首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolation of embryonic stem cells has been documented only in the mouse and perhaps the hamster and cow. We report results of experiments designed to determine the effect of age of porcine embryos (6 through 10 d after the first day of estrus) on isolation of cell lines with embryonic stem cell-like morphology. The capacity of fresh and short-term cultured inner cell mass (ICM) cells to differentiate into normal tissues after injection into blastocysts was also measured. Few Day-6 ICM survived in culture to the first passage onto fresh feeder cells, but cell lines with embryonic stem cell-like morphology developed from Day-7 through Day-10 ICM. Isolation of embryonic stem cell-like colonies was achieved at a higher frequency from ICM isolated from older embryos, but embryonic stem cell-like colonies from older embryos also tended to differentiate spontaneously in culture. Viable porcine chimeras were born after injection of fresh ICM into blastocysts that were transferred to recipients for development to term; no chimeras were born from blastocysts injected with ICM subjected to short-term (1 to 6 d) culture. Germ-cell chimerism was confirmed in one of the chimeras. These results document that undifferentiated cells can be removed from porcine blastocysts, transplanted to other embryos, and contribute to development of normal differentiated tissues, including germ cells. Cells with embryonic stem-like morphology can be isolated in culture from ICM at various embryonic ages, but ICM from young blastocysts (e.g., Day-7 embryos) yield embryonic stem cell-like colonies at lower frequency than do ICM from older blastocysts (e.g., Day-10 embryos).  相似文献   

2.
Pluripotent stem cells derived from testis is a new, natural, and unlimited source for cell therapy in regenerative medicine and represent a possible alternative to replacing of all cells in the body. Here, we designed a simple co-culture system of spermatogonia cells with Sertoli cells for the generation of embryonic stem-like cells from mouse testis. The importance of our simple method will be clear when we compared it with other complex and time-consuming methods. Embryonic stem-like colonies with sharp border confirmed by real-time PCR, immunocytochemistry and flow cytometry assessments. Embryonic stem-like colonies were immunopositive for pluripotency markers. Transition of spermatogonia cells to embryonic stem-like cells was accompanied by extensive changes in gene expression. These changes included significant increase in pluripotency genes expression and significant decrease in germ cell-specific genes expression. Also, we proved the differentiation capacity of embryonic stem-like cells to neuroepithelial-like cells which were immunoreactive to Nestin and Neurofilament 68. Evaluation of genes expression during in vitro differentiation into neuroepithelial-like cells showed high-level expression of Nestin whether this gene approximately has no expression in undifferentiated embryonic stem-like cells. Also, expression of pluripotency genes has significantly decreased in neuroepithelial-like cells compared with embryonic stem-like cells. This study shows that embryonic stem-like cells derived from testis are capable to differentiate into neuroepithelial-like cells that may provide a cellular reservoir usable for neurodegenerative disorders.  相似文献   

3.
The present study was designed to examine whether in vitro produced porcine embryos can be used to establish an embryonic stem (ES) cell line. Porcine embryos were produced by in vitro maturation and in vitro fertilization. Embryos at the 4-cell to blastocyst stages were cultured in an ES medium containing 16% fetal bovine serum with mouse embryonic fibroblasts as a feeder layer. It was found that ES-like colonies were derived only from blastocysts. When these ES-like colonies were separated in 0.25% trypsin-0.02% EDTA solution and cultured again, ES-like colonies were further observed in the subsequent culture until the fourth passage. The cells from ES-like colonies showed positive alkaline phosphatase activity. Some cells from the colonies differentiated into several types of cells in vitro when they were cultured in the medium without feeder layers and leukemin inhibitory factor. Embryoid bodies were also formed when the cells were cultured in a suspension status. These results indicate that porcine ES-like cells can be derived from in vitro produced porcine blastocysts and these ES-like cells are pluripotent. The culture system used in the present study is useful to isolate and culture ES cells from in vitro produced porcine embryos.  相似文献   

4.
Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice   总被引:2,自引:0,他引:2  
Members of the Foxo family, Foxo1 (Fkhr), Foxo3 (Fkhrl1), and Foxo4 (Afx), are mammalian homologs of daf-16, which influences life span and energy metabolism in Caenorhabditis elegans. Mammalian FOXO proteins also play important roles in cell cycle arrest, apoptosis, stress resistance, and energy metabolism. In this study, we generated Foxo1-deficient mice to investigate the physiological role of FOXO1. The Foxo1-deficient mice died around embryonic day 11 because of defects in the branchial arches and remarkably impaired vascular development of embryos and yolk sacs. In vitro differentiation of embryonic stem cells demonstrated that endothelial cells derived from wild-type and Foxo1-deficient embryonic stem cells were able to produce comparable numbers of colonies supported by a layer of OP9 stromal cells. Although the morphology of the endothelial cell colonies was identical in both genotypes in the absence of exogenous vascular endothelial growth factor (VEGF), Foxo1-deficient endothelial cells showed a markedly different morphological response compared with wild-type endothelial cells in the presence of exogenous VEGF. These results suggest that Foxo1 is essential to the ability of endothelial cells to respond properly to a high dose of VEGF, thereby playing a critical role in normal vascular development.  相似文献   

5.
小鼠孤雌胚胎干细胞集落的建立   总被引:2,自引:0,他引:2  
ESTABLISHMENTOFSTEMCELLCOLONIESFROMPARTHENOGENETICALLYDERIVEDBLASTOCYSTSOFMOUSE小鼠孤雌胚胎干细胞集落的建立KeywordsMouse,Parthenogeneticem...  相似文献   

6.
Variable conditions were tested to determine an in-vitro cultivation method for the formation of morphologically undifferentiated embryonic stem cells from the inner cell mass (ICM) derived outgrowth of porcine blastocysts. Although all 16 Day-9 embryos failed to form colonies, 14 such colonies were obtained from a total of 69 Day-10 embryos when they were co-cultivated with porcine uterine fibroblast (PUF) cells over a 6-day period. The best results were obtained in Dulbecco's modified Eagle medium (DMEM) with 10% fetal calf serum and 10% porcine serum supplemented with bovine insulin and beta-mercaptoethanol, in which six out of seven embryos formed adequate ICM-derived colonies. Since murine fibroblasts were not found to be suitable feeder cells in this procedure, an endocrine synergistic interaction, which promotes embryonic attachment and colony formation, between porcine blastocysts and PUF cells is hypothesized. Continued propagation of the ICM-derived cells was not dependent on these factors; a total of seven cell lines were obtained after three to five subsequent passages on murine feeder-layers that resembled morphologically undifferentiated embryonic cells.  相似文献   

7.
小鼠胚胎干细胞的培养   总被引:1,自引:0,他引:1  
目的:建立小鼠胚胎干细胞(embryonic stem cells,ES)的培养方法。方法:制备G418抗性的原代小鼠胚胎成纤维细胞,经丝裂霉素C处理后成滋养层细胞,将小鼠胚胎干细胞复苏后,应用含白血病抑制因子的ES细胞培养液,培养小鼠ES细胞,观察集落的生长情况,并在光镜下观察细胞形态。结果:小鼠胚胎成纤维细胞生长良好,ES细胞呈克隆状生长,且保持未分化状态。结论:建立了小鼠胚胎干细胞培养的有效方法,为下一步基因打靶奠定基础。  相似文献   

8.
目的 体外建立人胚胎干细胞传代培养方法,研究人胚胎干细胞细胞化学染色特性.方法 以小鼠胚胎成纤维细胞作为饲养层传代培养人胚胎干细胞,检测人胚胎干细胞、自发分化克隆及拟胚体的细胞化学染色特性.结果 人胚胎干细胞在小鼠胚胎成纤维细胞饲养层上传30代以上其形态保持不变;人胚胎十细胞碱性磷酸酶、过碘酸-雪夫反应、α-醋酸萘酚酯酶染色阳性,自发分化克隆细胞阳性程度明显减弱;人胚胎干细胞形成的拟胚体碱性磷酸酶染色弱阳性,过碘酸-雪夫反应、α-醋酸萘酚酯酶染色阳性.结论 小鼠胚胎成纤维细胞能支持人胚胎干细胞传代培养,细胞化学染色结果能初步鉴别人胚胎干细胞未分化特性.  相似文献   

9.
The morphological and cellular changes that occur with differentiation and development of a lentoid structure from cultured mouse lens epithelial cells have been found to be dependent on the presence of lens capsule in association with the cells. The development of the 'lentoid body' is a multiphase process involving cell replication, synthesis of mucosubstances and a basement collagen membrane, cell aggregation and differentiation. Stage-specific synthesis of lens proteins confirms that the genes regulating normal differentiation in vivo are operating in the in vitro system. The hydrated collagen gel studies described in this report demonstrate that the cuboidal morphology and apical-basal polarity of the lens epithelial cells are dependent on their relationship with the lens capsule. Following a replicative phase the cells assume a mesenchyme-like morphology and migrate into the gel. Trypsinized cells freed from the lens capsule replicate but form colonies on the surface of the gel. The implications of these results are discussed with respect to previous observations made on normal lens development and the abnormalities associated with the congenital cataractous embryonic lens.  相似文献   

10.
Syrian hamsters in the 11th or 12th day of pregnancy were given sodium nitrite and morpholine simultaneously by stomach tube. The embryonic cells were cultured for 72 h in normal MEM medium plus 10% fetal calf serum and then transferred into medium containing 8-azaguanine. After cultivation in the selection medium, number of 8 azaguanine-resistant colonies was scored. As the results, this oral concurrent transplacental application of sodium nitrite and morpholine can cause 8 azaguanine-resistant mutants on the cultured embryonic cells from mothers that received these chemicals. Nitrosomorpholine was only detected in stomach of animals treated with sodium nitrite and morpholine.  相似文献   

11.
The cellular control of the switch from embryonic to fetal globin formation in man was investigated with studies of globin expression in erythroid cells of 35- to 56-day-old embryos. Analyses of globins synthesized in vivo and in cultures of erythroid progenitors (burst-forming units, BFUe) showed that cells of the yolk sac (primitive) erythropoiesis, in addition to embryonic chains, produced fetal and adult globins and that cells of the definitive (liver) erythropoiesis, in addition to fetal and adult globins, produce embryonic globins. That embryonic, fetal, and adult globins were coexpressed by cells of the same lineage was documented by analysis of globin chains in single BFUe colonies: all 67 yolk sac-origin BFUe colonies and 42 of 43 liver-origin BFUe colonies synthesized epsilon-, gamma-, and beta-chains. These data showed that during the switch from embryonic to adult globin formation, embryonic and definitive globin chains are coexpressed in the primitive, as well as in the definitive, erythroid cells. Such results are compatible with the postulate that the switch from embryonic to fetal globin synthesis represents a time-dependent change in programs of progenitor cells rather than a change in hemopoietic cell lineages.  相似文献   

12.
13.
Experiments were performed to investigate the presence of colony-forming units (CFU) in the mouse embryonic yolk sac during the developmental period in which the yolk sac is the sole hemopoietic organ. Injection of yolk sac cell suspensions from normal embryos into syngeneic, lethally irradiated adult recipients evoked a very low number of spleen colonies. However, prior cultivation of yolk sacs in vitro caused a dramatic increase in the spleen colony-forming capacity--as high as 84-fold--following 48 hours in culture. The yolk sac origin of the spleen colonies was confirmed by: (a) Chromosomal marker analysis; (b) dose-response analysis; (c) demonstrating that the above colonies were not of endogenous origin induced by the mere injection of grafted cells. We conclude that the yolk sac contains many precursors of colony-forming cells which though undetectable by immediate grafting apparently become activated in culture by an as yet unknown induction process.  相似文献   

14.
A variety of embryonic and adult stem cell lines require an intial co-culturing with feeder cells for non-differentiated growth, self renewal and maintenance of pluripotency. However for many downstream ES cell applications the feeder cells have to be considered contaminations that might interfere not just with the analysis of experimental data but also with clinical application and tissue engineering approaches. Here we introduce a novel technique that allows for the selection of pure feeder-freed stem cells, following stem cell proliferation on feeder cell layers. Complete and reproducible separation of feeder and embryonic stem cells was accomplished by adaptation of an automated cell selection system that resulted in the aspiration of distinct cell colonies or fraction of colonies according to predefined physical parameters. Analyzing neuronal differentiation we demonstrated feeder-freed stem cells to exhibit differentiation potentials comparable to embryonic stem cells differentiated under standard conditions. However, embryoid body growth as well as differentiation of stem cells into cardiomyocytes was significantly enhanced in feeder-freed cells, indicating a feeder cell dependent modulation of lineage differentiation during early embryoid body development. These findings underline the necessity to separate stem and feeder cells before the initiation of in vitro differentiation. The complete separation of stem and feeder cells by this new technology results in pure stem cell populations for translational approaches. Furthermore, a more detailed analysis of the effect of feeder cells on stem cell differentiation is now possible, that might facilitate the identification and development of new optimized human or genetically modified feeder cell lines.  相似文献   

15.
16.
Early chick embryonic cells, prior to the formation of the primitive streak, form colonies when cultured in soft agarose [Mitrani, E.: Exp. Cell Res. 152, 148-153 (1984)]. The present work is an attempt to determine at which stages of development this ability is expressed and which areas of the chick embryo harbour the colony-forming cells. We found that the capacity to form colonies decreases as development progresses and cells enter alternative differentiation pathways. At pre-primitive streak stages, the capacity is concentrated to the peripheral areas of the embryo and decreases towards the centre. With the onset of hypoblast formation only cells from Area Opaca and, to a lesser degree, the Marginal Zone, can form colonies in agarose. At post-primitive streak stages only extra-embryonic cells can form colonies in agarose. By 48 h of incubation all cells of the chick blastoderm seem to have lost the capacity to form colonies in agarose.  相似文献   

17.
A clonal approach to the problem of neural crest determination.   总被引:1,自引:0,他引:1  
A fundamental question regarding neural crest development is the possible pluripotential nature of this embryonic tissue. As a first step in examining this problem, clonal techniques are used to produce homogeneous populations of crest cells. Primary cultures of these cells are obtained by explanting neural tubes from Japanese quail in vitro and allowing crest cells to migrate away. The explant is removed, the outgrowth is isolated, dissociated with trypsin, and the cells plated at clonal density. Colonies derived in this manner fall into the following categories: all cells of the colony pigmented; none of the cells pigmented; and some of the cells pigmented, the remainder unpigmented. Pigmented colonies generally arise from small, round cells whereas the non-pigmented colonies usually originate from large, flattened polymorphous cells. Differentiation of melanocytes does not preclude their continued proliferation. The pigment phenotype, in addition, is stable through at least 25 generations. That the mixed colonies, in fact, are clonally derived is shown by physically isolating single cells. The identity of the non-pigment cells was not established in the present work. A possible neural fate is suggested, however, since nerve-like cells develop after the petri plates become overgrown. Neural clones did not form even though nerve growth factor activity is present as a normal constituent of the culture medium and was added as a supplement in some instances. These techniques permit the preparation of large, homogeneous populations of neural crest cells and afford an opportunity to examine aspects of crest determination heretofore impossible to study.  相似文献   

18.
Summary Pig epiblast cells that had been separated from other early embryonic cells were cultured in vitro. A three-step dissection protocol was used to isolate the epiblast from trophectoderm and primitive endoderm before culturing. Blastocysts collected at 7 to 8 days postestrus were immunodissected to obtain the inner cell mass (ICM) and destroy trophectodermal cells. The ICM was cultured for 2 to 3 days on STO feeder cells. The epiblast was then physically dissected free of associated primitive endoderm. Epiblast-derived cells, grown on STO feeders, produced colonies of small cells resembling mouse embryonic stem cells. This primary cell morphology changed as the colonies grew and evolved into three distinct colony types (endodermlike, neural rosette, or complex). Cell cultures derived from these three colony types spontaneously differentiated into numerous specialized cell types in STO co-culture. These included fibroblasts, endodermlike cells, neuronlike cells, pigmented cells, adipogenic cells, contracting muscle cells, dome-forming epithelium, ciliated epithelium, tubule-forming epithelium, and a round amoeboid cell type resembling a plasmacyte after Wright staining. The neuronlike cells, contracting muscle cells, and tubule-forming epithelium had normal karyotypes and displayed finite or undefined life spans upon long-term STO co-culture. The dome-forming epithelium had an indefinite life span in STO co-culture and also retained a normal karyotype. These results demonstrate the in vitro pluripotency of pig epiblast cells and indicate the epiblast can be a source for deriving various specialized cell cultures or cell lines.  相似文献   

19.
Previous studies have shown that cultivation of undifferentiated human embryonic stem (hES) cells requires human fibroblasts (hF) or mouse embryonic fibroblast (mEF) feeders or a coating matrix such as laminin, fibronectin or Matrigel in combination with mEF or hF conditioned medium. We here demonstrate a successful feeder-free and matrix-free culture system in which undifferentiated hES cells can be cultured directly on plastic surfaces without any supportive coating, in a hF conditioned medium. The hES cells cultured directly on plastic surfaces grow as colonies with morphology very similar to cells cultured on Matrigel(TM). Two hES cell lines SA167 and AS034.1 were adapted to matrix-free growth (MFG) and have so far been cultured up to 43 passages and cryopreserved successfully. The lines maintained a normal karyotype and expressed the expected marker profile of undifferentiated hES cells for Oct-4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and SSEA-1. The hES cells formed teratomas in SCID mice and differentiated in vitro into derivates of all three germ layers. Thus, the MFG-adapted hES cells appear to retain pluripotency and to remain undifferentiated. The present culture system has a clear potential to be scaleable up to a manufacturing level and become the preferred culture system for various applications such as cell therapy and toxicity testing.  相似文献   

20.
Human embryonic stem (ES) cells and embryonic germ (EG) cells are pluripotent and are invaluable material for in vitro studies of human embryogenesis and cell therapy. So far, only two groups have reported the establishment of human EG cell lines, whereas at least five human ES cell lines have been established. To see if human EG cell lines can be reproducibly established, we isolated primordial germ cells (PGCs) from gonadal ridges and mesenteries (9 weeks post-fertilization) and cultured them on mouse STO cells. As with mouse ES colonies, the PGC-derived cells have given rise to multilayered colonies without any differentiation over a year of continuous culture. They are karyotypically normal and express high levels of alkaline phosphatase, Oct-4, and several cell-surface markers. Histological and immunocytochemical analysis of embryoid bodies (EBs) formed from floating cultures of the PGC-derived cell colonies revealed ectodermal, endodermal, and mesodermal tissues. When the EBs were cultured in the presence of insulin, transferrin, sodium selenite, and fibronectin for 1 week, markers of primitive neuroectoderm were expressed in cells within the EBs as well as in cells growing out from the EBs. These observations indicate that our PGC-derived cells satisfy the criteria for pluripotent stem cells and hence may be EG cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号