首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同径级油松径向生长对气候的响应   总被引:1,自引:0,他引:1  
建立了黑里河自然保护区油松年轮宽度年表,通过不同径级油松径向生长对逐月气候因子的响应关系,研究了干旱对不同径级油松径向生长的影响。结果表明:两个径级油松的年轮宽度指数达到极显著相关(R=0.943,P<0.01),其中小径级(平均胸径20 cm)油松年表的平均敏感度显著高于大径级(平均胸径43 cm)油松年表(P<0.01)。不同径级油松均与上年9月、当年2月及当年5—6月的降水显著正相关(P<0.05),与当年6月的平均温度显著负相关(P<0.05),此外,小径级油松还与当年7月的降水显著正相关(P<0.05);降水是影响油松生长的主要气候因子。不同径级油松的径向生长量在干旱年份均显著降低(P<0.01)且小径级油松的生长降低量显著高于大径级油松(P<0.01);不同径级油松生长量在干旱发生后1年左右的时间内均恢复正常且小径级油松恢复速度更快。  相似文献   

2.
马尾松是我国南方地区广泛分布的先锋造林树种。在全球变暖、气候干旱化和虫灾频发的趋势下,研究马尾松对环境干扰的生态弹性对森林管理有重要意义。本文对福建省仙游县百松村的马尾松古树进行树木年轮样品采集,建立区域首个马尾松树轮宽度标准年表(1865—2014年)。结果表明: 当年7—9月低相对湿度和5—9月极端高温是树木生长的主要限制因素。根据树轮极端窄年确定1869、1889、1986、1991和1993是极端事件年。时序叠加分析发现,极端事件发生前两年的持续低值加剧了极端事件的影响。干旱年份更容易引发虫灾。1889年是受虫灾影响最严重的年份,1986和1991年受到虫灾和干旱气候的双重影响,其余极端年主要受干旱气候的影响。树木对虫灾的抵抗力弱于对干旱事件的抵抗力;除1991年外,树木对虫灾的相对弹性力高于对干旱事件的相对弹性力。1889年的相对弹性力最高,1991年受到连续极端事件的影响,相对弹性力最低。2000年以来研究区干旱化趋势加强,马尾松古树遭受干旱和虫灾的干扰加强,部分树木死亡。  相似文献   

3.
Although pollution due to nuclear accidents constitutes some of the largest environmental disasters, there is surprisingly little information available on the relationship between abundance of animals and background radiation. We sampled invertebrates with pit-fall traps at Chernobyl in areas differing in background radiation level by more than four orders of magnitude. We obtained samples from 58 traps for 19 taxa of which five showed positive associations (Acari, Araneae, Formica sp., Homoptera), while four showed negative associations (Coleoptera, Collembola, Vespa, Insecta). These relationships were independent of other environmental factors such as habitat, humidity and ecotype. Estimates of the relationship between abundance and background radiation from the pitfall trap study were similar to those from an independent study based on invertebrates found under slices of wood placed on the ground. The differences in relationship between abundance and radiation among taxa may arise from direct effects of radiation. The findings reported here have implications for choice of animal taxa for efficient monitoring of the biological impact of radiation on animals.  相似文献   

4.
Cytogenetic analysis performed 4-13 years after the Chernobyl accident showed an elevated frequency of acentrics, chromatid exchanges, dicentrics and rings in Chernobyl cleanup workers compared to the control group. Cytogenetic data were analyzed according to the information on exposure to radiation (the year when the cleanup workers worked at the Chernobyl station, doses rates, time elapsed since exposure to radiation, and cytogenetic examination) and some lifestyle factors. The data obtained suggested that some types of chromosome aberrations could be influenced by the action of different environmental factors or lifestyle factors. The frequency of acentrics was correlated with the age of the cleanup workers, and the increased chromatid exchange frequency was attributed to smoking. The numbers of dicentrics and rings suggested a genotoxic effect of ionizing radiation that is still present over 13 years after the exposure.  相似文献   

5.
《Global Change Biology》2018,24(6):2339-2351
Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi‐arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad‐scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors—the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)—are stronger drivers of drought sensitivity than soil and stand characteristics. Drought‐induced reductions in tree growth were greatest when the droughts occurred during early‐season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ50) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early‐season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors.  相似文献   

6.
7.
Age-related tree responses to climate change are still poorly understood at the individual tree level. In this paper, we seek to disentangle the relative contribution of tree age to growth decline and growth–climate relationships in Atlas cedar (Cedrus atlantica Manetti) trees at the Middle Atlas Mountains, northern Morocco. Dendrochronological methods were applied to quantify growth–climate relationships using tree-ring width indices (TRWi) calculated for cedars of two contrasting age groups (old trees, age ≥150 years; young trees, age <150 years). TRWi–climate relationships were assessed at the site and tree levels by using response functions and linear mixed-effects models, respectively. Growth of the studied Atlas cedars was negatively affected by recurrent droughts and by the steep temperature rise since the 1970s. Response functions and mixed-effects models indicated that the decline in tree growth was mainly explained by diminishing precipitation. The negative association between cedar growth and temperature was stronger in old than in young trees. Vulnerability to temperature-induced drought stress in old cedar trees may lead to an impending growth decline. We argue that the age dependence of growth sensitivity to drought must be quantified and considered at the individual tree level when predicting the future dynamics and persistence of cedar forests in the Moroccan Middle Atlas.  相似文献   

8.
Dieback in temperate forests is understudied, despite this biome is predicted to be increasingly affected by more extreme climate events in a warmer world. To evaluate the potential drivers of dieback we reconstructed changes in radial growth and intrinsic water-use efficiency (iWUE) from stable isotopes in tree rings. Particularly, we compared tree size, radial-growth trends, growth responses to climate (temperature, precipitation, cloudiness, number of foggy days) and drought, and changes in iWUE of declining and non-declining trees showing contrasting canopy dieback and defoliation. This comparison was done in six temperate forests located in northern Spain and based on three broadleaved tree species (Quercus robur, Quercus humilis, Fagus sylvatica). Declining trees presented lower radial-growth rates than their non-declining counterparts and tended to show lower growth variability, but not in all sites. The growth divergence between declining and non-declining trees was significant and lasted more in Q. robur (15–30 years) than in F. sylvatica (5–10 years) sites. Dieback was linked to summer drought and associated atmospheric patterns, but in the wettest Q. robur sites cold spells contributed to the growth decline. In contrast, F. sylvatica was the species most responsive to summer drought in terms of growth reduction followed by Q. humilis which showed coupled changes in growth and iWUE as a function of tree vigour. Low growth rates and higher iWUE characterized declining Q. robur and F. sylvatica trees. However, declining F. sylvatica trees became less water-use efficient close to the dieback onset, which could indicate impending tree death. In temperate forests, dieback and growth decline can be triggered by climate extremes such as dry and cold spells, and amplified by climate warming and rising drought stress.  相似文献   

9.
Animals are assumed to play a key role in ecosystem functioning through their effects on seed set, seed consumption, seed dispersal, and maintenance of plant communities. However, there are no studies investigating the consequences of animal scarcity on seed set, seed consumption and seed dispersal at large geographical scales. We exploited the unprecedented scarcity of pollinating bumblebees and butterflies in the vicinity of Chernobyl, Ukraine, linked to the effects of radiation on pollinator abundance, to test for effects of pollinator abundance on the ecosystem. There were considerably fewer pollinating insects in areas with high levels of radiation. Fruit trees and bushes (apple Malus domestica, pear Pyrus communis, rowan Sorbus aucuparia, wild rose Rosa rugosa, twistingwood Viburnum lantana, and European cranberry bush Viburnum opulus) that are all pollinated by insects produced fewer fruit in highly radioactively contaminated areas, partly linked to the local reduction in abundance of pollinators. This was the case even when controlling for the fact that fruit trees were generally smaller in more contaminated areas. Fruit-eating birds like thrushes and warblers that are known seed dispersers were less numerous in areas with lower fruit abundance, even after controlling for the effects of radiation, providing a direct link between radiation, pollinator abundance, fruit abundance and abundance of frugivores. Given that the Chernobyl disaster happened 25 years ago, one would predict reduced local recruitment of fruit trees if fruit set has been persistently depressed during that period; indeed, local recruitment was negatively related to the level of radiation and positively to the local level of fruit set. The patterns at the level of trees were replicated at the level of villages across the study site. This study provides the first large-scale study of the effects of a suppressed pollinator community on ecosystem functioning.  相似文献   

10.
The aim of this study was to investigate the effects of predicted temperature increases and drought conditions of Mediterranean environments on N2-fixing alfalfa plants. One-month-old plants inoculated with Sinorhizobium meliloti strain 102F78 were grown in growth chambers under different temperature (25/15 or 28/18 °C, day/night) and water availability (control or drought) regimes. Elevated temperature and drought reduced plant dry mass and leaf area, especially when both stresses were combined. The inhibitory effect of elevated temperature on plant growth was a consequence of decreased CO2 and N2 fixation rates. A photosynthetic decrease resulted from the inhibition of rubisco activity, probably associated with a lower activation state. An absence of differences in photosynthesis in relation to water availability suggests that drought decreased plant growth due to its negative effect on leaf area. Rising temperature and drought affected the nitrogen content negatively, although effects differed. Elevated temperature inhibited nodule activity drastically, whereas the inhibitory effect resulting from drought centred on nodule dry mass (DM) production. Plants exposed to a combination of elevated temperature and drought were the most negatively affected.  相似文献   

11.
With each passing year since the Chernobyl accident of 1986, more questions arise about the potential for organisms to adapt to radiation exposure. Often this is thought to be attributed to somatic and germline mutation rates in various organisms. We analyzed the adaptability of native Arabidopsis plants collected from areas with different levels of contamination around the Chernobyl nuclear power plant from 1986 to 1992. Notably, progeny of Chernobyl plants resisted higher concentrations of the mutagens Rose Bengal and methyl methane sulfonate. We analyzed the possible molecular mechanisms of their resistance to mutagens and found a more than 10-fold lower frequency of extrachromosomal homologous recombination, significant differences in the expression of radical scavenging (CAT1 and FSD3) and DNA-repair (RAD1 and RAD51-like) genes upon exposure to mutagens (Rose Bengal and x-rays), and a higher level of global genome methylation. This data suggests that adaptation to ionizing radiation is a complex process involving epigenetic regulation of gene expression and genome stabilization that improves plants' resistance to environmental mutagens.  相似文献   

12.
The accident that occurred at the Chernobyl Nuclear Power Plant in 1986, released large quantities of radionuclides--among them radioiodine--into the atmosphere, thereby raising public concerns about its influence on thyroid structure and function, especially the development of malignancy. There were even reports about 700 deaths due to thyroid carcinoma in Russian Federation, Ukraine and Belarus, resulting from the accident. In this review we discussed the incidence of thyroid cancer in different parts of the world, especially in heavily contaminated countries, as Ukraine and Belarus, and the possible link between radioisotope activity in the thyroid and the development of malignancy. The study carried out in Minsk showed 40-fold increase of the incidence of thyroid cancer in the years 1986-1994, in comparison to the period 1977-1985. An increase of the incidence of thyroid cancer has generally been observed in many countries after the Chernobyl accident. We focused on the factors that may have an influence on this phenomenon, especially diagnostic tests, health care, social and environmental factors, like iodine level in water and soil. The results of molecular biology studies, e.g. RET translocation in carcinoma type RET/PTC1 in elderly and RET/PTC3 in children, and expression Ax1 and Gas6 in children were reviewed as well. We also mentioned other thyroid diseases, like nodular goitre, cysts, the disturbance of thyroid function and autoimmunity, possibly linked to the radiation after Chernobyl accident. Data obtained from the regions near Chernobyl showed no increased risk of other types of malignancy (leukaemia, Hodgkin's and non Hodgkin's lymphoma) in 1986-1996. In this article the epidemiology of thyroid diseases in Poland was also reviewed.  相似文献   

13.
Rising CO2 is predicted to increase forest productivity, although the duration of the response and how it might be altered by variation in rainfall, temperature and other environmental variables are not well understood. We measured the basal area of rapidly growing Pinus taeda trees exposed to free‐air CO2 enrichment for 8 years and used these measurements to estimate monthly and annual growth. We used these measurements in a statistical model to estimate the start and end of growth in each year. Elevated CO2 increased the basal area increment (BAI) of trees by 13–27%. In most years, exposure to elevated CO2 increased the growth rate but not the duration of the active growth period. With the exception of 1 year following an extreme drought and a severe ice storm, BAI was positively correlated with the amount of rainfall during the active growth period. The interannual variation in the relative enhancement of BAI caused by elevated CO2 was strongly related to temperature and rainfall, and was greatest in years with high vapor pressure deficit. There was no evidence of a systematic reduction in the stimulation of growth during the first 8 years of this experiment, suggesting that the hypothesized limitation of the CO2 response caused by nitrogen availability has yet to occur.  相似文献   

14.
Widespread dieback of aspen forests, sometimes called sudden aspen decline, has been observed throughout much of western North America, with the highest mortality rates in the southwestern United States. Recent aspen mortality has been linked to drought stress and elevated temperatures characteristic of conditions expected under climate change, but the role of individual aspen tree growth patterns in contributing to recent tree mortality is less well known. We used tree-ring data to investigate the relationship between an individual aspen tree’s lifetime growth patterns and mortality. Surviving aspen trees had consistently higher average growth rates for at least 100 years than dead trees. Contrary to observations from late successional species, slow initial growth rates were not associated with a longer lifespan in aspen. Aspen trees that died had slower lifetime growth and slower growth at various stages of their lives than those that survived. Differences in average diameter growth between live and dead trees were significant (α = 0.05) across all time periods tested. Our best logistical model of aspen mortality indicates that younger aspen trees with lower recent growth rates and higher frequencies of abrupt growth declines had an increased risk of mortality. Our findings highlight the need for species-specific mortality functions in forest succession models. Size-dependent mortality functions suitable for late successional species may not be appropriate for species with different life history strategies. For some early successional species, like aspen, slow growth at various stages of the tree’s life is associated with increased mortality risk.  相似文献   

15.
Northwestern China has experienced dramatic climate change characterized by rapid warming since the 1980s with the warming trend substantially slowing after 2000. Qinghai spruce (Picea crassifolia Kom.), a key tree species in northwest China, has been predicted to be strongly coupled with climate change. However, how the trends in biomass growth change at different canopy positions under climate change and whether climate–growth responses vary with canopy position remain unclear. A total of 222 trees were sampled by a stand-total sampling strategy in the central Qilian Mountains. Trees were assigned to four canopy positions according to height and distance from neighbors: dominant, codominant, intermediate, and suppressed. Our results indicate that trees in dominant and codominant canopy positions dominate the decreasing trend in stand-level biomass from 1980 to 2000 and the increasing trend from 2000–2013, contributing 81.3 % and 86 %, respectively, whereas trees in the intermediate and suppressed canopy positions contributed less. This result was attributed to a more sensitive response of biomass growth in trees in dominant and codominant canopy positions to climate change. From 1980 to 2000, the stronger decreasing trend in biomass growth at dominant and codominant canopy positions is mostly accounted for by increasing temperature. A more pronounced water deficit might have restricted biomass growth more than that at the intermediate and suppressed canopy positions. However, from 2000 to 2013, drought stress was relieved and summer standardized precipitation evapotranspiration index became a leading factor, which promoted the recovery in biomass at dominant and codominant canopy positions. In a word, compared with intermediate and suppressed canopy trees, those in dominant and codominant positions are less resistant to drought, but dominant and codominant canopy position's biomass can recover more when drought stress is relieved. A more robust understanding of canopy-level growth response and resilience to climate change is crucial to fully understand forest growth dynamics under fluctuating climate conditions.  相似文献   

16.
Ionizing radiation is a mutagen with known negative impacts on individual fitness. However, much less is known about how these individual fitness effects translate into population‐level variation in natural environments that have experienced varying levels of radiation exposure. In this study, we sampled genotypes of the freshwater crustacean, Daphnia pulex, from the eight inhabited lakes across the Chernobyl Exclusion Zone (CEZ). Each lake has experienced very different levels of chronic radiation exposure since a nuclear power reactor exploded there over thirty years ago. The sampled Daphnia genotypes represent genetic snapshots of current populations and allowed us to examine fitness‐related traits under controlled laboratory conditions at UK background dose rates. We found that whilst there was variation in survival and schedules of reproduction among populations, there was no compelling evidence that this was driven by variation in exposure to radiation. Previous studies have shown that controlled exposure to radiation at dose rates included in the range measured in the current study reduce survival, or fecundity, or both. One limitation of this study is the lack of available sites at high dose rates, and future work could test life history variation in various organisms at other high radiation areas. Our results are nevertheless consistent with the idea that other ecological factors, for example competition, predation or parasitism, are likely to play a much bigger role in driving variation among populations than exposure to the high radiation dose rates found in the CEZ. These findings clearly demonstrate that it is important to examine the potential negative effects of radiation across wild populations that are subject to many and varied selection pressures as a result of complex ecological interactions.  相似文献   

17.
Local adaptation along steep environmental gradients likely contributes to plant diversity in the Cape Region of South Africa, yet existing analyses of trait divergence are limited to static measurements of functional traits rather than trajectories of individual development. We explore whether five taxa of evergreen shrubs (Protea section Exsertae) differ in their developmental trajectories and capacity for plasticity using two environmentally-distinct common gardens in South Africa. We measured seedlings in the summer-dry season and winter-wet season of each of two consecutive years to characterize ontogeny and plasticity within years, as same-age leaf cohorts mature, and between years, i.e., from leaf one cohort to the next. We compared patterns of development between gardens to assess whether trait trajectories are programmed versus plastic and examined whether developmental differences covaried with characteristics of a seedling’s home environment. We detected plasticity in developmental trajectories for leaf area, stomatal size, stomatal pore index, and to a limited extent specific leaf area, but not for stomatal density. We showed that the species growing in the harshest environments exhibits both the smallest increase in leaf area between years and the least change in SLA and photosynthetic rates as leaves age within years. These results show that within this clade, species have diverged in developmental trajectories and plasticity as well as in mean trait values. Some of these differences may be associated with adaptation to cold and drought stress within an environmentally-complex region.  相似文献   

18.
Characterizing the responses of key tree species to extreme climatic events may provide important information for predicting future forest responses to increased climatic variability. Here we aimed at determining which tree- and stand-level attributes were more closely associated with the effect of a severe drought on the radial growth of Scots pine, both in terms of immediate impact and recovery after the drought event. Our dataset included tree-ring series from 393 plots located close to the dry limit of the species range. Time series analysis and mixed-effects models were used to study the growth of each tree and its detailed response to a severe drought event that occurred in 1986. Our results showed that the radial growth responses of Scots pine were determined primarily by tree-level characteristics, such as age and previous growth rate, and secondarily by stand basal area and species richness, whereas local climate had a relatively minor effect. Fast-growing trees were more severely affected by the drought and retained proportionally lower growth rates up to three years after the episode. In absolute terms, however, fast-growing trees performed better both during and after the event. Older trees were found to be less resilient to drought. The effect of stand basal area and species richness indicated that competition for resources worsened the effects of drought, and suggested that the effect of interspecific competition may be particularly detrimental during the drought year.  相似文献   

19.
Tree-ring chronologies were examined to investigate the influence of climate on radial growth of Pinus nigra in southeastern Spain. We addressed whether drought differentially affected the ring-widths of dominant and suppressed trees and if our results supported the hypothesis that, in a Mediterranean climate, suppressed conifer trees suffer greater growth reductions than dominant trees. Climate–growth relationships were analyzed using response and correlation functions, whereas the effect of drought on trees growth was approached by superposed epoch analysis in 10 dry years. A cool, wet autumn and spring, and/or mild winter enhanced radial growth. Latewood was the most sensitive ring section in both kinds of trees and it was primarily influenced by current year precipitations. Earlywood was mostly influenced by climatic conditions previous to the growing season. In general, May was the most influential month. Pinus nigra was shown to be very drought sensitive tree in the study area. Tree-rings in suppressed trees showed lower growth reductions caused by drought than those of dominant trees. However, dominant trees recovered normal growth faster. Dominant trees showed a more plastic response, and suppression appeared to reduce the effect of climate on tree radial growth. Some possible causes for these effects are discussed. Our results support the essential role of the balance between light and moisture limitations for plant development during droughts and show that it is not appropriate to generalize about the way in which suppression affects climate-growth relationship in conifers.  相似文献   

20.

This article presents a methodology for assessing the radiation doses in an urban environment due to external irradiation from radionuclides deposited on the ground and other surfaces as well as from a passing radioactive cloud. The approach was developed and applied to assess individual doses of residents of the town of Pripyat who were evacuated shortly after the Chernobyl accident. Typically, the so-called location factor is defined as the ratio of the dose rate at a point of exposure and the dose rate at an undisturbed lawn far from any buildings. The present study used a new definition of the location factor as a regular four-dimensional grid of ratios of air kerma rates indoors and outdoors distributed in space and time. The location factors were calculated for two scenarios: outdoor and indoor values for typical apartments and buildings in Pripyat. Indoor location factors varied within two orders of magnitude depending on the floor of residence and place of staying inside the apartment. Values of the indoor location factor differed during the daytime and night by a factor of 30–40 depending on the behaviour of an individual within the apartment. Both, outdoor and indoor location factors decreased with decreasing distances between buildings. It was shown that during the first 4 days after the accident, air kerma rates in Pripyat were governed by the radionuclides deposited on the ground surface, and not by radionuclides in the cloud. Specifically, the contribution of the radioactive cloud to air kerma rate was maximal (i.e., 2.3%) on the morning of 28 April 1986. The methodology and results of this study are currently being used to reconstruct the radiation gonadal dose for the subjects of the American–Ukrainian study of parental irradiation in Chernobyl cleanup workers and evacuees for investigating germline mutations in their offspring.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号