XCRs to signal. When both XCR1 and XCR3 are knocked down, activation of the Nodal intracellular signal transducer, Smad2, is severely inhibited and neither gastrulation nor mesendoderm formation occurs. Together our results indicate that the XCRs are important for modulation of the timing and intensity of Nodal signalling in Xenopus embryos.  相似文献   

19.
A novel protein modification pathway related to the ubiquitin system.   总被引:20,自引:2,他引:20       下载免费PDF全文
Ubiquitin conjugation is known to target protein substrates primarily to degradation by the proteasome or via the endocytic route. Here we describe a novel protein modification pathway in yeast which mediates the conjugation of RUB1, a ubiquitin-like protein displaying 53% amino acid identity to ubiquitin. We show that RUB1 conjugation requires at least three proteins in vivo. ULA1 and UBA3 are related to the N- and C-terminal domains of the E1 ubiquitin-activating enzyme, respectively, and together fulfil E1-like functions for RUB1 activation. RUB1 conjugation also requires UBC12, a protein related to E2 ubiquitin-conjugating enzymes, which functions analogously to E2 enzymes in RUB1-protein conjugate formation. Conjugation of RUB1 is not essential for normal cell growth and appears to be selective for a small set of substrates. Remarkably, CDC53/cullin, a common subunit of the multifunctional SCF ubiquitin ligase, was found to be a major substrate for RUB1 conjugation. This suggests that the RUB1 conjugation pathway is functionally affiliated to the ubiquitin-proteasome system and may play a regulatory role.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号