首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the four glutathione-S-transferases (GST) that is overproduced in the insecticide-resistant Cornell-R strain of the housefly (Musca domestica) produces an activity that degrades the insecticide dimethyl parathion and conjugates glutathione to lindane. In earlier work, it was shown that the resistant Cornell-R carries an amplification, probably a duplication, of one or more of its GST loci and that this amplification is directly related to resistance. Using polymerase chain reaction (PCR) amplification with genomic DNA, multiple copies of the gene encoding the parathion-degrading activity (called MdGst-3) were subcloned from both the ancestral, insecticide-susceptible strain BPM and from the insecticide-resistant Cornell-R. In BPM, three different MdGst-3 genes were identified while in Cornell-R, 12 different MdGst-3 sequences were found that, though closely related to ancestral genes, had diverged by a few nucleotides. This diversity in MdGst-3 genomic sequences in Cornell-R is reflected in the expressed sequences, as sampled through a cDNA bank. Population heterozygosity cannot account for these multiple GST genes. We suggest that selection for resistance to insecticides has resulted in not only amplification of the MdGst-3 genes but also in the divergence of sequence between the amplified copies. Received: 22 November 1995 / Accepted: 23 February 1996  相似文献   

2.
ABSTRACT

Modern techniques are revealing that repetition of segments of the genome, called amplification or gene amplification, is very common. Amplification is found in all domains of life, and occurs under conditions where enhanced expression of the amplified genes is advantageous. Amplification extends the range of gene expression beyond that which is achieved by control systems. It also is reversible because it is unstable, breaking down by homologous recombination. Amplification is believed to be the driving force in the clustering of related functions, in that it allows them to be amplified together. Amplification provides the extra copies of genes that allow evolution of functions to occur while retaining the original function. Amplification can be induced in response to cellular stressors. In many cases, it has been shown that the genomic regions that are amplified include those genes that are appropriate to upregulate for a specific stressor. There is some evidence that amplification occurs as part of a broad, general stress response, suggesting that organisms have the capacity to induce structural changes in the genome. This then allows adaptation to the stressful conditions. The mechanisms by which amplification arises are now being studied at the molecular level, but much is still unknown about the mechanisms in all organisms. Recent advances in our understanding of amplification in bacteria suggests new interpretations of events leading to human copy number variation, as well as evolution in general.  相似文献   

3.
The aim of this study was to enable the polymerase chain reaction (PCR) amplification of DNA fragments within endoglucanase gene(s) of Torula thermophila, by using degenerate primers so that the amplified fragment(s) could be used as homologous probe(s) for cloning of full-length endoglucanase gene(s). The design of the degenerate PCR primers was mainly based on the endoglucanase sequences of other fungi. The endoglucanase gene sequence of Humicola insolens was the only sequence from a thermophilic fungus publicly available in the literature. Therefore, the endoglucanase sequences of the two Trichoderma species, Trichoderma reesei and Trichoderma longibrachiatum, were used to generalize the primers. PCR amplification of T. thermophila genomic DNA with these primers resilied in a specific amplification. The specificity of the amplified fragment was shown by Southern hybridization analysis using egl3 gene of T. reesei as probe. This result suggested that the degenerate primers used in this study may be of value for studies aimed at cloning of endoglucanase genes from a range of related fungi.  相似文献   

4.
Tandemly arrayed genes (TAGs) account for about one-third of the duplicated genes in eukaryotic genomes. They provide raw genetic material for biological evolution, and play important roles in genome evolution. The 22-kDa prolamin genes in cereal genomes represent typical TAG organization, and provide the good material to investigate gene amplification of TAGs in closely related grass genomes. Here, we isolated and sequenced the Coix 22-kDa prolamin (coixin) gene cluster (283 kb), and carried out a comparative analysis with orthologous 22-kDa prolamin gene clusters from maize and sorghum. The 22-kDa prolamin gene clusters descended from orthologous ancestor genes, but underwent independent gene amplification paths after the separation of these species, therefore varied dramatically in sequence and organization. Our analysis indicated that the gene amplification model of 22-kDa prolamin gene clusters can be divided into three major stages. In the first stage, rare gene duplications occurred from the ancestor gene copy accidentally. In the second stage, rounds of gene amplification occurred by unequal crossing over to form tandem gene array(s). In the third stage, gene array was further diverged by other genomic activities, such as transposon insertions, segmental rearrangements, etc. Unlike their highly conserved sequences, the amplified 22-kDa prolamin genes diverged rapidly at their expression capacities and expression levels. Such processes had no apparent correlation to age or order of amplified genes within TAG cluster, suggesting a fast evolving nature of TAGs after gene amplification. These results provided insights into the amplification and evolution of TAG families in grasses.  相似文献   

5.
Renewed interest in gene amplification stems from its importance in evolution and a variety of medical problems ranging from drug resistance to cancer. However, amplified DNA segments (amplicons) are not fully characterized in any organism. Here we report a novel Acinetobacter baylyi system for genome‐wide studies. Amplification mutants that consume aromatic compounds were selected under conditions requiring high‐level expression from three promoters in a linked set of chromosomal genes. Tools were developed to relocate these catabolic genes to any non‐essential chromosomal position, and 49 amplification mutants from five genomic contexts were characterized. Amplicon size (18–271 kb) and copy number (2–105) indicated that 30% of mutants carried more than 1 Mb of amplified DNA. Amplification features depended on genomic position. For example, amplicons from one locus were similarly sized but displayed variable copy number, whereas those from another locus were differently sized but had comparable copy number. Additionally, the importance of sequence context was highlighted in one region where amplicons differed depending on the presence of a promoter mutation in the strain from which they were selected. DNA sequences at amplicon boundaries in 19 mutants reflected illegitimate recombination. Furthermore, steady‐state duplication frequencies measured under non‐selective conditions (10?4 to 10?5) confirmed that spontaneous gene duplication is a major source of genetic variation.  相似文献   

6.
The arbitrarily primed-PCR (AP-PCR) genomic fingerprinting method was applied to evaluate its effectiveness in detecting and characterizing amplified DNA fragments in two small-cell lung carcinoma (SCLC) cell lines, NCI-H69 and NCI-H82. Of the 2428 DNA fragments detected by AP-PCR using 62 arbitrary primers, 2 (0.08%) DNA fragments were amplified in NCI-H69 and 6 (0.25%) DNA fragments were amplified in NCI-H82. Based on these results, we estimate the total size of the amplified genomic regions in these cell lines to be 3000 megabase pairs (Mb) × 0.0008 = 2.4 Mb in NCI-H69 and 3000 Mb × 0.0025 = 7.5 Mb in NCI-H82. The 2 amplified fragments in NCI-H69 were mapped to chromosome 2, and all 6 amplified fragments in NCI-H82 were mapped to chromosome 8. This strongly suggests that restricted chromosomal regions are specifically amplified in these SCLC cell lines. Since the N-myc gene at 2p24 is amplified in NCI-H69 and the c-myc gene at 8q24 is amplified in NCI-H82, it is possible that these DNA fragments are co-amplified with N-myc or c-myc in these cell lines. However, since the 2 amplified fragments in NCI-H69 were not amplified in 42 other human cancer cell lines including 11 cell lines carrying amplified N-myc genes, it is also possible that there are amplified regions on chromosome 2 other than the N-myc locus at 2p24 in NCI-H69. In contrast, all 6 amplified fragments in NCI-H82 were amplified in several other human cancer cell lines carrying amplified c-myc genes. This result further indicates that these fragments were derived from an amplification unit that includes the c-myc gene. Our results show the ability of the AP-PCR method to analyze the fraction of the genome with amplification in human cancer cells. Received: 10 April 1995 / Revised: 18 December 1995, 15 April 1996  相似文献   

7.
Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world’s most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene.  相似文献   

8.
The gene arrangement, existence of introns and the number of gene copies of genes (fcps) encoding fucoxanthin chlorophyll a/c-binding proteins (Fcps) of the centric diatom Cyclotella cryptica were investigated by polymerase chain reaction (PCR), Southern blotting and denaturing gradient gel electrophoresis (DGGE) experiments. PCR-mediated amplification of the fcp genes using chromosomal DNA as template demonstrated the absence of introns within the amplified regions. Clustering of genes could not be demonstrated in these experiments. Digestion of chromosomal DNA of Cy. cryptica followed by Southern blotting and hybridization with specific fcp probes revealed minimum and maximum values of 12 and 20, respectively, for the gene copies. In addition, the DGGE technique confirmed and strengthened the results obtained from Southern blotting experiments as amplification of gene fragments from genomic DNA with different sets of specific primers revealed values of 21 and 23, for the minimum and maximum gene copy number, respectively.  相似文献   

9.
Xylanases randomly clear the backbone of xylans, which are hemicelluloses representing a considerable source of fixed carbon in nature. Consequently, these enzymes have important industrial applications. To characterize the genes responsible for producing these enzymes, we cloned xylanase genes belonging to the GH11 and GH10 families from Aspergillus versicolor MKU3 using a 2-step polymerase chain reaction (PCR) protocol involving degenerate PCR and genome-walking PCR (GWPCR). We amplified a family 10 xylanase consensus fragment using degenerate PCR primers exhibiting specificity for conserved motifs within fungal family 10 xylanase genes. We identified a single family 10 xylanase gene (xynv10) and determined its entire gene sequence during the second step of GWPCR, which was used to amplify genomic DNA fragments upstream and downstream of xynv10. The xynv10 sequence contains a 1,378-bp open reading frame separated by 8 introns with an average size of 49 bp. We also amplified a partial GH11 xylanase gene sequence (xynv11) using degenerate PCR and genome-walking methods. Amplification of the C-terminal region of xynv11 using a degenerate primer designed from sequences revealed strong homology with the partial GH11 xylanase gene of A. versicolor MKU3. The structural region in xynv11 was approximately 680 bp and has one intron that is approximately 64 bp in length. Further expression and characterization of these genes will give better understanding of the role of these genes in xylan degradation by A. versicolor.  相似文献   

10.
The HER-2/neu transmembrane tyrosine kinase receptor is both a prognostic marker and a therapeutic target for breast cancer. Accurate determination of HER-2/neu status is a prerequisite for selecting breast tumors for HER-2/neu immunotherapy or for taxan based chemotherapy. Unfortunately, there is no consensus concerning how this determination should be reached. We compared assessment of HER-2/neu status using Multiplex ligation-dependent probe amplification (MLPA) and immunohistochemistry (IHC). The patient group comprised 60 Indonesian breast cancers patients. IHC was performed on paraffin sections using the CB11 antibody from Novocastra. Results were scored according to the Hercept test. For MLPA, DNA was extracted from frozen samples, PCR amplified with a probe set containing three hemi-primer sets for the HER-2 locus and another nine control probes spread over chromosome 17 and other chromosomes, and analyzed on a gene scanner. A ratio above two for at least two HER-2 locus probes compared to the control probes was regarded as amplification. IHC for HER-2/neu was negative in 36 cases, and 24 cases (40%) showed expression. Seven, eight and nine of the latter cases were 1+, 2+ and 3+ positive, respectively. Forty-seven cases showed no amplification by MLPA, and 13 cases (22%) were amplified. Comparison of IHC and MPLA showed that none of the 36 IHC-negative or seven IHC 1+ cases was amplified. Five of the eight (63%) 2+ cases were amplified, and eight of nine (89%) of the IHC 3+ tumors showed gene amplification by MLPA assay. For HER-2/neu, there is a good correlation between gene amplification detected by MLPA and overexpression by IHC in invasive breast cancer. It appears that MLPA can detect the HER-2 amplified cases in the IHC 2+ class. Because MLPA is quick and inexpensive, it is an attractive method for detecting HER-2/neu amplification in daily laboratory practice.  相似文献   

11.
Polymerase Chain reaction (PCR) assay is considered superior to other methods for detection of Helicobacter pylori (H. pylori) in oral cavity; however, it also has limitations when sample under study is microbial rich dental plaque. The type of gene targeted and number of primers used for bacterial detection in dental plaque samples can have a significant effect on the results obtained as there are a number of closely related bacterial species residing in plaque biofilm. Also due to high recombination rate of H. pylori some of the genes might be down regulated or absent. The present study was conducted to determine the frequency of H. pylori colonization of dental plaque by simultaneously amplifying two genes of the bacterium. One hundred dental plaque specimens were collected from dyspeptic patients before their upper gastrointestinal endoscopy and presence of H. pylori was determined through PCR assay using primers targeting two different genes of the bacterium. Eighty-nine of the 100 samples were included in final analysis. With simultaneous amplification of two bacterial genes 51.6% of the dental plaque samples were positive for H. pylori while this prevalence increased to 73% when only one gene amplification was used for bacterial identification. Detection of H. pylori in dental plaque samples is more reliable when two genes of the bacterium are simultaneously amplified as compared to one gene amplification only.  相似文献   

12.
Genes (x-type) corresponding to different high-molecular-weight glutenin subunits encoded at the Glu-A1 locus present in bread- and durum-wheat cultivars have been selectively amplified by the polymerase chain reaction (PCR). DNA fragments corresponding to an unexpressed x-type gene were also amplified. As unexpressed y-type genes may or may not contain an 8-kb transposon-like insertion, two different sets of primers were designed to obtain amplification of DNA fragments corresponding to these genes. Amplified DNA fragments were also digested with restriction enzymes. The digestion patterns of amplified fragments corresponding to unusual x-type subunits showed similarities with genes encoding the most common subunits 2* and 1. The unexpressed amplified x-type gene showed a restriction pattern similar to the one obtained with the allelic gene encoding high-molecular-weight glutenin subunit 1; homologies were also found within the repetitive region of the linked y-type genes. On the basis of these observations it is postulated that an ancestral active x-type gene, most likely corresponding to subunit 1, was silenced following the insertion of the 8-kb transposon-like fragment into the linked y-type gene. Received: 8 April 1996 / Accepted: 30 August 1996  相似文献   

13.

Background

Gene amplification is thought to promote over-expression of genes favouring tumour development. Because amplified regions are usually megabase-long, amplification often concerns numerous syntenic or non-syntenic genes, among which only a subset is over-expressed. The rationale for these differences remains poorly understood.

Methodology/Principal Finding

To address this question, we used quantitative RT-PCR to determine the expression level of a series of co-amplified genes in five xenografted and one fresh human gliomas. These gliomas were chosen because we have previously characterised in detail the genetic content of their amplicons. In all the cases, the amplified sequences lie on extra-chromosomal DNA molecules, as commonly observed in gliomas. We show here that genes transcribed in non-amplified gliomas are over-expressed when amplified, roughly in proportion to their copy number, while non-expressed genes remain inactive. When specific antibodies were available, we also compared protein expression in amplified and non-amplified tumours. We found that protein accumulation barely correlates with the level of mRNA expression in some of these tumours.

Conclusions/Significance

Here we show that the tissue-specific pattern of gene expression is maintained upon amplification in gliomas. Our study relies on a single type of tumour and a limited number of cases. However, it strongly suggests that, even when amplified, genes that are normally silent in a given cell type play no role in tumour progression. The loose relationships between mRNA level and protein accumulation and/or activity indicate that translational or post-translational events play a key role in fine-tuning the final outcome of amplification in gliomas.  相似文献   

14.
We are investigating the expression and linkage of major histocompatibility complex (MHC) class I genes in the duck (Anas platyrhynchos) with a view toward understanding the susceptibility of ducks to two medically important viruses: influenza A and hepatitis B. In mammals, there are multiple MHC class I loci, and alleles at a locus are polymorphic and co-dominantly expressed. In contrast, in lower vertebrates the expression of one locus predominates. Southern-blot analysis and amplification of genomic sequences suggested that ducks have at least four loci encoding MHC class I. To identify expressed MHC genes, we constructed an unamplified cDNA library from the spleen of a single duck and screened for MHC class I. We sequenced 44 positive clones and identified four MHC class I sequences, each sharing approximately 85% nucleotide identity. Allele-specific oligonucleotide hybridization to a Northern blot indicated that only two of these sequences were abundantly expressed. In chickens, the dominantly expressed MHC class I gene lies adjacent to the transporter of antigen processing (TAP2) gene. To investigate whether this organization is also found in ducks, we cloned the gene encoding TAP2 from the cDNA library. PCR amplification from genomic DNA allowed us to determine that the dominantly expressed MHC class I gene was adjacent to TAP2. Furthermore, we amplified two alleles of the TAP2 gene from this duck that have significant and clustered amino acid differences that may influence the peptides transported. This organization has implications for the ability of ducks to eliminate viral pathogens.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers AY294416–22  相似文献   

15.
16.
17.
Gene amplification is a major genetic alteration in human cancers. Amplicons, amplified genomic regions, are believed to contain "driver" genes responsible for tumorigenesis. However, the significance of co-amplified genes has not been extensively studied. We have established an integrated analysis system of amplicons using retrovirus-mediated gene transfer coupled with a human full-length cDNA set. Applying this system to 17q12-21 amplicon observed in breast cancer, we identified GRB7 as a context-dependent oncogene, which modulates the ERBB2 signaling pathway through enhanced phosphorylation of ERBB2 and Akt. Our work provides an insight into the biological significance of gene amplification in human cancers.  相似文献   

18.
Lr19, one of the few widely effective genes conferring resistance to leaf rust in wheat, was transferred from the wild relative Thinopyrum ponticum to durum wheat. Since Lr19 confers a hypersensitive response to the pathogen, it was considered likely that the gene would be a member of the major nucleotide-binding site (NBS)-leucine-rich repeat (LRR) plant R gene family. NBS profiling, based on PCR amplification of conserved NBS motifs, was applied to durum wheat–Th. ponticum recombinant lines involving different segments of the alien 7AgL chromosome arm, carrying or lacking Lr19. Differential PCR products were isolated and sequenced. From one such sequence (AG15), tightly linked to Lr19, a 4,121-bp full-length cDNA was obtained. Its deduced 1,258 amino acid sequence has the characteristic NBS-LRR domains of plant R gene products and includes a coiled-coil (CC) region typical of monocots. The genomic DNA sequence showed the presence of two exons and a short intron upstream of the predicted stop codon. Homology searches revealed considerable identity of AG15 with the cloned wheat resistance gene Pm3a and a lower similarity with wheat Lr1, Lr21, and Lr10. Quantitative PCR on leaf-rust-infected and non-infected Lr19 carriers proved AG15 to be constitutively expressed, as is common for R genes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Homology-based gene/gene-analog cloning method has been extensively applied in isolation of RGAs (resistance gene analogs) in various plant species. However, serious interference of sequences on homoeologous chromosomes in polyploidy species usually occurred when cloning RGAs in a specific chromosome. In this research, the techniques of chromosome microdissection combined with homology-based cloning were used to clone RGAs from a specific chromosome of Wheat-Thinopyrum alien addition line TAi-27, which was derived from common wheat and Thinopyrum intermedium with a pair of chromosomes from Th. intermedium. The alien chromosomes carry genes for resistance to BYDV. The alien chromosome in TAi-27 was isolated by a glass needle and digested with proteinase K. The DNA of the alien chromosome was amplified by two rounds of Sau3A linker adaptor-mediated PCR. RGAs were amplified by PCR with the degenerated primers designed based on conserved domains of published resistance genes (R genes) by using the alien chromosome DNA, genomic DNA and cDNA of Th. intermedium, TAi-27 and 3B-2 (a parent of TAi-27) as templates. A total of seven RGAs were obtained and sequenced. Of which, a constitutively expressed single-copy NBS-LRR type RGA ACR3 was amplified from the dissected alien chromosome of TAi-27, TcDR2 and TcDR3 were from cDNA of Th. intermedium, AcDR3 was from cDNA of TAi-27, FcDR2 was from cDNA of 3B-2, AR2 was from genomic DNA of TAi-27 and TR2 was from genomic DNA of Th. intermedium. Sequence homology analyses showed that the above RGAs were highly homologous with known resistance genes or resistance gene analogs and belonged to NBS-LRR type of R genes. ACR3 was recovered by PCR from genomic DNA and cDNA of Th. intermedium and TAi-27, but not from 3B-2. Southern hybridization using the digested genomic DNA of Th. intermedium, TAi-27 and 3B-2 as the template and ACR3 as the probe showed that there is only one copy of ACR3 in the genome of Th. intermedium and TAi-27, but it is absent in 3B-2. The ACR3 could be used as a specific probe of the R gene on the alien chromosome of TAi-27. Results of Northern hybridization suggested that ACR3 was constitutively expressed in Th. intermedium and TAi-27, but not 3B-2, and expressed higher in leaves than in roots. This research demonstrated a new way to clone RGAs located on a specific chromosome. The information reported here should be useful to understand the resistance mechanism of, and to clone resistant genes from, the alien chromosome in TAi-27.  相似文献   

20.
肾上腺脑白质营养不良分子诊断中假基因干扰的排除   总被引:5,自引:0,他引:5  
在基因组DNA水平,应用基因突变分析的方法对肾上腺脑白质营养不良进行分子诊断十分重要.由于人体内存在多个肾上腺脑白质营养不良假基因的拷贝,应用PCR-RFLP和PCR产物直接测序等常规方法难以检测一部分的基因突变.为了排除基因组DNA中假基因的干扰,利用扩增阻滞突变系统,成功地分析了一个肾上腺脑白质营养不良(R617G突变)家系成员的基因型.结果表明,扩增阻滞突变系统是排除假基因干扰的有效方法之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号