首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raffinose family oligosaccharides (RFO) accumulating during seed development are thought to play a role in the desiccation tolerance of seeds. However, the functions of RFO in desiccation tolerance have not been elucidated. Here we examine the functions of RFO in Arabidopsis thaliana plants under drought- and cold-stress conditions, based on the analyses of function and expression of genes involved in RFO biosynthesis. Sugar analysis showed that drought-, high salinity- and cold-treated Arabidopsis plants accumulate a large amount of raffinose and galactinol, but not stachyose. Raffinose and galactinol were not detected in unstressed plants. This suggests that raffinose and galactinol are involved in tolerance to drought, high salinity and cold stresses. Galactinol synthase (GolS) catalyses the first step in the biosynthesis of RFO from UDP-galactose. We identified three stress-responsive GolS genes (AtGolS1, 2 and 3) among seven Arabidopsis GolS genes. AtGolS1 and 2 were induced by drought and high-salinity stresses, but not by cold stress. By contrast, AtGolS3 was induced by cold stress but not by drought or salt stress. All the GST fusion proteins of GST-AtGolS1, 2 and 3 expressed in Escherichia coli had galactinol synthase activities. Overexpression of AtGolS2 in transgenic Arabidopsis caused an increase in endogenous galactinol and raffinose, and showed reduced transpiration from leaves to improve drought tolerance. These results show that stress-inducible galactinol synthase plays a key role in the accumulation of galactinol and raffinose under abiotic stress conditions, and that galactinol and raffinose may function as osmoprotectants in drought-stress tolerance of plants.  相似文献   

2.
Low night temperatures seriously affect plant growth and fruit quality. To investigate the effect of low night temperatures on the expression of galactinol synthase genes (GOLS) and phloem loading of raffinose family oligosaccharides, particular stachyose and raffinose (RFO represents stachyose and raffinose in this paper) and to gain a better understanding of the relationship between the phloem loading of RFO and fruit development, melon (Cucumis melo L.) plants at the fruit development stage were treated with temperatures of 28/12°C or 28/9°C (day/night) with 28/15°C as the control. Both the CmGOLS1 and CmGOLS2 gene expression and the activity of galactinol synthase were clearly repressed after treatments with 9 and 12°C at night, and the effect of 9°C was more obvious. Furthermore, low night temperatures inhibited photosynthesis and caused the lower amounts of sucrose to supply the RFO synthesis. However, the total soluble sugar, RFO, and sucrose contents were increased in leaves subjected to low night temperatures. It is supposed that low night temperature blocked symplastic phloem loading, which led to the accumulation of RFO in the leaf cells. With increasing content of RFO in the leaves, the expression of GOLS genes was inhibited according to the principle of feedback, and therefore the decreased expression of GOLS limited RFO synthesis and was indirectly harmful to phloem loading, thereby affecting fruit development.  相似文献   

3.
Variegated coleus (Coleus blumei Benth.) plants were exposed to a restricted water supply for 21 d. The relative water content in leaf tissues was reduced from 80% (control) to 60% (drought-stressed). Under drought conditions, the stomatal conductance and leaf photosynthetic rate were reduced. In green leaf tissues, drought stress also greatly decreased the diurnal light-period levels of the raffinose family oligosaccharides (RFOs) stachyose and raffinose, as well as those of other non-structural carbohydrates (galactinol, sucrose, hexoses, and starch). However, drought had little effect on soluble carbohydrate content of white, non-photosynthetic leaf tissues. In green tissues, galactinol synthase activity was depressed by drought stress. An accumulation of O-methyl-inositol was also observed, which is consistent with the induction of myoinositol-6-O-methyltransferase activity seen in the stressed green tissues. In source tissues, RFO metabolism is apparently reduced by drought stress through a combined effect of decreased photosynthesis and reduced galactinol synthase activity. Moreover, a further reduction in RFO biosynthesis may have been due to a switch in carbon partitioning to O-methyl-inositol biosynthesis, creating competition for myoinositol, a metabolite shared by both biochemical pathways.  相似文献   

4.
5.
Li X  Zhuo J  Jing Y  Liu X  Wang X 《Journal of plant physiology》2011,168(15):1761-1770
Desiccation tolerance of seeds is positively correlated with raffinose family oligosaccharides (RFOs). However, RFOs’ role in desiccation tolerance is still a matter of controversy. The aim of this work was to monitor the accumulation of RFO during acquisition of desiccation tolerance in rapeseed (Brassica napus L.). Rapeseeds become desiccation tolerant at 21-24 d after flowering (DAF), and the time was coincident with an accumulation of raffinose and stachyose. A gene encoding galactinol synthase (GolS; EC2.4.1.123), involved in RFO biosynthesis, was cloned and functionally characterized. Enzymatic properties of recombinant galactinol synthase were also determined. Accumulation of BnGOLS-1 mRNA in developing rapeseeds was concomitant with dry weight deposition and the acquisition of desiccation tolerance, and was concurrent with the formation of raffinose and stachyose. The physiological implications of BnGOLS-1 expression patterns in developing seeds are discussed in light of the hypothesized role of RFOs in seed desiccation tolerance.  相似文献   

6.
Galactinol synthase (GolS), a GT8 family glycosyltransferase, synthesizes galactinol and raffinose series of oligosaccharides (RFOs). Identification and analysis of conserved domains in GTs among evolutionarily diverse taxa, structure prediction by homology modeling and determination of substrate binding pocket followed by phylogenetic analysis of GolS sequences establish presence of functional GolS predominantly in higher plants, fungi having the closest possible ancestral sequences. Evolutionary preference for a functional GolS expression in higher plants might have arisen in response to the need for galactinol and RFO synthesis to combat abiotic stress, in contrast to other organisms lacking functional GolS for such functions.  相似文献   

7.
8.
植物中棉子糖系列寡糖代谢及其调控关键酶研究进展   总被引:2,自引:0,他引:2  
棉子糖系列寡糖代谢与植物生长发育、逆境胁迫、种子耐贮性及脱水耐性等关系密切.棉子糖系列寡糖的合成从棉子糖的合成开始,由半乳糖苷肌醇上的半乳糖基的转移依次生成棉子糖、水苏糖、毛蕊花糖等.寡糖代谢是一个复杂的调控体系,其中肌醇-1-磷酸合成酶、肌醇半乳糖苷合成酶、蔗糖合成酶、棉子糖合成酶、水苏糖合成酶和毛蕊花糖合成酶等参与了棉子糖系列寡糖的生物合成过程.本文对植物中棉子糖系列寡糖的代谢及其重要调控酶的特性、功能及分子生物学研究进展进行综述.  相似文献   

9.
We recently suggested that leaves of the frost-hardy species Ajuga reptans L. (Lamiaceace) contain two pools of raffinose family oligosaccharides (RFO): a large long-term storage pool in the mesophyll, possibly also involved in frost resistance, and a transport pool in the phloem (M. Bachmann, P. Matile, F. Keller [1994] Plant Physiol 105: 1335-1345). In the present study, the inter- and intracellular compartmentation of anabolic RFO metabolism was investigated by comparing whole-leaf tissue with mesophyll protoplasts and vacuoles. The studies showed the mesophyll to be the primary site of RFO synthesis in A. reptans. Mesophyll protoplasts were capable of RFO formation upon in vitro 14CO2 photosynthesis. Sucrose-phosphate synthase, galactinol synthase, and the galactinol-independent galactosyltransferase, which is responsible for RFO chain elongation, were located predominantly in the mesophyll protoplasts. The percentage of stachyose synthase in the mesophyll changed greatly during the cold-acclimation period (from 26% at the beginning to 88% after 20 d). The remainder was most probably in the intermediary cells of the phloem. Compartmentation studies in which mesophyll protoplasts were compared with vacuoles isolated from them showed that, of the components of the RFO storage pool, galactinol synthase, stachyose synthase, myo-inositol, galactinol, and sucrose were extravacuolar (most probably cytosolic), whereas galactinol-independent galactosyltransferase and higher RFO oligomers (with degree of polymerization 4) were vacuolar. Raffinose was found in both locations and might serve as a cryoprotectant.  相似文献   

10.
Raffinose family oligosaccharides (RFOs) are involved in the storage and transport of carbon and serve as compatible solutes for protection against abiotic stresses like drought or cold. RFOs are usually transported in plant species that load sugars symplastically into the phloem. Loading probably occurs by a polymer trapping mechanism which establishes a concentration gradient of assimilates between the mesophyll and the vasculature. Transgenic approaches have demonstrated phloem transport of small molecules produced in the companion cells of apoplastic loading species, but these molecules have been non-native transport substances to plants. In this study, transgenic potato plants with constitutive or companion cell specific overexpression of galactinol synthase (GS) or GS plus raffinose synthase (RS) are characterized, which together provide new insights into the metabolism and transport of RFOs in plants. It is demonstrated that raffinose and galactinol are both transported in the phloem and that, whilst the effect of GS overexpression is promoter-independent, that of RS is dependent on the promoter used. The presence of significant amounts of galactinol in the phloem is shown and also that transgenic potato is unable to transport large amounts of raffinose despite high RS expression and substrate concentrations. These data indicate that there may be additional features of intermediary cells, the specialized companion cells of RFO transporting plants, required for significant RFO synthesis and transport that are currently not well-understood.  相似文献   

11.
在这个研究中测量不同发育时期的油菜种子中可溶性糖含量与肌醇半乳糖苷合成酶(galactinol synthase,GOLS)活性,将二者的变化趋势与种子脱水耐性获得的过程相比较并对结果进行相关性分析。结果显示油菜种子脱水耐性获得过程中,葡萄糖和果糖含量均随着发育期的延长而下降,蔗糖则保持较高水平;肌醇含量下降而肌醇半乳糖苷含量上升;棉子糖系列寡糖(raffinose familyolig osaccharides,RFO)含量随着种子发育而上升,特别是水苏糖,在成熟种子中可以达到相当高的浓度。油菜种子发育中期,细胞内GOLS活性开始上升,至贮藏物积累完成时达到最大。GOLS活性变化与种子肌醇半乳糖苷积累速度、RFO含量及种子的脱水耐性呈一定的正相关关系。我们认为GOLS促使RFO积累,从而对种子脱水耐性的获得产生重要影响。  相似文献   

12.
Abiotic stresses resulting from water deficit, high salinity or periods of drought adversely affect plant growth and development and represent major selective forces during plant evolution. The raffinose family oligosaccharides (RFOs) are synthesised from sucrose by the subsequent addition of activated galactinol moieties donated by galactinol. RFOs are characterised as compatible solutes involved in stress tolerance defence mechanisms, although evidence also suggests that they act as antioxidants, are part of carbon partitioning strategies and may serve as signals in response to stress. The key enzyme and regulatory point in RFO biosynthesis is galactinol synthase (GolS), and an increase of GolS in expression and activity is often associated with abiotic stress. It has also been shown that different GolS isoforms are expressed in response to different types of abiotic stress, suggesting that the timing and accumulation of RFOs are controlled for each abiotic stress. However, the accumulation of RFOs in response to stress is not universal and other functional roles have been suggested for RFOs, such as being part of a carbon storage mechanism. Transgenic Arabidopsis plants with increased galactinol and raffinose concentrations had better ROS scavenging capacity, while many sugars have been shown in vitro to have antioxidant activity, suggesting that RFOs may also act as antioxidants. The RFO pathway also interacts with other carbohydrate pathways, such as that of O‐methyl inositol (OMI), which shows that the functional relevance of RFOs must not be seen in isolation to overall carbon re‐allocation during stress responses.  相似文献   

13.
Oligosaccharide synthesis is an important cryoprotection strategy used by woody plants during winter dormancy. At the onset of autumn, starch stored in the stem and buds is broken down in response to the shorter days and lower temperatures resulting in the buildup of oligosaccharides. Given that the enzyme DSP4 is necessary for diurnal starch degradation in Arabidopsis leaves, this study was designed to address the role of DSP4 in this seasonal process in Castanea sativa Mill. The expression pattern of the CsDSP4 gene in cells of the chestnut stem was found to parallel starch catabolism. In this organ, DSP4 protein levels started to rise at the start of autumn and elevated levels persisted until the onset of spring. In addition, exposure of chestnut plantlets to 4 °C induced the expression of the CsDSP4 gene. In dormant trees or cold-stressed plantlets, the CsDSP4 protein was immunolocalized both in the amyloplast stroma and nucleus of stem cells, whereas in the conditions of vegetative growth, immunofluorescence was only detected in the nucleus. The studies indicate a potential role for DSP4 in starch degradation and cold acclimation following low temperature exposure during activity-dormancy transition.  相似文献   

14.
Raffinose family oligosaccharides (RFOs) are synthesized by a set of galactosyltransferases, which sequentially add galactose units from galactinol to sucrose. The accumulation of RFOs was studied in maturing seeds of two pea (Pisum sativum) lines with contrasting RFO composition. Seeds of the line SD1 accumulated stachyose as the predominant RFO, whereas verbascose, the next higher homolog of stachyose, was almost absent. In seeds of the line RRRbRb, a high level of verbascose was accumulated alongside with stachyose. The increase in verbascose in developing RRRbRb seeds was associated with galactinol-dependent verbascose synthase activity. In addition, a galactinol-independent enzyme activity was detected, which catalyzed transfer of a galactose residue from one stachyose molecule to another. The two enzyme activities synthesizing verbascose showed an optimum at pH 7.0. Both activities were almost undetectable in SD1. Maximum activity of stachyose synthase was about 4-fold higher in RRRbRb compared with SD1, whereas the activities of galactinol synthase and raffinose synthase were only about 1.5-fold higher in RRRbRb. The levels of galactinol synthase and stachyose synthase activity were reflected by steady-state levels of corresponding mRNAs. We suggest that the accumulation of verbascose in RRRbRb was controlled by a coordinated up-regulation of the last steps of verbascose biosynthesis.  相似文献   

15.
Raffinose family oligosaccharides (RFOs) fulfil multiple functions in plants. In seeds, they possibly protect cellular structures during desiccation and constitute carbon reserves for early germination. Their biosynthesis proceeds by the transfer of galactose units from galactinol to sucrose. Galactinol synthase (GolS), which mediates the synthesis of galactinol from myo-inositol and UDP-galactose, has been proposed to be the key enzyme of the pathway. However, no significant relationship was detected between the extractable GolS activity and the amount of RFOs in seeds from seven pea (Pisum sativum L.) genotypes selected for high variation in RFO content. Instead, a highly significant correlation was found between the levels of myo-inositol and RFOs. Moderately strong relationships were also found between sucrose and RFO content as well as between myo-inositol and galactinol. Further evidence for a key role of myo-inositol for the synthesis of galactinol was obtained by feeding exogenous myo-inositol to intact pea seeds and by the analysis of four barley (Hordeum vulgare L.) low phytic acid mutants. In seeds of three of these mutants, the reduced demand for myo-inositol for the synthesis of phytic acid (myo-inositol 1,2,3,4,5,6-hexakisphosphate) was associated with an increased level in myo-inositol. The mutants seeds also contained more galactinol than wild-type seeds. The results suggest that the extent of RFO accumulation is controlled by the levels of the initial substrates, myo-inositol and sucrose, rather than by GolS activity alone.  相似文献   

16.
Woody plants in the temperate and boreal zone undergo annual cycle of growth and dormancy under seasonal changes. Growth cessation and dormancy induction in autumn are prerequisites for the development of substantial cold hardiness in winter. During evolution, woody plants have developed different ecotypes that are closely adapted to the local climatic conditions. In this study, we employed distinct photoperiodic ecotypes of silver birch (Betula pendula Roth) to elucidate differences in these adaptive responses under seasonal changes. In all ecotypes, short day photoperiod (SD) initiated growth cessation and dormancy development, and induced cold acclimation. Subsequent low temperature (LT) exposure significantly enhanced freezing tolerance but removed bud dormancy. Our results suggested that dormancy and freezing tolerance might partially overlap under SD, but these two processes were regulated by different mechanisms and pathways under LT. Endogenous abscisic acid (ABA) levels were also altered under seasonal changes; the ABA level was low during the growing season, then increased in autumn, and decreased in winter. Compared with the southern ecotype, the northern ecotype was more responsive to seasonal changes, resulting in earlier growth cessation, cold acclimation and dormancy development in autumn, higher freezing tolerance and faster dormancy release in winter, and earlier bud flush and growth initiation in spring. In addition, although there was no significant ecotypic difference in ABA level during growing season, the rates and degrees of ABA alterations were different between the ecotypes in autumn and winter, and could be related to ecotypic differences in dormancy and freezing tolerance.  相似文献   

17.
植物肌醇半乳糖苷合酶(galactinol synthase, GolS)是高等植物棉子糖类寡糖合成途径中的关键酶,为棉子糖系列寡糖提供活化的半乳糖基,调控植物体内棉子糖(raffinose, RFO)系列寡糖的生物合成与积累。编码该酶的基因属于糖基转移酶(glycosyltransferases, GTs)GT8基因家族的亚家族。GolS参与合成的最终产物棉子糖家族低聚糖(raffinose family oligosaccharides,RFOs)是植物中重要的碳水化合物存在形式,在细胞内可溶性强,可作为脱水保护剂;还能发挥稳定膜结构的作用。同时,GolS催化合成的直接产物肌醇半乳糖苷(galactinol)和RFOs都能作为羟基自由基捕获分子参与活性氧的清除。因此,GolS参与的代谢途径在植物碳同化物的贮存与运输、生物和非生物逆境响应、种子的脱水效应等生命过程中均发挥了重要作用。GolS基因结构差异与表达模式不同,导致不同GolS基因参与的生物学功能具有很大的差异。研究植物中不同GolS基因的结构特征,组织特异性表达特性及它们响应不同生长发育阶段、环境变化的表达特性,对了解GolS参与的生物学功能具有重要意义。同时,在分子生物学水平上,深入了解调控植物GolS基因的分子调控机制,为通过遗传工程或分子辅助育种等手段,利用GolS改良农林作物的经济性状提供理论支持。本文针对近年来植物中GolS基因的生理功能和调控机制的研究进行了综述。  相似文献   

18.
19.
Juvenile trees of temperate and boreal regions cease growth and set buds in autumn in response to short day-lengths (SD) detected by phytochrome. Growth cessation and bud set are prerequisites for the development of winter dormancy and full cold hardiness. In this study we show that the SD-requirement for bud set and cold hardening can be overcome in hybrid aspen (Populus tremula L. × tremuloides Michx.) by low night temperature and inhibition of gibberellin (GA) biosynthesis. Bud set and increased cold hardiness were observed under normally non-inductive long day-length (LD) in wild-type plants, when exposed to low night temperature and paclobutrazol. In addition, the effect of PHYA overexpression could be overcome in transgenic plants, producing bud set and cold acclimation by treatment with: SD, low night temperature and paclobutrazol. After cold acclimation, the degree of bud dormancy was lower for wild-type plants prior treated with LD and transgenic plants (overexpressing PHYA), than SD-treated, wild-type plants. Thus, low night temperature in combination with reduced GA content induced bud set and promoted cold hardiness under normally non-inductive photoperiods in hybrid aspen, but was unable to affect development of dormancy. This might suggest separate signalling pathways from phytochrome regulating the induction of cold/cold hardiness and bud dormancy in hybrid aspen or alternatively, there might be one pathway that fails to complete its action in the transgenic and paclobutrazol treated plants.  相似文献   

20.
Phloem loading, as the first step of transporting photoassimilates from mesophyll cells to sieve element‐companion cell complex, creates a driving force for long‐distance nutrient transport. Three loading strategies have been proposed: passive symplastic loading, apoplastic loading and symplastic transfer followed by polymer‐trapping of stachyose and raffinose. Although individual species are generally referred to as using a single phloem loading mechanism, it has been suggested that some plants may use more than one, i.e. ‘mixed loading’. Here, by using a combination of electron microscopy, reverse genetics and 14C labeling, loading strategies were studied in cucumber, a polymer‐trapping loading species. The results indicate that intermediary cells (ICs), which mediate polymer‐trapping, and ordinary companion cells, which mediate apoplastic loading, were mainly found in the fifth and third order veins, respectively. Accordingly, a cucumber galactinol synthase gene (CsGolS1) and a sucrose transporter gene (CsSUT2) were expressed mainly in the fifth/third and the third order veins, respectively. Immunolocalization analysis indicated that CsGolS1 was localized in companion cells (CCs) while CsSUT2 was in CCs and sieve elements (SEs). Suppressing CsGolS1 significantly decreased the stachyose level and increased sucrose content, while suppressing CsSUT2 decreased the sucrose level and increased the stachyose content in leaves. After 14CO2 labeling, [14C]sucrose export increased and [14C]stachyose export reduced from petioles in CsGolS1i plants, but [14C]sucrose export decreased and [14C]stachyose export increased into petioles in CsSUT2i plants. Similar results were also observed after pre‐treating the CsGolS1i leaves with PCMBS (transporter inhibitor). These results demonstrate that cucumber phloem loading depends on both polymer‐trapping and apoplastic loading strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号