首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intense magnetic fields have been shown to affect memory-related behaviours of rodents. A series of experiments was performed to investigate further the effects of a 50 Hz magnetic field on the foraging behaviour of adult, male C57BL/6J mice performing a spatial learning task in an eight-arm radial maze. Exposure to vertical, sinusoidal magnetic fields between 7.5 μT and 7.5 mT for 45 min immediately before daily testing sessions caused transient decreases in performance that depended on the applied flux density. Exposure above a threshold of between 7.5 and 75 μT significantly increased the number of errors the animals made and reduced the rate of acquisition of the task without any effect on overall accuracy. However, the imposition of a 45-minute delay between exposure at 0.75 mT and behavioural testing resulted in the elimination of any deficit. Similarly, exposure to fields between 7.5 μT and 0.75 mT for 45 min each day for 4 days after training had no amnesic effects on the retention and subsequent performance of the task. Overall, these results provide additional evidence that 50 Hz magnetic fields may cause subtle changes in the processing of spatial information in mice. Although these effects appear dependent on field strength, even at high flux densities the field-induced deficits tend to be transient and reversible. Bioelectromagnetics 19:486–493, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Male CD1 mice were exposed in utero to a 50 Hz sinusoidal magnetic field at 5 mT (rms) for the period of gestation and were raised subsequently without applied fields. At 82-84 days of age, they began a radial-arm-maze experiment that was designed to test for deficits in spatial learning in memory. Mice exposed in utero and sham-exposed mice exhibited no statistically significant differences in performances. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Rats were trained in ten daily sessions to perform in a 12-arm radial maze, which is a behavioral test for spatial memory functions. Exposure to a 60 Hz magnetic field (45 min, 0.75 mT) immediately before each training session retarded learning significantly. Pretreatment with the cholinergic agonist physostigmine before magnetic field exposure reversed the field's effect on spatial learning. Data from this experiment indicate that magnetic field-induced spatial learning deficit is caused by the effect of the field on cholinergic systems. © 1996 Wiley-Liss, Inc.  相似文献   

4.
A series of four experiments was performed to determine whether acute exposure to a range of 50 Hz magnetic fields had any effect on a learning task in adult male CD1 mice. A radial-arm maze placed within the bore of an electromagnet was used to assess spatial discrimination learning for food reward. Subjects were reduced to 85% of their free-feeding weight and were placed in the maze for up to 15 minutes each day for 10 days. Performance of the task was measured by using maximum likelihood techniques to calculate the probability that an animal would not reenter any given arm of the maze. Experimental subjects were exposed to a vertical, 50 Hz sinusoidal magnetic field at 5 μT, 50 μT, 0.5 mT, or 5.0 mT (rms). Control subjects were exposed only to a background time-varying field of less than 50 nT and the ambient static field of about 40 μT. The variation in the applied magnetic field was less than 5% except at the ends of the arms, where it approached 10%. It was found that all eight groups of subjects (n = 10 in all cases) showed similar increases in performance with testing, and the acquisition curve for each group of experimental subjects was not significantly different from that of their control group (P > 0.05 in all cases). It was concluded that exposure had no effect on learning at any flux density. This result is contrary to the findings of a number of preliminary studies, although other studies have reported that magnetic fields do not affect spatial learning in adult male rodents. It is possible that differences between experimental conditions might explain some of this apparent discrepancy. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Pregnant CD1 mice were exposed or sham-exposed from day 0 to day 17 of gestation to a 50 Hz sinusoidal magnetic field at 20 mT (rms). Preimplantation and postimplantation survival were assessed and fetuses examined for the presence of gross external, internal, and skeletal abnormalities. There were no statistically significant field-dependent effects on preimplantation or postimplantation survival, sex ratio, or the incidence of fetuses with internal or skeletal abnormalities. Magnetic field exposure was, however, associated with longer and heavier fetuses at term, with fewer external abnormalities. The results lend no support to suggestions of increased rates of spontaneous abortion or congenital malformation following prenatal exposure to power frequency magnetic fields. © 1994 Wiley-Liss, Inc.  相似文献   

6.
A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting 7 days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects.  相似文献   

7.
Rats were trained in six sessions to locate a submerged platform in a circular water-maze. They were exposed to a 1 mT, 60 Hz magnetic field for one hour in a Helmholtz coil system immediately before each training session. In addition, one hour after the last training session, they were tested in a probe trial during which the platform was removed and the time spent in the quadrant of the maze in which the platform was located during the training sessions was scored. Control animals were sham-exposed using the exposure system operating with the coils activated in an anti-parallel direction to cancel the fields. A group of “non-exposed” control animals was also included in the study. There was no significant difference between the magnetic field-exposed and control animals in learning to locate the platform. However, swim speed of the magnetic field-exposed rats was significantly slower than that of the controls. During the probe trial, magnetic field-exposed animals spent significantly less time in the quadrant that contained the platform, and their swim patterns were different from those of the controls. These results indicate that magnetic field exposure causes a deficit in spatial “reference” memory in the rat. Rats subjected to magnetic field exposure probably used a different behavioral strategy in learning the maze. Bioelectromagnetics 19: 117–122, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
To provide possible laboratory support to health risk evaluation associated with long-term, low-intensity magnetic field exposure, 256 male albino rats and an equal number of control animals (initial age 12 weeks) were exposed 22 h/day to a 50 Hz magnetic flux density of 5 μmT for 32 weeks (a total of about 5000 h). Hematology was studied from blood samples before exposure to the field and at 12 week intervals. Morphology and histology of liver, heart, mesenteric lymph nodes, and testes as well as brain neurotransmitters were assessed at the end of the exposure period. In two identical sets of experiments, no significant differences in the investigated variables were found between exposed and sham-exposed animals. It is concluded that continuous exposure to a 50 Hz magnetic field of 5 μT from week 12 to week 44, which makes up ?70% of the life span of the rat before sacrifice, does not cause changes in growth rate, in the morphology and histology of liver, heart, mesenteric lymph nodes, testes, and bone marrow, in hematology and hematochemistry, or in the neurotransmitters dopamine and serotonin. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Several epidemiological investigations have suggested an increased incidence of lymphoma, leukemia, and brain tumor in residents living near power transmission lines. However, some observers failed to confirm such a positive correlation. To evaluate the effects of extremely low frequency (ELF) magnetic fields on leukemogenesis, an experimental animal model was used, in which thymic lymphoma/leukemia was induced by dimethylbenz(α)anthracene (DMBA) injected subcutaneously into the interscapular region of newborn mice within 24 h after birth. Beginning at the second week of age, 165 mice were exposed to 50 Hz magnetic field at 1 mT, 3 h/day, 6 days/week for 16 weeks, and 155 animals exposed to sham conditions. All surviving animals were killed by cervical dislocation at the age of 32 weeks and were examined pathologically. The results showed that the incidences of advanced thymic lymphoma, complicated with lymphomatous leukemia, were 21.8 and 23.9% in the two groups, respectively, without statistically significant differences. But dense metastatic infiltration by lymphoma cells into liver in the field exposure group greater (50%) than that in the sham-exposure group (16.2%) was observed (χ2 = 9.847, P < 0.01). To determine whether ELF acts as a tumor promoter, further experiments are required. Bioelectromagnetics 18:360–364, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Effects of 50 Hz magnetic field exposure on tumor experimental models   总被引:3,自引:0,他引:3  
The aim of this study was to investigate the interaction between a 50 Hz, 2 mT magnetic field (MF) exposure and cell growth of mammary murine adenocarcinoma, injected into experimental mice. Six different experimental protocols were performed over 2 years; several different protocols of timing of exposure were tested. X-ray radiation was adopted as the positive control. Tumor incidence and the tumor development time were calculated. No effect was observed in any experiment, and there was no statistically significant difference related to time courses among the protocols used. Neither the time of tumor cell injection nor the time of exposure produced differences between unexposed, sham, and exposed mice. When X-ray radiation was applied, the cytotoxic effect of ionizing radiation was clear, but was not increased or modified by MF exposure. Finally, the study revealed how the host-tumor system has shown a distinctive variability, unmodified by MF exposure.  相似文献   

11.
This human exposure study examined the relationship between field strength and biological response and tested whether the exposure levels at which the greatest effects occur differ for different endpoints. Three matched groups of 18 men each participated in two 6 h exposure test sessions. All subjects were sham exposed in one session. In the other session, each group of subjects was exposed at a different level of combined electric and magnetic field strength (low group: 6 kV/m, 10 μT; medium group: 9 kV/m, 20 μT; and high group: 12 kV/m, 30 μT). The study was performed double blind, with exposure order counterbalanced. Significant slowing of heart rate, as well as alterations in the latency and amplitude of event-related brain potential measures derived from the electro encephalogram (EEG), occurred in the group exposed to the 9 kV/m, 20 μT combined field (medium group). Exposure at the other field strength levels had no influence on cardiac measures and differential effects on EEG activity. Significant decrements in reaction time and in performance accuracy on a time estimation task were observed only in the low group. These results provide support for the hypothesis that humans may be more responsive to some combinations or levels of field strength than to others and that such differences in responsivity may depend, in part, on the endpoint of interest. © 1994 Wiley-Liss, Inc.  相似文献   

12.
The possibility of an association of early pregnancy loss (EPL) with residential exposure to ELF magnetic fields was investigated in a case-control study. Eighty-nine cases and 102 controls were obtained from the data of an earlier study aimed at investigating the occurrence of EPL in a group of women attempting to get pregnant. Magnetic-field exposure was characterized by measurements in residences. Strong magnetic fields were measured more often in case than in control residences. In an analysis based on fields measured at the front door, a cutoff score of 0.5 A/m (0.63 μT) resulted in an odds ratio of 5.1 (95% confidence interval 1.0–25). The results should be interpreted cautiously due to the small number of highly exposed subjects and other limitations of the data. © 1993 Wiley-Liss. Inc.  相似文献   

13.
To determine whether a 50-Hz magnetic field will induce mutations, a sex-linked recessive lethal test of Drosophila melanogaster was performed. Adult flies were exposed at an rms flux density of 500 mu T or 5 mT to the homogeneous field of a Helmholtz coil. The ambient field to which controls were exposed was less than 1 mu T. Exposures took place continuously for 13 to 14 days, which correspond to the life cycle of Drosophila at 25 degrees C. About 10,000 X-chromosomes were tested at each flux density. Recessive lethal mutation rates of 0.13, 0.21, and 0.18 percent were observed, respectively, for control, 500-mu T, and 5-mT conditions. By the Kastenbaum-Bowman significance test, the recessive lethal mutation rates in the 500-mu T and 5-mT conditions did not differ from the mutation rate of controls.  相似文献   

14.
The aim of the present study is to investigate whether extremely low frequency electromagnetic fields (ELF-EMF) affect certain cellular functions and immunologic parameters of mouse macrophages. In this study, the influence of 50 Hz magnetic fields (MF) at 1.0 mT was investigated on the phagocytic activity and on the interleukin-1beta (IL-1beta) production in differentiated macrophages. MF-exposure led to an increased phagocytic activity after 45 min, shown as a 1.6-fold increased uptake of latex beads in MF-exposed cells compared to controls. We also demonstrate an increased IL-1beta release in macrophages after 24 h exposure (1.0 mT MF). Time-dependent IL-1beta formation was significantly increased already after 4 h and reached a maximum of 12.3-fold increase after 24 h compared to controls. Another aspect of this study was to examine the genotoxic capacity of 1.0 mT MF by analyzing the micronucleus (MN) formation in long-term (12, 24, and 48 h) exposed macrophages. Our data show no significant differences in MN formation or irregular mitotic activities in exposed cells. Furthermore, the effects of different flux densities (ranging from 0.05 up to 1.0 mT for 45 min) of 50 Hz MF was tested on free radical formation as an endpoint of cell activation in mouse macrophage precursor cells. All tested flux densities significantly stimulated the formation of free radicals. Here, we demonstrate the capacity of ELF-EMF to stimulate physiological cell functions in mouse macrophages shown by the significantly elevated phagocytic activity, free radical release, and IL-1beta production suggesting the cell activation capacity of ELF-EMF in the absence of any genotoxic effects.  相似文献   

15.
Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid the arms previously used for escape during each testing day (working memory) as well as avoid the fixed arms, which never contain escape platforms (reference memory). Re-entries into arms that have already been used for escape during a testing session (and thus the escape platform has been removed) and re-entries into reference memory arms are indicative of working memory deficits. Alternatively, first entries into reference memory arms are indicative of reference memory deficits. We used this maze to compare performance of rats with neonatal brain injury and sham controls following induction of hypoxia-ischemia and show significant deficits in both working and reference memory after eleven days of testing. This protocol could be easily modified to examine many other models of learning impairment.  相似文献   

16.
This study was undertaken to investigate whether power frequency magnetic fields can affect the kinetics of cell cycle progression in exposed human cells. To achieve this, cultures of normal human fibroblasts were synchronised in the G(0) phase of the cell cycle and exposed to 50 Hz magnetic fields at a range of flux densities. Progression through the cycle was monitored by examining the timing of entry into S phase, as characterised by the onset of DNA synthesis. Simultaneous positive controls were exposed to human recombinant fibroblast growth factor to demonstrate that the system was responsive to external stimuli. Exposure to magnetic fields at 20 and 200 microT induced a small but significant increase in the length of the G(1) phase of the cell cycle. However, exposure at higher flux densities of 2 and 20 mT had no significant effect. These results are discussed in relation to weak magnetic field effects on free radical concentration.  相似文献   

17.
A number of studies have shown that power frequency magnetic fields may affect spatial memory functions in rodents. An experiment was performed using a spontaneous object recognition task to investigate if nonspatial working memory was similarly affected. Memory changes in adult, male C57BL/6J mice were assessed by measuring the relative time within which the animals explored familiar or novel stimulus objects. Between initial testing and retesting, the animals were exposed for 45 min to a 50 Hz magnetic field at either 7.5 microT, 75 microT or 0.75 mT. Other animals were sham-exposed with ambient fields of less than 50 nT. No significant field-dependent effects on the performance of the task were observed at any flux density (for all measures, P > 0.05). These data provide no evidence to suggest that nonspatial working memory was affected in mice by acute exposure to an intense 50 Hz magnetic field.  相似文献   

18.
Steroid hormones have profound effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are manmade or are natural compounds, which mimics the action of estrogen hormones. The experimental evidence for impairment of cognitive functions in humans and mammals following exposure to xenoestrogens has been fiercely debated. The strongest arguments against such studies have been that the route, time course, and intensity of exposure did not simulate environmental exposure, and that the chemicals tested have additional, non-estrogenic toxic effects, hindering a generalization of actual "xenoestrogenic" effects. Here we show that an environmental-like exposure to the pure estrogen, 17alpha-ethynylestradiol (EE2) during development enhances spatial learning abilities in adult male Sprague-Dawley rats. To simulate an environmental exposure, we used a very low dose (4 ng/kg/day) of EE2 equivalent to concentrations measured in European and US streams which was given orally with a non-invasive method, and we extended the treatment for the entire course of development, from conception to puberty. The animals were tested in a Morris water maze protocol at 6 months of age. Male rats treated with EE2 during development showed a faster learning during the training phase, and remembered better the position of the hidden platform in the short term. Our study demonstrates that actual levels of exposure to xenoestrogens can permanently alter cognitive abilities of a mammalian species.  相似文献   

19.
The effect of a 50 Hz, vertical magnetic field on the excretion of urinary 6-sulphatoxymelatonin (aMT6s) of male and female Wistar rats was studied in a self-controlled experiment. Twenty rats were kept in metabolic cages under 9:15 h light:dark conditions. The urine of the animals was collected twice per day for 5 consecutive days. The concentration of aMT6s in the rat urine was measured by 125I radioimmunoassay. The rats were exposed to 5 and 500 μT flux density for 24 h. The excretion of urinary aMT6s did not show significant changes during or after magnetic field exposure. © 1995 Wiley-Liss, Inc.  相似文献   

20.
The flow cytometer-based micronucleus assay was used to study the effects on chromosomes in erythroid cells of CBA/Ca mice after extended exposure to 50 Hz magnetic field (MF), 14 microT, peak-to-peak (p-p). The study included two different experiments: (a) mice exposed in utero during 18 days of their prenatal stage, and (b) adult mice exposed for 18 days. In experiment (a) 35 days after exposure was terminated, peripheral blood was drawn from the mice exposed in utero to determine whether the exposure had a genotoxic effect on the pluripotent erythroid stem cells. About 200000 polychromatic erythrocytes (PCE) and 200000 normochromatic erythrocytes (NCE) were analysed from each of 20 exposed mice. The EMF exposure did not significantly change the frequency of micronucleated PCE or NCE in comparison with 20 sham-irradiated mice. There was no difference in the proportion of PCE between exposed and unexposed animals. Similarly, in experiment (b) no differences were seen between EMF exposed and unexposed adult mice when samples of peripheral blood were taken at the end of exposure and analyzed for micronuclei in PCE and NCE. The proportion of PCE was the same in both groups. The results indicate that exposure to EMF does not induce direct or indirect effects on chromosomes in erythroid cells expressed as increased levels of micronucleated erythrocytes of mice. No indications of delayed genetic effects were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号