首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes three microwave catheter antennas for percutaneous cardiac ablation. A particular design feature of these antennas is that there is no reflected microwave current from the antenna flowing up the transmission line. Thus, it minimizes heating of the coaxial cable. The power reflection coefficients are very low (4% or less) in phantom equivalent materials. These antennas can also serve as bipolar electrodes for sensing endocardiac electrograms. Our studies in dogs, during both cardiopulmonary bypass and closed‐chest operations via the femoral vein, have shown microwave energy greater than 200 joules (J) delivered to the heart through a split‐tip dipole catheter antenna can produce irreversible block of the heart rhythms. This energy was achieved either by increasing the delivered power from 20 to 40 watts or by increasing the treatment duration from 7 to 11 s (210 to 330 J per application). It produced an endocardium temperature of about 65 ºC. We found that the percutaneous, transcatheter microwave system is capable of inducing AV blocks consistently in dogs using the flexible, curved tip, split‐tip catheter antenna. In addition, our studies have shown that the width and height of SAR distributions for cap‐choke and split‐tip catheter antennas are similar for the same antenna length. The cap‐slot design had a much longer SAR distribution compared to the others. Moreover, a longer (4 mm) split‐tip antenna can also induce larger lesions. These results suggest that it could be possible to ablate a ventricular tachycardia focus using the 4 mm split‐tip as well as the cap‐slot microwave catheter antennas. Bioelectromagnetics 20:120–132, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
This study investigated the effects of microwave radiation on the PVN of the hypothalamus, extracted from rat brains. Expression of c-Fos was used to study the pattern of cellular activation in rats exposed once or repeatedly (ten times in 2 weeks) to 2.45 GHz radiation in a GTEM cell. The power intensities used were 3 and 12 W and the Finite Difference Time Domain calculation was used to determine the specific absorption rate (SAR). High SAR triggered an increase of the c-Fos marker 90 min or 24 h after radiation, and low SAR resulted in c-Fos counts higher than in control rats after 24 h. Repeated irradiation at 3 W increased cellular activation of PVN by more than 100% compared to animals subjected to acute irradiation and to repeated non-radiated repeated session control animals. The results suggest that PVN is sensitive to 2.45 GHz microwave radiation at non-thermal SAR levels.  相似文献   

3.
Reports of behavioral and clinical changes following weak microwave irradiation, though not fully documented, are of sufficient moment to require examination of each possible biological consequence of low level exposure, particularly with respect to the central nervous system. In this report the hypothesis that significant cytological microthermal effects are induced by low intensity microwave fields (10 mW/cm2 incident power density) is examined. An estimate of the upper bound on the thermal effects thus produced is made, showing the thermal variations to be no larger than those endogenous to neural tissue. A similar analysis of microthermal effects within the vestibulo-cochlear apparatus, however, suggests the more limited hypothesis that this structure is responsive to weak, absorbed microwave energy. An estimate of the temperature gradients, hence, local fluid density changes within the labyrinth supports the existence of detectable intralabyrinthine convective forces at incident power densities as low as 15–20 mW/cm2. This suggests (i) that microwave induced vestibular effects may provide a cue to alert personnel to significant acute microwave exposure, (ii) that reports of behavioral and/or clinical reactivity to low level microwave exposure may derive from such a benign but potentially useful interaction and (iii) that geometric peculiarities of the vestibulo-cochlear apparatus may result in markedly enhanced microwave-labyrinthine coupling at particular radiation wavelengths.  相似文献   

4.
Foraging-experienced honeybees retained normal flight, orientation, and memory functions after 30 minutes' exposure to 2.45-GHz CW microwaves at power densities from 3 to 50 mW/cm2. These experiments were conducted at power densities approximating and exceeding those that would be present above receiving antennas of the proposed solar power satellite (SPS) energy transmission system and for a duration exceeding that which honeybees living outside a rectenna might be expected to spend within the rectenna on individual foraging trips. There was no evidence that airborne invertebrates would be significantly affected during transient passage through microwaves associated with SPS ground-based microwave receiving stations.  相似文献   

5.
A four-antenna collinear array in an electromagnetically shielded chamber was designed and constructed to preferentially irradiate the brains of a large number of small mammals using cellular telephony microwave signals. Ten animals in special restrainers were positioned symmetrically around a centrally located antenna. These restrainers are resting on a circular structure made of acrylic plastic called a "carousel." Four carousels are stacked vertically, forming the array, inside a microwave anechoic chamber called a "chamberette." (Details of the design of this irradiator and of a 12-chamberette irradiation facility are given in a previous article.) In this article, the dosimetry on rats is reported. Both thermometric and thermographic measurements were performed. The average specific absorption rate (SAR) in brain tissue measured thermometrically was 0.85+/-0.34 W/kg per watt of net input power into the radiating antenna. This range agrees with the SAR levels reported in the literature for cellular telephones. Thermographic evaluation using splittable phantoms showed that most of the energy absorbed by the rats is concentrated in and around the brain. Moreover, it was found that the SAR in brain tissue can vary considerably for rats of similar weights, depending on position of the rats' heads inside the restrainers, and that there exists a significant dependence of SAR on animal weight. These variations may be of importance in the interpretation of results of lifelong studies. The data presented clearly show that the chamberette is, dosimetrically, a suitable irradiation system for electromagnetic bioeffects studies in the cellular communication frequency range, especially when a large number of laboratory animals is required.  相似文献   

6.
A new head exposure system for double-blind provocation studies investigating possible effects of 2.45 GHz Wi-Fi exposure on human sleep was developed and dosimetrically analyzed. The exposure system includes six simultaneously radiating directional antennas arranged along a circle (radius 0.6 m) around the test subject's head, and enables a virtually uniform head exposure, i.e. without any preferred direction of incidence, during sleep. The system is fully computer-controlled and applies a real wireless local area network (WLAN) signal representing different transmission patterns as expected in real WLAN scenarios, i.e. phases of “beacon only” as well as phases of different data transmission rates. Sham and verum are applied in a double-blind crossover study design and all relevant exposure data, i.e. forward and reverse power at all six antenna inputs, are continuously recorded for quality control. For a total antenna input power (sum of all antennas) of 220 mW, typical specific absorption rate (SAR) in cortical brain regions is approximately 1–2 mW/kg (mass average SAR over respective brain region), which can be seen as a realistic worst-case exposure level in real WLAN scenarios. Taking into account variations of head positions during the experiments, the resulting exposure of different brain regions may deviate from the given average SAR levels up to 10 dB. Peak spatial 10 g average SAR in all brain and all head tissues is between 1.5–3.5 and 10.4–25 mW/kg, respectively. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.  相似文献   

7.
The interaction of body‐worn antennas with the human body causes a significant decrease in antenna efficiency and a shift in resonant frequency. A resonant slot in a small conductive box placed on the body has been shown to reduce these effects. The specific absorption rate is less than international health standards for most wearable antennas due to small transmitter power. This paper reports the linear relationship between power absorbed by biological tissues at different locations on the body and radiation efficiency based on numerical modeling (r = 0.99). While the ?10 dB bandwidth of the antenna remained constant and equal to 12.5%, the maximum frequency shift occurred when the antenna was close to the elbow (6.61%) and on the thigh (5.86%). The smallest change was found on the torso (4.21%). Participants with body‐mass index (BMI) between 17 and 29 kg/m2 took part in experimental measurements, where the maximum frequency shift was 2.51%. Measurements showed better agreement with simulations on the upper arm. These experimental results demonstrate that the BMI for each individual had little effect on the performance of the antenna. Bioelectromagnetics. 39:25–34, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm2). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p < 0.001), brain (p < 0.004) and spleen (p < 0.006) in samples from rats exposed to microwave radiation. Also histological changes were observed in the brain, liver, testis, kidney and spleen after whole-body microwave exposure, compared to the control group.

Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.  相似文献   


9.
The acute effects of microwave exposure on a repeated acquisition baseline were investigated in three rats. Each session the animals acquired a different four-member response sequence. Each of the first three correct responses advanced the sequence to the next member, and the fourth correct response produced food reinforcement. Incorrect responses produced a three-second timeout. Baseline and control sessions were characterized by a decrease in errors within each session. The animals were acutely exposed to a 2.8 GHz pulsed-microwave field prior to test sessions, with average power densities ranging from 0.25 to 10 mW/cm2. In comparison to control sessions, 1/2 hour of exposure to microwave radiation at power densities of 5 and 10 mW/cm2 increased errors and altered the pattern of within-session acquisition. Exposure to the 10 mW/cm2 power density decreased the rate of sequence completion in all animals. The results of exposures at 0.25, 0.5, and 1 mW/cm2 power densities were generally within the control range. The results are interpreted as indicating a disruption in the discriminative stimulus control of the repeated acquisition behavior.  相似文献   

10.
We consider the thermal response times for heating of tissue subject to nonionizing (microwave or infrared) radiation. The analysis is based on a dimensionless form of the bioheat equation. The thermal response is governed by two time constants: one(τ1) pertains to heat convection by blood flow, and is of the order of 20–30 min for physiologically normal perfusion rates; the second (τ2) characterizes heat conduction and varies as the square of a distance that characterizes the spatial extent of the heating. Two idealized cases are examined. The first is a tissue block with an insulated surface, subject to irradiation with an exponentially decreasing specific absorption rate, which models a large surface area of tissue exposed to microwaves. The second is a hemispherical region of tissue exposed at a spatially uniform specific absorption rate, which models localized exposure. In both cases, the steady-state temperature increase can be written as the product of the incident power density and an effective time constant τeff, which is defined for each geometry as an appropriate function of τ1 and τ2. In appropriate limits of the ratio of these time constants, the local temperature rise is dominated by conductive or convective heat transport. Predictions of the block model agree well with recent data for the thresholds for perception of warmth or pain from exposure to microwave energy. Using these concepts, we developed a thermal averaging time that might be used in standards for human exposure to microwave radiation, to limit the temperature rise in tissue from radiation by pulsed sources. We compare the ANSI exposure standards for microwaves and infrared laser radiation with respect to the maximal increase in tissue temperature that would be allowed at the maximal permissible exposures. A historical appendix presents the origin of the 6-min averaging time used in the microwave standard. Bioelectromagnetics 19:420–428, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Female CD-1 mice were injected with an LD50 dose of Streptococcus pneumoniae and then exposed to 2.45 GHz (CW) microwave radiation at an incident power density of 10 mW/cm2 (SAR = 6.8 W/kg), 4 h/d for 5 d at ambient temperatures of 19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, 37 °C and 40 °C. Four groups of 25 animals were exposed at each temperature with an equal number of animals concurrently sham-exposed. Survival was observed for a 10-d period after infection. Survival of the sham-exposed animals increased as ambient temperature increased from 19 °C–34 °C. At ambient temperatures at or above 37 °C the heat induced in the body exceeded the thermoregulatory capacity of the animals and deaths from hyperthermia occurred. Survival of the microwave-exposed animals was significantly greater than the shams (~20%) at each ambient temperature below 34 °C. Based on an analysis of the data it appears that the hyperthermia induced by microwave exposure may be more effective in increasing survival in infected mice than hyperthermia produced by conventional methods (ie, high ambient temperature). Microwave radiation may be beneficial to infected animals at low and moderate ambient temperatures, but it is detrimental when combined with high ambient temperatures.  相似文献   

12.
Adult rats anesthesized with pentobarbital and injected intravenously with a mixture of [14C]sucrose and [3H]inulin were exposed for 30 min to an environment at an ambient temperature of 22, 30, or 40 °C, or were exposed at 22 °C to 2450-MHz CW microwave radiation at power densities of 0, 10, 20, or 30 mW/cm2. Following exposure, the brain was perfused and sectioned into eight regions, and the radioactivity in each region was counted. The data were analyzed by two methods. First, the data for each of the eight regions and for each of the two radioactive tracers were analyzed by regression analysis for a total of 16 analyses and Bonferroni's Inequality was applied to prevent false positive results from numerous analyses. By this conservative test, no statistically significant increase in permeation was found for either tracer in any brain region of rats exposed to microwaves. Second, a profile analysis was used to test for a general change in tracer uptake across all brain regions. Using this statistical method, a significant increase in permeation was found for sucrose but not for inulin. A correction factor was then derived from the warm-air experiments to correct for the increase in permeation of the brain associated with change in body temperature. This correction factor was applied to the data for the irradiated animals. After correcting the data for thermal effects of the microwave radiation, no significant increase in permeation was found.  相似文献   

13.
The spectra of a plasma relativistic maser are measured. It is shown that the microwave frequency can be varied from 4 to 28 GHz by varying the plasma density from 4×1012 to 7×1013 cm?3 at a power of 30–50 MW. The relative width of the emission spectrum is within 50–80% for low plasma densities and 15–30% for high densities. Experimental results are compared with calculations.  相似文献   

14.
We have previously demonstrated that microwave fields, amplitude modulated (AM) by an extremely low-frequency (ELF) sine wave, can induce a nearly twofold enhancement in the activity of ornithine decarboxylase (ODC) in L929 cells at SAR levels of the order of 2.5 W/kg. Similar, although less pronounced, effects were also observed from exposure to a typical digital cellular phone test signal of the same power level, burst modulated at 50 Hz. We have also shown that ODC enhancement in L929 cells produced by exposure to ELF fields can be inhibited by superposition of ELF noise. In the present study, we explore the possibility that similar inhibition techniques can be used to suppress the microwave response. We concurrently exposed L929 cells to 60 Hz AM microwave fields or a 50 Hz burst-modulated DAMPS (Digital Advanced Mobile Phone System) digital cellular phone field at levels known to produce ODC enhancement, together with band-limited 30–100 Hz ELF noise with root mean square amplitude of up to 10 μT. All exposures were carried out for 8 h, which was previously found to yield the peak microwave response. In both cases, the ODC enhancement was found to decrease exponentially as a function of the noise root mean square amplitude. With 60 Hz AM microwaves, complete inhibition was obtained with noise levels at or above 2 μT. With the DAMPS digital cellular phone signal, complete inhibition occurred with noise levels at or above 5 μT. These results suggest a possible practical means to inhibit biological effects from exposure to both ELF and microwave fields. Bioelectromagnetics 18:422–430, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Microwave energy radiation is widely used as a method for rapidly sacrificing small laboratory animals so that measurements of endogenous levels of labile neurochemical substances can be assessed after various drug treatments or pharmacological maneuvers. Several factors are important to insure that microwave energy is efficiently coupled to the rodent brain, including: the frequency of microwave radiation, the size of the waveguide for the propagation of the energy, the tuning of the waveguide system, the placement of the animal at the point of maximum power within the waveguide, the amount of power which is delivered, the time during which the power is delivered, and whether the animal is restrained during the microwave protocol.  相似文献   

16.
Lin JC 《Bioelectromagnetics》2004,25(3):146-159
This d'Arsonval Medal acceptance presentation highlights several research themes selected from Dr. Lin's published works, focusing on the microwave portion of the nonionizing electromagnetic spectrum. The topics discussed include investigation of microwave effects on the spontaneous action potentials and membrane resistance of isolated snail neurons, effects on the permeability of blood brain barriers in rats, the phenomenon and interaction mechanism for the microwave auditory effect (the hearing of microwave pulses by animals and humans), the development of miniature catheter antennas for microwave interstitial hyperthermia treatment of cancer, the application of transcatheter microwave ablation for treatment of cardiac arrhythmias, and the use of noninvasive wireless technology for sensing of human vital signs and blood pressure pulse waves. The paper concludes with some observations on research and other endeavors in the interdisciplinary field of bioelectromagnetics.  相似文献   

17.
Summary The average dose rate and oxygen consumption rate of an individual mouse in a small holder during exposure to 2450 MHz CW microwave radiation are determined. The environmental conditions are 24° C temperature, 55% relative humidity, and 78 ml/min airflow. A forward power of 1.7 W resulted in the average dose rates of 31.0 mW/g, and 23.6 mW/g respectively, for the animals irradiated in the small, and the large holders. The results support the hypothesis that previously observed reduction in microwave energy absorption during irradiation is due to the orientation and positioning of the animal's body with respect to the microwave field. Relatively higher rate of oxygen consumption of the tightly confined sham-irradiated animals in comparison to that of the animals in the large holder is observed. Although a decrease in oxygen consumption rate is observed during exposure for the microwave irradiated animals in the small holder, the magnitude of this decrease is not more than that of the animals irradiated in the large holder. Thus the lack of reduction in the absorption of microwave energy is not compensated by a correspondingly large decrease in oxygen consumption, resulting in a larger heat load and perhaps larger stress to animals confined in the small holder.  相似文献   

18.
A method recently developed in this laboratory has been used to directly expose BHK-21/C13 cells to high levels of microwave radiation without significant microwave-induced heating (? 0.1 °C). Monolayer cultures were grown on microwave-transparent polystyrene coverslips, placed on the open end of a wave guide, and maintained at 37.2 °C during irradiation at frequencies in both the E- and U-bands (average power densities 292 and 177 mW/cm2, respectively). Effects of microwave radiation were assessed at 0.1 GHz increments in the ranges of 38–48 GHz and 65–75 GHz. Protein synthesis was measured in quadruplicate cultures that were allowed to incorporate labeled methionine during the 15-minute period of microwave irradiation. Autoradiographs of each monolayer culture were scanned along the region corresponding to the longer axis of the wave guide aperture using a microdensitometer to quantify incorporation. Since microwave power incident on the cells was previously shown to vary along this axis according to a cosine2 relationship from zero at each edge of the wave guide to twice the average power density at the center of the wave guide, this technique should reveal biological effects that might only be manifested in narrow amplitude domains or “power windows.” Observations of protein synthesis in monolayer cultures irradiated at 202 closely spaced frequencies in the E- and U-bands failed to reveal changes associated with microwave exposure. Thus no evidence was obtained in support of the existence of frequency-specific athermal biological effects of microwaves. In addition, no support was found for the existence of amplitude-specific “power windows”.  相似文献   

19.
Passive integrated transponder (PIT) tag technology permits the “resighting” of animals tagged for ecological research without the need for physical re‐trapping. Whilst this is effective if animals pass within centimeters of tag readers, short‐distance detection capabilities have prevented the use of this technology with many species. To address this problem, we optimized a large (15 m long) flexible antenna system to provide a c. 8 m2 vertical detection plane for detecting animals in flight. We installed antennas at two roosting caves, including the primary maternity cave, of the critically endangered southern bent‐winged bat (Miniopterus orianae bassanii) in south‐eastern Australia. Testing of these systems indicated PIT‐tags could be detected up to 105 cm either side of the antenna plane. Over the course of a three‐year study, we subcutaneously PIT‐tagged 2,966 bats and logged over 1.4 million unique detections, with 97% of tagged bats detected at least once. The probability of encountering a tagged bat decreased with increasing environmental “noise” (unwanted signal) perceived by the system. During the study, we mitigated initial high noise levels by earthing both systems, which contributed to an increase in daily detection probability (based on the proportion of individuals known to be alive that were detected each day) from <0.2 (noise level ≥30%) to 0.7–0.8 (noise level 5%–15%). Conditional on a low (5%) noise level, model‐based estimates of daily encounter probability were highest (>0.8) during peak breeding season when both female and male southern bent‐winged bats congregate at the maternity cave. In this paper, we detail the methods employed and make methodological recommendations for future wildlife research using large antennas, including earthing systems as standard protocol and quantifying noise metrics as a covariate influencing the probability of detection in subsequent analyses. Our results demonstrate that large PIT antennas can be used successfully to detect small volant species, extending the scope of PIT technology and enabling a much broader range of wildlife species to be studied using this approach.  相似文献   

20.
The potential mutagenic effect of low power microwave at the DNA sequence level in the mouse genome was evaluated by direct DNA analysis. Animals were exposed to microwave at a power density of 1 mW/cm2 for 2 h/day at a frequency of 2.45 GHz over a period of 120, 150 and 200 days. HinfI digested DNA samples from testis and brain of control and exposed animals were hybridized with a synthetic oligo probe (OAT 36) comprising nine repeats of 5′-GACA-3′. As compared to control animals, band patterns in exposed animals were found to be distinctly altered in the range of 7–8 kb which was also substantiated by densitometric analysis. Though the mechanism of this rearrangement is not yet clear, the results obtained at the present dose are of significance. This dose, which has been set as the safe limit for general public exposure by the Non-Ionizing Radiation Committee of the International Radiation Protection Association, may imply a need for (re)evaluation of the mutagenic potential of microwaves at the prescribed safe limit for the personnel and people who are being exposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号