首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factor receptors (FGFR) are highly conserved receptor tyrosine kinases, and evolved early in metazoan evolution. In order to investigate their functional conservation, we asked whether the Kringelchen FGFR in the freshwater polyp Hydra vulgaris, is able to functionally replace FGFR in fly embryos. In Drosophila, two endogenous FGFR, Breathless (Btl) and Heartless (Htl), ensure formation of the tracheal system and mesodermal cell migration as well as formation of the heart. Using UAS-kringelchen-5xmyc transgenic flies and targeted expression, we show that Kringelchen is integrated correctly into the cell membrane of mesodermal and tracheal cells in Drosophila. Nevertheless, Kringelchen expression driven in tracheal cells failed to rescue the btl LG19 mutant. The Hydra FGFR was able to substitute for Heartless in the htl AB42 null mutant; however, this occurred only during early mesodermal cell migration. Our data provide evidence for functional conservation of this early-diverged FGFR across these distantly related phyla, but also selectivity for the Htl FGFR in the Drosophila system.  相似文献   

2.
BACKGROUND: Mesoderm migration in the Drosophila gastrula depends on the fibroblast growth factor (FGF) receptor Heartless (Htl). During gastrulation Htl is required for adhesive interactions of the mesoderm with the ectoderm and for the generation of protrusive activity of the mesoderm cells during migration. After gastrulation Htl is essential for the differentiation of dorsal mesodermal derivatives. It is not known how Htl is activated, because its ligand has not yet been identified. RESULTS: We performed a genome-wide genetic screen for early zygotic genes and identified seven genomic regions that are required for normal migration of the mesoderm cells during gastrulation. One of these genomic intervals produces upon its deletion a phenocopy of the htl cell migration phenotype. Here we present the genetic and molecular mapping of this genomic region. We identified two genes, FGF8-like1 and FGF8-like2, that encode novel FGF homologs and were only partially annotated in the Drosophila genome. We show that FGF8-like1 and FGF8-like2 are expressed in the neuroectoderm during gastrulation and present evidence that both act in concert to direct cell shape changes during mesodermal cell migration and are required for the activation of the Htl signaling cascade during gastrulation. CONCLUSIONS: We conclude that FGF8-like1 and FGF8-like2 encode two novel Drosophila FGF homologs, which are required for mesodermal cell migration during gastrulation. Our results suggest that FGF8-like1 and FGF8-like2 represent ligands of the Htl FGF receptor.  相似文献   

3.
The mesodermal region in Drosophila is determined by a maternally derived morphogenetic gradient system which specifies the different cell fates along the dorsoventral axis, including the prospective mesodermal cells at the ventral side of the embryo. There are at least two zygotic target genes, twist and snail, which are required for mesoderm formation in Drosophila. To analyze whether a similar mode of mesoderm specification might also apply to short germ band insect embryos, we have cloned twist and snail- related gene fragments from the flour beetle Tri-bolium and have analyzed their expression pattern. Both genes are expressed in a ventral stripe at early blastoderm stage, which is restricted to the region of the developing germ rudiment. The cells expressing the two genes are those that invaginate during gastrulation, indicating that the early stages of mesoderm specification are indeed very similar between the two species. Interestingly, both genes are also expressed during germband extension in a subregion of the growth zone of the embryo which forms the mesodermal cells. This suggests that the expression of the two genes is required for mesoderm formation both at early blastoderm stage and during germband elongation until the end of the segmental growth process. © 1994 Wiley-Liss, Inc.  相似文献   

4.
The homeobox gene tinman plays a key role in the specification of Drosophila heart progenitors and the visceral mesoderm of the midgut, both of which arise at defined positions within dorsal areas of the mesoderm. Here, we show that in addition to the heart and midgut visceral mesoderm, tinman is also required for the specification of all dorsal body wall muscles. Thus it appears that the precursors of the heart, visceral musculature, and dorsal somatic muscles are all specified within the same broad domain of dorsal mesodermal tinman expression. Locally restricted activities of tinman are also observed during its early, general mesodermal expression, where tinman is required for the activation of the homeobox gene buttonless in precursors of the “dorsal median” (DM) glial cells along the ventral midline. These observations, together with others showing only mild effects of ectopic tinman expression on heart development, indicate that tinman function is obligatory, but not sufficient to determine individual tissues within the mesoderm. Therefore, we propose that tinman has a role in integrating positional information that is provided by intersecting domains of additional regulators and signals, which may include Wingless, Sloppy Paired, and Hedgehog in the dorsal mesoderm and EGF-signaling at the ventral midline. Previous studies have shown that Dpp acts as an inductive signal from dorsal ectodermal cells to induce tinman expression in the dorsal mesoderm, which, in turn, is needed for heart and visceral mesoderm formation. In the present report, we show that Thickveins, a type I receptor of Dpp, is essential for the transmission of Dpp signals into the mesoderm. Constitutive activity of Tkv in the entire mesoderm induces ectopic tinman expression in the ventral mesoderm, and this results in the ectopic formation of heart precursors in a defined area of the ventrolateral mesoderm. We further show that Screw, a second BMP2/4-related gene product, Tolloid, a BMP1-related protein, and the zinc finger-containing protein Schnurri, are required to allow full levels of tinman induction during this process. It is likely that some of these functional and regulatory properties of tinman are shared by tinman-related genes from vertebrates that have similarly important roles in embryonic heart development. Dev. Genet. 22:187–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Blood progenitors arise from a pool of pluripotential cells (“hemangioblasts”) within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of the Notch ligand Delta (Dl) reveals segmentally reiterated mesodermal clusters (“cardiogenic clusters”) that constitute the cardiogenic mesoderm. These clusters give rise to cardioblasts, blood progenitors and nephrocytes. Cardioblasts emerging from the cardiogenic clusters accumulate high levels of Dl, which is required to prevent more cells from adopting the cardioblast fate. In embryos lacking Dl function, all cells of the cardiogenic clusters become cardioblasts, and blood progenitors are lacking. Concomitant activation of the Mitogen Activated Protein Kinase (MAPK) pathway by Epidermal Growth Factor Receptor (EGFR) and Fibroblast Growth Factor Receptor (FGFR) is required for the specification and maintenance of the cardiogenic mesoderm; in addition, the spatially restricted localization of some of the FGFR ligands may be instrumental in controlling the spatial restriction of the Dl ligand to presumptive cardioblasts.  相似文献   

6.
Summary The primordial germ cells (PGCs) of Oryzias latipes in migration to the gonadal anlage have been investigated by light and electron microscopy. The ultrastructure of the PGCs, which occur in the subendodermal space on the syncytial periblast, differ conspicuously from that of the surrounding endodermal cells. After the PGCs move to the cavity between lateral plate and ectoderm, they are taken into the somatomesodermal layer and transferred to the dorsal mesentery where they form gonadal anlage with mesodermal cells. During their translocation to the dorsal mesentery through the somatic mesoderm, apparently without formation of pseudopods, the PGCs are completely surrounded by mesodermal cells. Since these conditions seem unfavorable to the active translocation of the PGCs to the dorsal mesentery, it is more likely that the PGCs are transferred passively by the morphogenic activity of the lateral-plate mesoderm.Counts of the number of the PGCs revealed that they are mitotically dormant during the migratory period. After the completion of the migration, they regain their proliferative activity. The PGCs in the female proliferate more actively than those in the male, which provides the first morphological indication of sex differentiation in this species of fish.  相似文献   

7.
8.
9.
Summary The effect of lithium (Li+) on gastrulation movements was investigated during the development of the urodele amphibianPleurodeles waltl. Attention was focused on mesodermal cell migration. Under conditions of Li+ treatment providing a maximal enhancement of dorsoanterior structures, it was found that the dorsoventral polarity of gastrulation was abolished. In particular, vital staining and scanning electron microscopy observations on embryo fractures showed that mesodermal cells migrated radially after Li+ treatment, which led to the formation of rounded embryos. Epiboly movements thus were accelerated. Nevertheless, contrasting with the precocious disappearance of the early-formed yolk plug, archenteron invagination was constantly retarded and commenced with a delay of several hours as compared to control gastrulae. Cell-lineage analysis of the progenies from ventral or dorsal equatorial blastomeres of 32-cell-stage embryos provided evidence that both dorsal and ventral mesoderm contributed to notochordal tissue after Li+ treatment. Dorsalization of the entire marginal zone was confirmed by the ability of the entire mesoderm rudiment to behave as a dorsal organiser after Li+ treatment. Comparison of the migratory behaviour of isolated animal hemispheres from Li+-treated or control embryos cultured on fibronectin-coated substrate indicated that all marginal cells acquired the autonomous capacity for migration of dorsal marginal cells under the action of lithium.  相似文献   

10.
11.
Although the genetics of dorsal-ventral polarity which leads to mesoderm formation in Drosophila are understood in considerable detail, subsequent molecular mechanisms involved in patterning the mesoderm primordium into individual mesodermal subtypes are poorly understood. Two papers published recently (1,2) suggest strongly that an inductive signal from dorsal ectoderm is involved in subdividing the underlying mesoderm, and present evidence that one of the signalling factors is Decapentaplegic (Dpp), a member of the bone morphogenetic protein subgroup of the Transforming Growth Factor-β (TGF-β) super family of proteins.  相似文献   

12.
Fibroblast growth factors (FGFs) frequently fulfill prominent roles in the regulation of cell migration in various contexts. In Drosophila, the FGF8-like ligands Pyramus (Pyr) and Thisbe (Ths), which signal through their receptor Heartless (Htl), are known to regulate early mesodermal cell migration after gastrulation as well as glial cell migration during eye development. Herein, we show that Pyr and Ths also exert key roles during the long-distance migration of a specific sub-population of mesodermal cells that migrate from the caudal visceral mesoderm within stereotypic bilateral paths along the trunk visceral mesoderm toward the anterior. These cells constitute the founder myoblasts of the longitudinal midgut muscles. In a forward genetic screen for regulators of this morphogenetic process we identified loss of function alleles for pyr. We show that pyr and ths are expressed along the paths of migration in the trunk visceral mesoderm and endoderm and act largely redundantly to help guide the founder myoblasts reliably onto and along their substrate of migration. Ectopically-provided Pyr and Ths signals can efficiently re-rout the migrating cells, both in the presence and absence of endogenous signals. Our data indicate that the guidance functions of these FGFs must act in concert with other important attractive or adhesive activities of the trunk visceral mesoderm. Apart from their guidance functions, the Pyr and Ths signals play an obligatory role for the survival of the migrating cells. Without these signals, essentially all of these cells enter cell death and detach from the migration substrate during early migration. We present experiments that allowed us to dissect the roles of these FGFs as guidance cues versus trophic activities during the migration of the longitudinal visceral muscle founders.  相似文献   

13.
We wanted to investigate the relationship between receptor tyrosine kinase (RTK) activated signaling pathways and the induction of cell migration. Using Drosophila tracheal and mesodermal cell migration as model systems, we find that the intracellular domain of the fibroblast growth factor receptors (FGFRs) Breathless (Btl) and Heartless (Htl) can be functionally replaced by the intracellular domains of Torso (Tor) and epidermal growth factor receptor (EGFR). These hybrid receptors can also rescue cell migration in the absence of Downstream of FGFR (Dof), a cytoplasmic protein essential for FGF signaling. These results demonstrate that tracheal and mesodermal cells respond during a specific time window to a receptor tyrosine kinase (RTK) signal with directed migration, independent of the presence or absence of Dof. We discuss our findings in the light of the recent findings that RTKs generate a generic signal that is interpreted in responding cells according to their developmental history.  相似文献   

14.
Belu M  Mizutani CM 《PloS one》2011,6(12):e28970

Background

It has been shown that species separated by relatively short evolutionary distances may have extreme variations in egg size and shape. Those variations are expected to modify the polarized morphogenetic gradients that pattern the dorso-ventral axis of embryos. Currently, little is known about the effects of scaling over the embryonic architecture of organisms. We began examining this problem by asking if changes in embryo size in closely related species of Drosophila modify all three dorso-ventral germ layers or only particular layers, and whether or not tissue patterning would be affected at later stages.

Principal Findings

Here we report that changes in scale affect predominantly the mesodermal layer at early stages, while the neuroectoderm remains constant across the species studied. Next, we examined the fate of somatic myoblast precursor cells that derive from the mesoderm to test whether the assembly of the larval body wall musculature would be affected by the variation in mesoderm specification. Our results show that in all four species analyzed, the stereotyped organization of the body wall musculature is not disrupted and remains the same as in D. melanogaster. Instead, the excess or shortage of myoblast precursors is compensated by the formation of individual muscle fibers containing more or less fused myoblasts.

Conclusions

Our data suggest that changes in embryonic scaling often lead to expansions or retractions of the mesodermal domain across Drosophila species. At later stages, two compensatory cellular mechanisms assure the formation of a highly stereotyped larval somatic musculature: an invariable selection of 30 muscle founder cells per hemisegment, which seed the formation of a complete array of muscle fibers, and a variable rate in myoblast fusion that modifies the number of myoblasts that fuse to individual muscle fibers.  相似文献   

15.
Fibroblast growth factor (FGF) receptor (FGFR) signaling controls the migration of glial, mesodermal, and tracheal cells in Drosophila melanogaster. Little is known about the molecular events linking receptor activation to cytoskeletal rearrangements during cell migration. We have performed a functional characterization of Downstream-of-FGFR (Dof), a putative adapter protein that acts specifically in FGFR signal transduction in Drosophila. By combining reverse genetic, cell culture, and biochemical approaches, we demonstrate that Dof is a specific substrate for the two Drosophila FGFRs. After defining a minimal Dof rescue protein, we identify two regions important for Dof function in mesodermal and tracheal cell migration. The N-terminal 484 amino acids are strictly required for the interaction of Dof with the FGFRs. Upon receptor activation, tyrosine residue 515 becomes phosphorylated and recruits the phosphatase Corkscrew (Csw). Csw recruitment represents an essential step in FGF-induced cell migration and in the activation of the Ras/MAPK pathway. However, our results also indicate that the activation of Ras is not sufficient to activate the migration machinery in tracheal and mesodermal cells. Additional proteins binding either to the FGFRs, to Dof, or to Csw appear to be crucial for a chemotactic response.  相似文献   

16.
Germ granules are hallmarks of all germ cells. Early ultrastructural studies in Drosophila first described these membraneless granules in the oocyte and early embryo as filled with amorphous to fibrillar material mixed with RNA. Genetic studies identified key protein components and specific mRNAs that regulate germ cell‐specific functions. More recently these ultrastructural studies have been complemented by biophysical analysis describing germ granules as phase‐transitioned condensates. In this review, we provide an overview that connects the composition of germ granules with their function in controlling germ cell specification, formation and migration, and illuminate these mysterious condensates as the gatekeepers of the next generation.  相似文献   

17.

Background

The Rho kinase pathway plays a key role in many early cell/tissue determination events that take place in embryogenesis. Rho and its downstream effector Rho kinase (ROCK) play pivotal roles in cell migration, apoptosis (membrane blebbing), cell proliferation/cell cycle, cell-cell adhesion and gene regulation. We and others have previously demonstrated that inhibition of ROCK blocks endoderm differentiation in embryonal carcinoma stem cells, however, the effect of ROCK inhibition on mesoderm and ectoderm specification has not been fully examined. In this study, the role of ROCK within the specification and differentiation of all three germ layers was examined.

Methodology/Principal Findings

P19 cells were treated with the specific ROCK inhibitor Y-27623, and increase in differentiation efficiency into neuro-ectodermal and mesodermal lineages was observed. However, as expected a dramatic decrease in early endodermal markers was observed when ROCK was inhibited. Interestingly, within these ROCK-inhibited RA treated cultures, increased levels of mesodermal or ectodermal markers were not observed, instead it was found that the pluripotent markers SSEA-1 and Oct-4 remained up-regulated similar to that seen in undifferentiated cultures. Using standard and widely accepted methods for reproducible P19 differentiation into all three germ layers, an enhancement of mesoderm and ectoderm differentiation with a concurrent loss of endoderm lineage specification was observed with Y-27632 treatment. Evidence would suggest that this effect is in part mediated through TGF-β and SMAD signaling as ROCK-inhibited cells displayed aberrant SMAD activation and did not return to a ‘ground’ state after the inhibition had been removed.

Conclusions/Significance

Given this data and the fact that only a partial rescue of normal differentiation capacity occurred when ROCK inhibition was alleviated, the effect of ROCK inhibition on the differentiation capacity of pluripotent cell populations should be further examined to elucidate the role of the Rho-ROCK pathway in early cellular ‘fate’ decision making processes.  相似文献   

18.
19.
The vertebrate body forms in an anterior-to-posterior progression, driven by a population of undifferentiated cells at the posterior-most end of the embryo. Recent studies have demonstrated that these undifferentiated cells are multipotent stem cells, suggesting that local signaling factors specify cell fate. However, the mechanism of cell fate specification during this process is unknown. Using a combination of single cell transplantation and newly developed cell-autonomous inducible Wnt inhibitor and activator transgenic zebrafish lines, we show that canonical Wnt signaling is continuously necessary and sufficient to specify mesoderm from a bipotential neural/mesodermal precursor. Surprisingly, we also find that Wnt signaling functions subsequently within the mesoderm to specify somites instead of posterior vascular endothelium. Our results demonstrate that dynamic local Wnt signaling cues specify germ layer contribution and mesodermal tissue type specification of multipotent stem cells throughout the formation of the early vertebrate embryonic body.  相似文献   

20.

Background  

Movement of cells, either as amoeboid individuals or in organised groups, is a key feature of organ formation. Both modes of migration occur during Drosophila embryonic gonad development, which therefore provides a paradigm for understanding the contribution of these processes to organ morphogenesis. Gonads of Drosophila are formed from three distinct cell types: primordial germ cells (PGCs), somatic gonadal precursors (SGPs), and in males, male-specific somatic gonadal precursors (msSGPs). These originate in distinct locations and migrate to associate in two intermingled clusters which then compact to form the spherical primitive gonads. PGC movements are well studied, but much less is known of the migratory events and other interactions undergone by their somatic partners. These appear to move in organised groups like, for example, lateral line cells in zebra fish or Drosophila ovarian border cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号