首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human Ia-like, class II molecules were isolated by immunoprecipitation with monoclonal antibodies from various HLA-D/DR homozygous cell lines and were analyzed by two-dimensional gel electrophoresis. The monoclonal antibody PLM12 reacted with B cells carrying DR4, DR5, DRw6.2, and DRw9 phenotypes, and its reactivity perfectly correlated with the previously defined TB21 (MB3-like) specificity. Class II molecules detected by PLM12 were structurally distinct from those precipitated by the anti-DR monoclonal antibody NC1 on all HLA-DR4, DR5, DRw6.2, and DRw9 homozygous cell lines and showed polymorphism in heavy and light chains among these cell lines. The monoclonal antibodies PLM2 and PLM9 only reacted with B cells carrying DR5 and DRw6.2 and also detected a distinct set of class II molecules from those precipitated by NC1 but identical to those of PLM12. Thus, PLM2 and PLM9 serologically detected a new subtypic antigen of the PLM12-reactive class II molecules. Furthermore, the antibody NC1 precipitated two light chains and one heavy chain from HLA-DRw6.2 homozygous cell line EBV-Sh. The result indicated the presence of three sets of class II molecules: two in a DR family and another carrying the polymorphic determinants detected by PLM2, PLM9, and PLM12 in a second family.  相似文献   

2.
Expressible HLA class II alpha- and beta-chain cDNA were used for DNA-mediated gene transfer to produce L cell transfectants expressing single types of human class II molecules. Cloned transfectants expressing nine different class II molecules were isolated: DR alpha: DR1 beta I, DR alpha: DR4 beta I, DR alpha: DR5 beta I, DR alpha: DR5 beta III (DRw52), DR alpha: DR7 beta I, DR alpha: DR4/7 beta IV (DRw53), DQ7 alpha: DQw2 beta, DQ7 alpha: DQw3 beta, and DPw4 alpha: DPw4 beta. These class II-expressing transfectants were used to analyze by flow cytometry the molecular specificities of 20 anti-class II mAb. These analyes indicate that some mAb are more broadly reactive than was previously thought based on immunochemical studies. In contrast, the narrow molecular specificities of other anti-class II mAb were confirmed by this approach. Transfectants expressing human class II molecules should be valuable reagents for studies of B cell and T cell defined epitopes on these molecules.  相似文献   

3.
DRw52 (formerly MT2) is a human Ia alloantigen that is expressed in linkage disequilibrium with DR3, 5, w6, and w8. Although there is general agreement that the DRw52 determinant resides on biochemically defined DR molecules, conflicting evidence exists regarding whether DRw52 resides on one or both DR molecules, DQ and DR molecules, or DR and BR molecules. Six anti-DRw52 allosera and three DRw52-like monoclonal antibodies were used to identify the Ia molecules that bear the DRw52 and DRw52-like determinants from DR5 and DRw6 homozygous cells. Based on these two-dimensional gel studies, the DRw52 allodeterminant appears to reside on a subset of DR molecules from DR5 and DRw6 cells. In contrast, the determinants defined by the three anti-DRw52-like monoclonal antibodies were found to reside on one DR molecule, on the second DR molecule, or on both DR molecules, respectively. Therefore, there is considerable complexity of Ia antigenic determinants that are associated with DR3, 5, w6, and w8 at the population level.  相似文献   

4.
The class II molecules of DR4, DR7, and DRw9 haplotypes were analyzed by immunoprecipitation, followed by two-dimensional gel electrophoresis and N-terminal amino acid sequencing. By using HLA-DR chain-specific monoclonal antibodies, two distinct DR beta-chains were identified. One beta-chain, designated DR beta 2, had a characteristic acidic mobility. In all three DR types the DR beta 2-chains were indistinguishable by two-dimensional gel electrophoresis and partial N-terminal sequencing. A second DR beta-chain designated beta 1 had a more basic mobility on two-dimensional gel electrophoresis, and differed from the DR beta 2-chains by the consistent presence of phenylalanine at position 18. In contrast to the DR beta 2-chains, the DR beta 1-chains were clearly polymorphic, with specific amino acid sequence differences characteristic of each DR type. The monoclonal antibodies 109d6 and 17-3-3S, recognizing distinct polymorphic epitopes similarly correlated with the DRw53 allospecificity, were found to react with different DR beta-chains. The epitope recognized by monoclonal antibody 109d6 was identified on the DR beta 2-chain in the prototypic DR4, DR7, and DRw9 cell lines. However, the DR7, Dw11, DQw3 cell line BEI was unreactive with antibody 109d6 by either immunofluorescence or immunoprecipitation despite the presence of the DRw53 allodeterminant on this cell line. The other DRw53-like monoclonal antibody, 17-3-3S, reacted with the DR beta 1-rather than the DR beta 2-chain in all DR4 and DR7 cell lines tested, including the cell line BEI. However, antibody 17-3-3S did not react with the DRw53-positive DRw9 cell line ISK. These studies suggest that the DRw53 allospecificity is more complex than previously thought and may comprise a number of distinct epitopes encoded by two different DR beta loci.  相似文献   

5.
Two divergent routes of evolution gave rise to the DRw13 haplotypes   总被引:1,自引:0,他引:1  
The HLA class II genes and haplotypes have evolved over a long period of evolutionary time by mechanisms such as gene conversion, reciprocal recombination and point mutation. The extent of the diversity generated is most clearly evident in an analysis of the HLA class II alleles present within DRw13 haplotypes. This study uses cDNA sequencing to examine the first domains of DRB1, DRB3, DQA1, and DQB1 alleles from several American black individuals expressing seven different DRw13 haplotypes, five with undefined HLA-D specificities (i.e., not Dw18 or Dw19). Two new DRw13 alleles described in this study are the first examples of convergent evolution of DR alleles in which gene conversion has apparently combined segments of DRB1 alleles encoding DRw11 and DRw8 to generate two new DRB1 alleles, DRB1*1303 and DRB1*1304, that encode molecules bearing serologic determinants of a third allele, DRw13. These new DRw13 alleles are found embedded in haplotypes of DRw11 origin distinct from haplotypes encoding previously identified DRw13 alleles, DRB1*1301 and DRB1*1302. These data suggest that two evolutionary pathways may have given rise to two subgroups of alleles encoding molecules that share DRw13 serologic determinants yet which possess different structural and, likely, functional motifs. Reciprocal gene recombination events resulting in different DR, DRw52 and DQ allele combinations also appear to have played a crucial role in augmenting the level of diversity found in DRw13 haplotypes. Recombination has resulted in the association of one of the new DRw13 alleles with a DQw2 allele normally found associated with DR7 and the association of the DRw52c-associated DRw13 allele (DRB1*1302) with three different DQw1 alleles. The seven DRw13 haplotypes that have resulted from the effect of recombination on haplotypes formed by the two pathways of DRw13 allelic diversification have resulted in different repertoires of class II molecules and, most likely, different immune response profiles in individuals with these haplotypes.  相似文献   

6.
We have studied 27 cell lines homozygous by consanguinity for the major histocompatibility complex to establish the restriction fragment length polymorphism (RFLP) patterns seen with six different restriction enzymes (Bam HI, Bg1 II, Eco RI, Hinc II, Hind III, Pvu II) and DR beta chain probes. The probes used were a full-length cDNA DR beta probe and a probe specific for the 3' untranslated region. The RFLP obtained represent the first standard patterns for the individual haplotypes DR1 through 7 and DR9 as defined by genetically homozygous lines. The patterns obtained reflect the DR specificities closely, as well as the DRw52 and DRw53 specificities. These latter specificities are associated with the most prominent patterns of RFLP. Bands are present which are unique for the haplotypes DR1, DR2, DR4, DR7, DRw52, and DRw53, and could be used for typing these haplotypes in heterozygotes. Subtypes can be identified for all of the haplotypes except DR1. These subtypes indicate that there is an extensive amount of polymorphism in the DR subregion that has not been identified serologically.  相似文献   

7.
The Dw6/DRw6 complex, one of the MHC class II specificities that can be defined by cellular techniques and by serology, probably has one or more immunoregulatory functions. To obtain information on the molecular structure of the DRw6 region, we studied several DRw6 homozygous cell lines, of which three were of consanguineous origin. DNA-DNA hybridization comprised the use of seven restriction enzymes in combination with three DR beta cDNA probes. The obtained results were compared with similar analyses of an HLA homozygous cell panel, expressing DR1-w8 specificities. This comparison indicated that in DRw6 homozygous individuals the coding potential for DR beta chains resembles closely that of all other DR specificities, thus identifying DRw6 as a regular DR region. In addition, we found a restriction fragment length pattern unique for DRw6, indicating the possibility to type for DRw6 by DNA-DNA hybridization. Comparisons within the DRw6 cell panel revealed the occurrence of several HLA class II DNA subtypes. These subdivisions partly correlated with serologically obtained reaction patterns. No correlation, however, could be observed between the different DNA subtypes and cellular reaction patterns as obtained by MLC and T cell cytotoxicity.  相似文献   

8.
The supertypic HLA-DRw53 specificity is associated with three allelic class II specificities defined by alloantisera: HLA-DR4, -DR7, and DRw9. The present study demonstrates the complexity of this supertypic DR specificity by comparing two DRw53-related determinants defined by the monoclonal antibodies PL3 and 109d6. For every HLA-DR4 cell line tested, both monoclonal antibodies were found to bind to the same subpopulation of DR molecules. This PL3+, 109d6+ DR subpopulation is also found on most, but not all, DR7+ cell lines with a beta-chain pattern that is identical to the beta-chain pattern of the PL3+, 109d6+ subpopulation on DR4 cell lines. However, some DR7+ cells which carry the HLA haplotype Bw57, DR7, DRw53, DQw3 were also found which completely lack the expression of the 109d6 determinant, but continue to express the PL3 determinant and some of the DRw53 determinants recognized by alloantisera. This results from the fact that the PL3 determinant is expressed on all of the DR molecules found on DR7 cells, including the distinct subpopulation of molecules that carry the HLA-DR7 determinant recognized by the monoclonal antibody SFR16-DR7. This PL3+, SFR16-DR7+ subpopulation does not carry the 109d6 determinant, demonstrating that the PL3 and 109d6 DRw53-related determinants are distinct and can be expressed on a different number of DR molecules, depending on the allotype of the cells. Blocking studies were also performed by using these monoclonal antibodies with alloreactive HLA-DR7-specific cytotoxic T cell clones. In these studies, the T cell-defined HLA-DR7 determinants were found to be carried by the same subpopulation of DR molecules recognized by the HLA-DR7-specific monoclonal antibody and not carried by the DR molecules recognized by 109d6. The DR7+ cell lines which do not express the 109d6 determinant also fail to express another supertypic determinant recognized by the monoclonal antibody IIIE3 carried on this molecule. Furthermore, no additional allelic forms of this unique DR beta-chain were found associated with the nonpolymorphic DR alpha-chain on these cells, suggesting that this DR beta-chain gene is not expressed. These cells also behave as homozygous typing cells for the Dw11 subtype of DR7 in HLA-D typing in the mixed lymphocyte culture assay. This suggests that the lack of expression of a specific class II gene may contribute additional genetic polymorphism within the known HLA-DR allotypes.  相似文献   

9.
The establishment of HLA transgenic mice as models for autoimmune disorders requires that the HLA molecules can be efficiently recognized and mediate positive and negative selection of mouse T cells. This question was investigated in DR3(DRw17) transgenic mice back-crossed to the B10.Q(H-2q) strain which does not form mixed mouse-human class II heterodimers. Here we report that efficient negative 5election on DR3(DRw17) molecules was observed for v5, 11, and 13 subpopulations of CD4+T cells, but not for v4, 7, 8, 9, and 10. v5 and 11 cells are also negatively selected by mouse class II E molecules which is the structural homologue to DR molecules. Positive selection on DR3(DRw17) was only observed for v6 cells but this was less efficient than positive selection of v6 cells by E molecules. The data indicate that DR3(DRw17) molecules select similar subgroups of mouse T cells as E molecules although with slightly different efficiency.  相似文献   

10.
Although the polymorphic human Ia epitope recognized by monoclonal antibody 109d6 typically is expressed by DRw53 beta 2 chains, the epitope was shown to be encoded by distinctive DR beta 1 chains of a DRw10 haplotype in three unrelated DR4-negative individuals with rheumatoid arthritis. No evidence of a DR beta 2 (DR beta 4) chain molecule was found to be encoded by this haplotype. Using two-dimensional gel analysis and partial radioactive N-terminal microsequencing, the DR and DQ products were characterized in the heterozygous members of a family in which the segregation of both varieties of DR beta chains specifying the 109d6 epitope was demonstrated. The expression of the epitope on the DR beta 2 chain, but not on the DR beta 1 chain, was abolished by preventing N-linked glycosylation, although in both molecules the epitope was not altered by neuraminidase digestion. The potential structural bases of the serologic cross reactions of DRw10 are discussed, as are the possible implications of the findings for the definition of susceptibility to rheumatoid arthritis.  相似文献   

11.
Recombination sites in the HLA class II region are haplotype dependent   总被引:3,自引:0,他引:3  
We have analyzed DNA sequence polymorphisms of DQ alpha and DQ beta chains from three haplotypes from the DRw52 family: DR5 DQw1 (FPA, GM3106), DRw6 DQw1 (CB6B, 10w9060), and DRw6 DQw3 (AMALA, 10w9064). The results indicate that the DR5 DQw1 and DRw6 DQw1 haplotypes have arisen by recombination between the DR beta 1 and DQ alpha loci. This contrasts with our previous analysis of DR4 DQ"Wa", DR3 DQ"Wa", and DR7 DQw3 haplotypes, all of which appear to have arisen by virtue of recombination between DQ alpha and DQ beta. Thus, there appear to be at least two different sites where recombination has occurred within the DR and DQ subregions. These differing patterns of recombination were interpreted in the context of the three major family groups of class II haplotypes, the DRw53, DRw52, and DR1/2 haplotype families. The data indicate that haplotypes from these family groups tend to undergo recombination at different locations. We propose that these differences in site of recombination are a reflection of differences in the molecular organization of the haplotypes belonging to each family group.  相似文献   

12.
The clone TA10 is a T3+ T4+ T8- proliferative and cytolytic human T cell clone. This clone has been shown to be specific for the hemagglutinin of influenza A Texas virus and restricted by an HLA class II molecule associated with the DRw8-Dw8.1 phenotype. Here we show that TA10 and all of its subclones can also react with eight HLA-DRw8 negative, Epstein-Barr virus (EBV)-transformed cell lines or phytohemagglutinin blasts in the absence of influenza antigens. All of these cell lines are HLA-DR2/DR4 with a classic DR2 long haplotype. The only nonreactive HLA-DR2/DR4 cell line observed bears a DR2 short haplotype. Only heterozygous HLA-DR2/DR4 but not parental DR2 or DR4 EBV-transformed cell lines can be recognized by TA10, indicating that the cross-reacting determinant is a transcomplementation product between HLA-DR2 and HLA-DR4 haplotypes. DR-specific, but not DQ- or DP-specific monoclonal antibodies, inhibit in the proliferation assay and in the chromium release test both the DRw8-Dw8.1-restricted and the anti-DR2/DR4 reactions. These results show that HLA-DR-restricted, anti-viral human T cell clone can evidence cross-reactivity for allospecific class II molecules of the major histocompatibility complex, and human CTL can recognize transcomplementation products of class II HLA genes. In addition, the results suggest that a beta-chain coded for by an HLA-DR gene and associated with an alpha-chain coded for by a still unidentified but possibly HLA-DQ gene constitute this functional transcomplementation product.  相似文献   

13.
Biochemistry of HLA-DRw6: evidence for seven distinct haplotypes   总被引:2,自引:0,他引:2  
The DRw6 specificity, which has a frequency of 11% in the Caucasian population, cannot be positively defined, since no monospecific allo-antiserum is available. This particular status among DR specificities led us to study the DRw6 haplotypes at the molecular level. We performed 2D-PAGE analysis of HLA-DR molecules in 44 different DRw6 haplotypes. The data were obtained from six homozygous typing cells, eight families informative for the segregation of the DRw6 haplotype, and 15 unrelated donors. Five unique beta-chain electrophoretic patterns were detected, indicating the existence of five structurally distinct DRw6 beta-chains. Each haplotype expresses one or two beta-chains. The different combinations of the DR beta-chains present in a single haplotype allow to characterize seven unique DRw6 haplotypes. In contrast to what has been previously found for DR2 and DR4, there is no DR beta-chain common to all the DRw6 cells. Correlation of the biochemical data with the recent serologic (DRw13 vs DRw14) and cellular (Dw9, Dw18, Dw19) splits of the DRw6 specificity will be discussed.  相似文献   

14.
Four human class 11 molecules, one FA, one DC1, and two DR-like molecules, were isolated from DR2 and DRw6 homozygous cell lines by means of a variety of monoclonal antibodies and were compared with each other by two-dimensional (2-D) gel electrophoresis. Anti-DR2 or anti-DR3 + 5 + w6 sera immunoprecipitated two distinct light chains (L1 and L2) and one heavy chain (H1) from a DR2 or DRw6 homozygous cell line, respectively. One or both of these two class II molecules were also immunoprecipitated by DR-specific monoclonal antibodies and were considered to constitute a DR family of molecules. Three DC1-specific monoclonal antibodies, SDR4.1, Tu22, and PLM5, immunoprecipitated a set of heavy (H2) and light (L3) chains distinct from those of two DR-like molecules. The heavy chains of the DC1 antigens from DR2 and DRw6 cell lines were indistinguishable, whereas the light chains were structurally distinct from each other. A fourth molecule, FA, was identified by a novel monoclonal antibody and was also detected by two additional antibodies, Tu39 and SG171, that blocked the SB-specific T-cell proliferative response. The FA light chain (L4) was distinct from those of the former three antigens on both cell lines, whereas the FA heavy chain was indistinguishable from the DC1 heavy chain (H2) in this 2-D gel analysis. Thus, four light chains and two heavy chains were isolated from both DR2 and DRw6 homozygous cell lines. A possible gene-antigen organization of the DC-like antigens was also discussed.  相似文献   

15.
We have compared the sequence polymorphism of HLA class II genes of two distinct DRw6 haplotypes. cDNA libraries were constructed from two lymphoblastoid cell lines: CB6B (10w9060) which types as DRw13 DQw1, and AMALA (10w9064) which types as DRw14 DQw3. Multiple sequence differences were found at the DR beta I, DQ alpha, and DQ beta loci when these two haplotypes were compared. The DR beta I allele found in the DRw14 DQw3 haplotype appears to have diverged primarily as a result of a gene conversion event with a DR1 allele acting as donor. In contrast, the DRw13 DQw1 haplotype appears to have arisen by means of a recombination event between the DR and DQ subregions. Thus, multiple genetic mechanisms, including point mutation, gene conversion, and recombination, have generated diversity among DRw6 haplotypes.  相似文献   

16.
The association of the class II genes of the DRw10 haplotype from a cell line, NASC, initiated from a member of a well characterized family, was analyzed by sequencing cDNA clones corresponding to DR beta I, DQ alpha, and DQ beta genes. An identical haplotype was also identified in the Raji cell line. In addition to typing as DRw10 and DQw1 with HLA typing sera both, the NASC and Raji cell lines were shown to react strongly with the monoclonal antibodies 109d6 (specific for DRw10 beta 1 and DRw53 beta 2 gene products) and Genox 3.5.3 (specific for DQw1) and exhibited the restriction fragment length polymorphism indicative of a DRw10, DQw1 haplotype. The DR beta 1 gene corresponding to the DRw10 specificity was found to have a first domain sequence different from all other DR beta I genes. Sequence analysis of the 3'-untranslated region of this DR beta-chain gene showed a significant divergence from the 3' untranslated region of the DRw53 family of haplotypes and a lesser divergence from that of the DRw52 and DR1/DR2 families. The sequence of the DQ beta genes corresponding to the DQw1 specificity in the DRw10 haplotype was found to be identical to the DQ beta gene from a DR1, DQw1 haplotype. Surprisingly, however, the DQ alpha gene did not resemble other DQw1-like DQ alpha genes, but was identical in sequence to the DQ alpha gene found in DR4 haplotypes. The novel association of DQ alpha and DQ beta genes in the DRw10 haplotype revealed in these studies may result from a double recombinational event. More consequentially, these studies strongly suggest that the DQw1 specificity recognized by Genox 3.5.3 is determined by the DQ beta chain and is not affected by the DQ alpha-chain.  相似文献   

17.
The heavy and light chain subunits of the DC1 antigen from several cell lines expressing different DR specificities were compared by two-dimensional (2-D) gel electrophoresis. The DC1 light chains from cell lines typed as DR1, DR2, or DRw6 differed in their isoelectric points. No difference in charge was observed for the DC1 heavy chain from the three cell lines. The DC1 light chains from different DRw6-positive cell lines were also found to be structurally polymorphic. The DRw6 cell lines examined did not all express the same DR-like light chains, indicating that the DRw6 specificity is biochemically complex, which is in agreement with the serologic studies of others.  相似文献   

18.
The DR beta-chains of a panel of DRw13 cells were characterized by two-dimensional polyacrylamide gel electrophoresis in order to identify the molecule bearing the restriction element of a DR-restricted proliferative and cytotoxic T cell clone COT C2 specific for DRw13 and the influenza A virus. Because in different DRw13 haplotypes one DRw13 beta-chain can be associated with other distinct DRw13 beta-chains, such complex associations allowed us to determine the ability of a given DR beta-chain to present the antigen or COT C2. The presence of the DR beta-chain 6B5, and only this chain, is associated with the ability to induce the proliferation of clone COT C2 whatever the second DR beta-chain associated with 6B5 is, namely 6B4 or 6B3. The DRw13 cells that express 6B4 or 6B3 but not 6B5 could not present the antigen to COT C2. Moreover, ILR2, a monoclonal antibody that precipitated 6B5, blocked the proliferation of COT C2, whereas 7.3.19.1, a monoclonal antibody that precipitated only 6B4 and 6B3, could not block the proliferation of this clone. Thus, the DRw13 beta-chain 6B5 appears as the unique class II element that restricts the response of the T cell clone COT C2.  相似文献   

19.
The nucleotide and inferred amino acid sequence of a DRw10 beta chain was obtained from cDNA clones isolated from a DR1, DRw10 heterozygous cell line. The sequence of this beta chain gene was distinctive, differing from those of all other defined DR types. The DRw10 beta chain gene was shown by transfection experiments to encode a polymorphic epitope recognized by mAb 109d6 that is also encoded by the DRw53 beta 2 chain gene. Comparison of the nucleotide sequence of both genes revealed that their third D regions (amino acids 67 to 73) were identical. This suggested first that the 109d6 epitope could be encoded by residues of this region, and second, that a putative gene conversion event transferred this sequence along with the information encoding the 109d6 epitope from a donor gene such as DRw53 beta 2. The sequence of the DRw10 beta chain gene was observed to be identical to that of clone pII beta 4 derived from the non-DR3 haplotype in the Raji cell line, which was also demonstrated to express the determinant recognized by antibody 109d6, suggesting that the typing of this cell line is HLA-DR3/DRw10. No evidence was found for the existence of a DR beta 2 chain gene product encoded by the DRw10 haplotype. The DRw10 haplotype was of particular interest because it was present along with a DR1 haplotype in the propositus who had rheumatoid arthritis, and was shared by the DR4-positive son of the propositus, who also had rheumatoid arthritis. This raised the possibility that the DRw10 haplotype, and most probably one or more specific conformations encoded by the DR beta chain, are involved in the definition of the disease susceptibility phenotype.  相似文献   

20.
We have analyzed the HLA class II gene products from HLA-DRw6 homozygous cells. Epstein-Barr virus-transformed B-cell lines were internally labeled with [35S]-methionine. An NP-40 lysate of the cells was subjected to immunoprecipitation, first with a DRw52-like-specific monoclonal antibody and subsequently with a DR-specific framework antibody. The DR region-encoded gene products were analyzed by one-dimensional gel isoelectric focusing and two-dimensional gel electrophoresis. It is shown that DRw6 homozygous cell lines contain at least two nonallelic DR chains, one carrying a DRw52 determinant and one DRw52-negative population. Both chains appear to be polymorphic between the cellularly defined subtypes of DRw6. The determinant responsible for the differential mixed lymphocyte culture reactivity of Dw18 and Dw19 cells resides on the DRw52-positive population, whereas the Dw6-Dw9 differences are attributed to determinants on both populations of DR light chains. The Dw16-derived DRw52+ chain much resembles the Dw18 DRw52+ light chain whereas there is a clear-cut difference between these two subtypes in the DRw52 population. We conclude that, for DRw6 homozygous cells, the cellularly recognized D determinants are probably located on DR-encoded molecules, both DRw52+ and DRw52, and that charge shift of these chains is at least partly responsible for differential recognition of these cells in mixed lymphocyte cultures.Abbreviations used in this paper: MLC mixed lymphocyte culture - 1D-IEF one-dimensional isoelectric focusing - 2D two-dimensional - moab monoclonal antibody  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号