首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron–neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin‐deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin‐deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma‐aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age‐matched wild‐type neurons during the first 3 weeks in culture. These results demonstrate that neuron‐specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 547–557, 1999  相似文献   

2.
《The Journal of cell biology》1995,130(6):1423-1434
ARIA is a member of a family of polypeptide growth and differentiation factors that also includes glial growth factor (GGF), neu differentiation factor, and heregulin. ARIA mRNA is expressed in all cholinergic neurons of the central nervous systems of rats and chicks, including spinal cord motor neurons. In vitro, ARIA elevates the rate of acetylcholine receptor incorporation into the plasma membrane of primary cultures of chick myotubes. To study whether ARIA may regulate the synthesis of junctional synaptic acetylcholine receptors in chick embryos, we have developed riboprobes and polyclonal antibody reagents that recognize isoforms of ARIA that include an amino-terminal immunoglobulin C2 domain and examined the expression and distribution of ARIA in motor neurons and at the neuromuscular junction. We detected significant ARIA mRNA expression in motor neurons as early as embryonic day 5, around the time that motor axons are making initial synaptic contacts with their target muscle cells. In older embryos and postnatal animals, we found ARIA protein concentrated in the synaptic cleft at neuromuscular junctions, consistent with transport down motor axons and release at nerve terminals. At high resolution using immunoelectron microscopy, we detected ARIA immunoreactivity exclusively in the synaptic basal lamina in a pattern consistent with binding to synapse specific components on the presynaptic side of the basal lamina. These results support a role for ARIA as a trophic factor released by motor neuron terminals that may regulate the formation of mature neuromuscular synapses.  相似文献   

3.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron-neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin-deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin-deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma-aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age-matched wild-type neurons during the first 3 weeks in culture. These results demonstrate that neuron-specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction.  相似文献   

4.
The synapse-bearing nerve terminals of the opener muscle of the crayfish Procambarus were reconstructed using electron micrographs of regions which had been serially sectioned. The branching patterns of the terminals of excitatory and inhibitory axons and the locations and sizes of neuromuscular and axo-axonal synapses were studied. Excitatory and inhibitory synapses could be distinguished not only on the basis of differences in synaptic vesicles, but also by a difference in density of pre- and postsynaptic membranes. Synapses of both axons usually had one or more sharply localized presynaptic "dense bodies" around which synaptic vesicles appeared to cluster. Some synapses did not have the dense bodies. These structures may be involved in the physiological activity of the synapse. Excitatory axon terminals had more synapses, and a larger percentage of terminal surface area devoted to synaptic contacts, than inhibitory axon terminals. However, the largest synapses of the inhibitory axon exceeded in surface area those of the excitatory axon. Both axons had many side branches coming from the main terminal; often, the side branches were joined to the main terminal by narrow necks. A greater percentage of surface area was devoted to synapses in side branches than in the main terminal. Only a small fraction of total surface area was devoted to axo-axonal synapses, but these were often located at narrow necks or constrictions of the excitatory axon. This arrangement would result in effective blockage of spike invasion of regions of the terminal distal to the synapse, and would allow relatively few synapses to exert a powerful effect on transmitter release from the excitatory axon. A hypothesis to account for the development of the neuromuscular apparatus is presented, in which it is suggested that production of new synapses is more important than enlargement of old ones as a mechanism for allowing the axon to adjust transmitter output to the functional needs of the muscle.  相似文献   

5.
Synapses form after growing axons recognize their appropriate targets. The subsequent assembly of aligned pre and postsynaptic specializations is critical for synaptic function. This highly precise apposition of presynaptic elements (i.e. active zones) to postsynaptic specializations (i.e. neurotransmitter receptor clusters) strongly suggests that communication between the axon and target is required for synaptic differentiation. What trans‐synaptic factors drive such differentiation at vertebrate synapses? First insights into the answers to this question came from studies at the neuromuscular junction (NMJ), where axon‐derived agrin and muscle‐derived laminin β2 induce post and presynaptic differentiation, respectively. Recent work has suggested that axon‐ and target‐derived factors similarly drive synaptic differentiation at central synapses. Specifically, WNT‐7a, neuroligin, synaptic cell adhesion molecule (SynCAM) and fibroblast growth factor‐22 (FGF‐22) have all been identified as target‐derived presynaptic organizers, whereas axon‐derived neuronal activity regulated pentraxin (Narp), ephrinB and neurexin reciprocally co‐ordinate postsynaptic differentiation. In addition to these axon‐ and target‐derived inducers of synaptic differentiation, factors released from glial cells have also been implicated in regulating synapse assembly. Together, these recent findings have profoundly advanced our understanding of how precise appositions are established during vertebrate nervous system development.  相似文献   

6.
Motor neurons contain agrin-like molecules   总被引:8,自引:7,他引:1       下载免费PDF全文
Molecules antigenically similar to agrin, a protein extracted from the electric organ of Torpedo californica, are highly concentrated in the synaptic basal lamina of neuromuscular junctions in vertebrate skeletal muscle. On the basis of several lines of evidence it has been proposed that agrin-like molecules mediate the nerve-induced formation of acetylcholine receptor (AChR) and acetylcholinesterase (AChE) aggregates on the surface of muscle fibers at developing and regenerating neuromuscular junctions and that they help maintain these postsynaptic specializations in the adult. Here we show that anti-agrin monoclonal antibodies selectively stain the cell bodies of motor neurons in embryos and adults, and that the stain is concentrated in the Golgi apparatus. We also present evidence that motor neurons in both embryos and adults contain molecules that cause the formation of AChR and AChE aggregates on cultured myotubes and that these AChR/AChE-aggregating molecules are antigenically similar to agrin. These findings are consistent with the hypothesis that agrin-like molecules are synthesized by motor neurons, and are released from their axon terminals to become incorporated into the synaptic basal lamina where they direct the formation of synapses during development and regeneration.  相似文献   

7.
Wang Q  Zhang B  Wang YE  Xiong WC  Mei L 《Neuro-Signals》2008,16(2-3):246-253
The neuromuscular junction, the synapse between motor neurons and muscle cells, serves as an excellent model for studying synapse formation. Agrin is believed to be released by motor neurons to induce postsynaptic differentiation at the neuromuscular junction. MuSK, a receptor tyrosine kinase, appears to be a key component of the agrin receptor complex. However, how agrin activates MuSK remains unclear. To address this question, we characterized the binding of the MuSK extracellular region to the muscle cell surface. The MuSK ectodomain was found to bind to muscle cells in a manner dependent on stimulation with neural agrin. Moreover, the binding was myotube specific and appeared to be mediated by two regions in the MuSK: one region containing the first and second immunoglobin domains and the other containing the cysteine-rich domain. Importantly, recombinant proteins containing the binding activity can block full-length MuSK binding to muscle cells and agrin-induced AChR clustering. These results suggest that the Ig1/2 domain of MuSK is involved in AChR clustering by binding to the muscle surface.  相似文献   

8.
Presynaptic and postsynaptic potentials were examined by intracellular recording at a crayfish neuromuscular junction. During normal synaptic transmission, the action potentials were recorded in the terminal region of the excitatory axon and postsynaptic responses were obtained in the muscle fibers. We found that it was possible to modify the synaptic transmission by applying depolarizing or hyperpolarizing currents through the presynaptic intracellular electrode. Typically, a 7-15 mV depolarization lasting longer than 50 msec leads to a large (500%) enhancement of transmitter release, even though the preterminal action potential is reduced in amplitude. Hyperpolarization increases the amplitude of the action potential, but slightly reduces the transmitter release. These results are different from those reported for other neuromuscular synapses and the squid giant synapse, but are similar in many respects to the results reported for several invertebrate central synapses. We conclude, first, that different synapses may have markedly different responses to conditioning by membrane polarization and, secondly, that maintained low-level depolarization may induce a potentiated state in the nerve terminal, perhaps brought about by slow entry of calcium.  相似文献   

9.
The coordinated movement of many organisms relies on efficient nerve–muscle communication at the neuromuscular junction (NMJ), a peripheral synapse composed of a presynaptic motor axon terminal, a postsynaptic muscle specialization, and non-myelinating terminal Schwann cells. NMJ dysfunctions are caused by traumatic spinal cord or peripheral nerve injuries as well as by severe motor pathologies. Compared to the central nervous system, the peripheral nervous system displays remarkable regenerating abilities; however, this capacity is limited by the denervation time frame and depends on the establishment of permissive regenerative niches. At the injury site, detailed information is available regarding the cells, molecules, and mechanisms involved in nerve regeneration and repair. However, a regenerative niche at the final functional step of peripheral motor innervation, i.e. at the mature neuromuscular synapse, has not been deciphered. In this review, we integrate classic and recent evidence describing the cells and molecules that could orchestrate a dynamic ecosystem to accomplish successful NMJ regeneration. We propose that such a regenerative niche must ensure at least two fundamental steps for successful NMJ regeneration: the proper arrival of incoming regenerating axons to denervated postsynaptic muscle domains, and the resilience of those postsynaptic domains, in morphological and functional terms. We here describe and combine the main cellular and molecular responses involved in each of these steps as potential targets to help successful NMJ regeneration.  相似文献   

10.
11.
A pair of antagonistic motoneurons, one excitatory and one inhibitory, innervates the distal accessory flexor muscle in the walking limb of the crayfish Procambarus clarkii. The number and size of synapses formed by these two axons on the muscle fibers (neuromuscular synapses) and on each other (axo-axonal synapses) were estimated using thin-section electron microscopy. Although profiles of nerve terminals of the two axons occur in roughly equal proportions, the frequency of occurrence of neuromuscular synapses differed markedly: 73% were excitatory and 27% were inhibitory. However, inhibitory synapses were 4–5 times larger than excitatory ones, and consequently, the total contact areas devoted to neuromuscular synapses were similar for both axons. Axo-axonal synapses were predominantly from the inhibitory axon to the excitatory axon (86%), and a few were from the excitatory axon to the inhibitory axon (14%). The role of the inhibitory axo-axonal synapse is presynaptic inhibition, but that of the excitatory axo-axonal synapse is not known. The differences in size of neuromuscular synapses between the two axons may reflect intrinsic determinants of the neuron, while the similarity in total synaptic area may reflect retrograde influences from the muscle for regulating synapse number.  相似文献   

12.
Genetic screens for synaptogenesis mutants have been performed in many organisms, but few if any have simultaneously screened for defects in pre- and postsynaptic specializations. Here, we report the results of a small-scale genetic screen, the first in vertebrates, for defects in synaptogenesis. Using zebrafish as a model system, we identified seven mutants that affect different aspects of neuromuscular synapse formation. Many of these mutant phenotypes have not been previously reported in zebrafish and are distinct from those described in other organisms. Characterization of mutant and wild-type zebrafish, from the time that motor axons first arrive at target muscles through adulthood, has provided the new information about the cellular events that occur during neuromuscular synaptogenesis. These include insights into the formation and dispersal of prepatterned AChR clusters, the relationship between motor axon elongation and synapse size, and the development of precise appositions between presynaptic clusters of synaptic vesicles in nerve terminals and postsynaptic receptor clusters. In addition, we show that the mechanisms underlying synapse formation within the myotomal muscle itself are largely independent of those that underlie synapse formation at myotendinous junctions and that the outgrowth of secondary motor axons requires at least one cue not necessary for the outgrowth of primary motor axons, while other cues are required for both. One-third of the mutants identified in this screen did not have impaired motility, suggesting that many genes involved in neuromuscular synaptogenesis were missed in large scale motility-based screens. Identification of the underlying genetic defects in these mutants will extend our understanding of the cellular and molecular mechanisms that underlie the formation and function of neuromuscular and other synapses.  相似文献   

13.
Neuromuscular synapses of pyloric muscle P1 in the blue crab Callinectes sapidus were examined using electrophysiological and electron microscopic methods. The muscle is innervated by a single excitatory axon of the stomatogastric ganglion. Excitatory postsynaptic potentials show striking facilitation at very low frequencies of stimulation, indicating very slow decay of the facilitation process after a single nerve impulse. Quantal content of transmitter release at a low frequency of stimulation averaged 1.5. Evidence was obtained that not all synapses on a muscle fiber are equivalent. This was particularly evident at the morphological level in serially sectioned nerve terminals. On each nerve terminal examined, a wide range of synapse sizes was found. Synaptic contact areas ranged from less than 0.5 micron2 to almost 10 micron2; the latter value is large compared with those obtained for other crustacean neuromuscular synapses. Most of the smaller synapses lacked the presynaptic dense bodies which are putative release sites for the transmitter substance. The larger synapses all had presynaptic dense bodies, and some showed evidence of splitting apart into smaller subunits. It is postulated that about half the morphologically identified synapses are relatively inactive.  相似文献   

14.
SYNOPSIS. The neuromuscular system of the cockroach containsmotor neurons and muscles that can be identified in all individualinsects When the axons of these motor neurons are damaged theyregenerate and eventually reform synapses only with the originaltarget muscles However at early times after axotomy transientinappropriate functional connections are made between regeneratingneurons and muscles that theynever normally innervate Laterthe inappropriate synapses are inactivated, the inappropriateaxon branches eliminated and the original innervation patternreformed A cellcell recognition between identified motor neuronsand muscles is required to explain these observations, particularlyin light of experiments demonstrating the absence of competitionbetween appropriate and inappropriate axon terminals withinthe muscle. A minimum biochemical requirement of such a cell-cell recognitionis the existence of molecules whose presence in muscles correlateswith the innervation by identified motor neurons Using fluoresceinlabelled plant lectins to detect muscle surface glycoproteinssuch molecules have been identified In addition, there shouldbe molecular differences among the surfaces of the axon terminalsof the various identified motor neurons Hybrid oma techniqueshave enabled us to obtain monoclonal antibodies that bind tosurfaces of axon terminals of some motor neurons and not othersThese lectin receptors and antigens are good candidate recognitionmacromolecules Other molecules essential for axonal regenerationhave been identified by their presence in embryonic and adultregenerating neurons and their absence from intact adult neurons.  相似文献   

15.
Activity and synapse elimination at the neuromuscular junction   总被引:2,自引:0,他引:2  
The neuromuscular junction undergoes a loss of synaptic connections during early development. This loss converts the innervation of each muscle fiber from polyneuronal to single. During this change the number of motor neurons remains constant but the number of muscle fibers innervated by each motor neuron is reduced. Evidence indicates that a local competition among the inputs on each muscle fiber determines which inputs are eliminated. The role of synapse elimination in the development of neuromuscular circuits, other than ensuring a single innervation of each fiber, is unclear. Most evidence suggests that the elimination plays little or no role in correcting for errant connections. Rather, it seems that connections are initially highly specific, in terms of both which motor neurons connect to which muscles and which neurons connect to which particular fibers within these muscles. A number of attempts have been made to determine the importance of neuromuscular activity during early development for this rearrangement of synaptic connections. Experiments reducing neuromuscular activity by muscle tenotomy, deafferentation and spinal cord section, block of nerve impulse conduction with tetrodotoxin, and the use of postsynaptic and presynaptic blocking agents have all shown that normal activity is required for normal synapse elimination. Most experiments in which complete muscle paralysis has been achieved show that activity may be essential for the occurrence of synapse elimination. Furthermore, experiments in which neuromuscular activity has been augmented by external stimulation show that synapse elimination is accelerated. A plausible hypothesis to explain the activity dependence of neuromuscular synapse elimination is that a neuromuscular trophic agent is produced by the muscle fibers and that this production is controlled by muscle-fiber activity. The terminals on each fiber compete for the substance produced by that fiber. Inactive fibers produce large quantities of this substance; on the other hand, muscle activity suppresses the level of synthesis of this agent to the point where only a single synaptic terminal can be maintained. Inactive muscle fibers would be expected to be able to maintain more nerve terminals. The attractiveness of this scheme is that it provides a simple feedback mechanism to ensure that each fiber retains a single effective input.  相似文献   

16.
Lrp4 is a receptor for Agrin and forms a complex with MuSK   总被引:1,自引:0,他引:1  
Neuromuscular synapse formation requires a complex exchange of signals between motor neurons and skeletal muscle fibers, leading to the accumulation of postsynaptic proteins, including acetylcholine receptors in the muscle membrane and specialized release sites, or active zones in the presynaptic nerve terminal. MuSK, a receptor tyrosine kinase that is expressed in skeletal muscle, and Agrin, a motor neuron-derived ligand that stimulates MuSK phosphorylation, play critical roles in synaptic differentiation, as synapses do not form in their absence, and mutations in MuSK or downstream effectors are a major cause of a group of neuromuscular disorders, termed congenital myasthenic syndromes (CMS). How Agrin activates MuSK and stimulates synaptic differentiation is not known and remains a fundamental gap in our understanding of signaling at neuromuscular synapses. Here, we report that Lrp4, a member of the LDLR family, is a receptor for Agrin, forms a complex with MuSK, and mediates MuSK activation by Agrin.  相似文献   

17.
The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse that is structurally and functionally similar to mammalian glutamatergic synapses. These synapses can, as a result of changes in activity, alter the strength of their connections via processes that require chromatin remodeling and changes in gene expression. The chromodomain helicase DNA binding (CHD) protein, Kismet (Kis), is expressed in both motor neuron nuclei and postsynaptic muscle nuclei of the Drosophila larvae. Here, we show that Kis is important for motor neuron synaptic morphology, the localization and clustering of postsynaptic glutamate receptors, larval motor behavior, and synaptic transmission. Our data suggest that Kis is part of the machinery that modulates the development and function of the NMJ. Kis is the homolog to human CHD7, which is mutated in CHARGE syndrome. Thus, our data suggest novel avenues of investigation for synaptic defects associated with CHARGE syndrome.  相似文献   

18.
Formation of terminal synapses at sites such as the neuromuscular junction involves transformation of the motile growth cone into the nonmotile synaptic terminal. However, transformation does not need to be the mechanism when a neurite forms multiple widely spaced synaptic varicosities along a target in an en passant configuration. Synaptic varicosities could form here by specialization of the neurite after the growth cone has advanced past the site. We examined this issue by using cocultures of identified sensory (SN) and motor (L7) neurons from Aplysia. Living SNs were labeled with fluorescent dye and their neurites were observed at high resolution every few minutes growing along the axon of L7, allowing a fine-grained analysis of the behavior of the growth cone at the sites of synapse formation. All varicosities whose formation was observed indeed developed from the growth cone. Sensory varicosities were shown by electron microscopy to contain features characteristic of active zones for transmitter release within a day of their formation on the motor axon. Growth cone advance slowed or stopped transiently during varicosity formation, but the motile activity of the peripheral region of the growth cone (veils and filopodia) was maintained. These results suggest that target "stop signals" involved in the formation of synapses, at least of the en passant variety, may be of a different type from the growth inhibitory molecules, such as the collapsins, which guide axons to their targets.  相似文献   

19.
20.
In Drosophila, the larval neuromuscular junction is particularly tractable for studying how synapses develop and function. In contrast to vertebrate central synapses, each presynaptic motor neuron and postsynaptic muscle cell is unique and identifiable, and the wiring circuit is invariant. Thus, the full power of Drosophila genetics can be brought to bear on a single, reproducibly identifiable, synaptic terminal. Each individual neuromuscular junction encompasses hundreds of synaptic neurotransmitter release sites housed in a chain of synaptic boutons. Recent advances have increased our understanding of the mechanisms that shape the development of both individual synapses--that is, the transmitter release sites including active zones and their apposed glutamate receptor clusters--and the whole synaptic terminal that connects a pre- and post-synaptic cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号