首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a mouse monoclonal antibody (ASPM-29, mAb) against spermine (Spm) conjugated to human serum albumin (HSA) using glutaraldehyde-sodium borohydride, for applications in immunocytochemistry (ICC). The antibody specificity was evaluated by an enzyme-linked immunosorbent assay (ELISA) binding test, simulating the ICC of tissue sections. ASPM-29 showed an almost equal immunoreactivity to Spm and spermidine (Spd) but no reactivity to any of the other polyamine (PA)-related compounds tested. By use of this antibody, indirect immunoperoxidase staining was observed in different tissues fixed with glutaraldehyde in combination with borohydride reduction. In contrast, immunoreactivity was quite low in tissues fixed only with glutaraldehyde. Absorption controls indicated that the immunostaining could be completely inhibited by 50 g/ml of Spm or Spd and partially inhibited by N-acetylspermine (Ac-Spm), N1-acetylspermidine (N1-Ac-Spd), or N8-acetylspermidine (N8-Ac-Spd), but was hardly inhibited at all by other PA-related compounds or amino acids. The reactivity of the antibody with Spm conjugated on wells in an ELISA plate was inhibited by micromolar concentrations of Spm, Spd, Ac-Spm, N1-Ac-Spd, or N8-Ac-Spd, in decreasing order, but not by other small molecules. Dense ICC staining was observed in the paranuclear and basal cytoplasm of acinar cells of rat pancreas, submandibular gland and paratid gland, these results being in complete agreement with our recent ICC methods using other mAbs produced against N-(-male-imidobutyryloxy) succinimide-conjugated Spm.  相似文献   

2.
Two monoclonal antibodies of types IgG2b and IgG2a, anti-spermine-(Spm)-1 (ASPM-1) and anti-Spm-2 (ASPM-2) respectively were found among five clones of murine monoclonal antibodies, which were raised against Spm conjugated with bovine serum albumin via the cross-linker N-(-maleimidobutyryloxy) succinimide (GMBS). Antibody specificity was evaluated by a recently developed ELISA binding test, and led to the study of tissue sections by immunocytochemistry (ICC). ASPM-1 showed exclusive immunoreactivity with Spm, with the exception of a negligible cross-reactivity (2.0%) with spermidine (Spd). ASPM-2, on the other hand, reacted almost equally with acetylspermine (Ac-Spm) and N 1-acetylspermidine (N1-Ac-Spd) but with none of the other polyamine-related compounds tested. Complete agreement was obtained with the results of immunoblot analysis. Furthermore, results for antibody specificity obtained with the ELISA inhibition test and ICC model experiments using Sepharose gel beads strongly suggested that ASPM-1 recognizes the Spm molecule possessing at least a free terminal primary amino group, while ASPM-2 recognizes the Spm molecule acylated at both the terminal primary amino groups. An ICC method using ASPM-2 produced strong staining for polyamines (PAs) in the cytoplasm (but very few in the nuclei) of two different tumor cell lines and protein- or peptide-secreting cell systems, including exocrine and endocrine cell types; ASPM-1 showed immunoreactivity only with the tumor cell lines. These results strongly suggest that ASPM-2 may be useful for studies on actively proliferating and neoplastic cells, supporting our previously proposed idea that in immunocytochemistry PAs were converted to a variety of PA derivatives during the fixation process.  相似文献   

3.
The relationship between polyamines (PAs) metabolism and adventitious shoot morphogenesis from cotyledons of cucumber was investigated in vitro. The endogenous levels of free putrescine (Put) and spermidine (Spd) in the explants decreased sharply, whereas endogenous spermine (Spm) increased during adventitious shoot morphogenesis. The presence of 1–15 mM Put, 1–2 mM Spd, 0.05–1 mM Spm, 5–10 M aminoethoxyvinylglycine (AVG) or 5 M AVG together with 50 M 1-aminocyclopropane-1-carboxylic acid (ACC) in the regeneration medium could promote adventitious shoot formation. Conversely, 1–5 mM D-arginine (D-Arg) or 0.01–0.1 mM methylglyoxal bis-guganylhydrazone (MGBG) inhibited regeneration; and 0.005–0.05 mM ACC displayed little or no evident effects. The explants growing on medium containing 5 M AVG produced higher levels of free Put and Spm, and on medium containing 5 mM Put the explants responded similarly to the AVG-treated explants. However, the exogenous use of 1 mM D-Arg reduced the levels of Put, Spd and Spm, and 0.1 mM MGBG reduced the levels of free Spd and Spm. Moreover, although the explants cultured on medium containing Put and MGBG enhanced ethylene production, AVG and D-Arg inhibited ethylene biosynthesis. This study shows the PAs requirement for the formation of adventitious shoot from cotyledons of cucumber in vitro and the enhanced adventitious shoot morphogenesis may be associated with the elevated level of endogenous free Spm, albeit the promotive effect of PAs on adventitious shoot morphogenesis may not be related to ethylene metabolism.  相似文献   

4.
Putrescine (Put), spermidine (Spd), and spermine (Spm) are the major polyamines (PAs) in plant, which are not only involved in the regulation of plant developmental and physiological processes, but also play key roles in modulating the defense response of plants to diverse environmental stresses. In this study, Cucumis sativus L. seedlings were cultivated in nutrient solution and sprayed with three kinds of PAs (Put, Spd, and Spm). The effects of PAs were investigated on excess nitrate stress tolerance of C. sativus by measuring growth and nitrogen (N) metabolism parameters. The contents of NO3-?N, NH4-+N, proline and soluble protein in leaves were increased; while plant height, leaf area, shoot fresh and dry weight, root fresh weight were decreased under 140 mM NO3? treatment for 7 d. In addition, the activities of nitrate reductase (NR), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) were significantly inhibited under 140 mM NO3? treatment for 7 d. With foliar treatment by 1 mM Spd or Spm under stress treatment, the contents of Spm, Put, and Spd in leaves increased significantly, except that Spm content decreased under Spd treatment. The activities of NR, glutamine synthetase (GS), GOGAT and GDH and plant height, leaf area, shoot fresh and dry weights were significantly increased. The contents of proline and soluble protein in leaves were significantly enhanced. In contrast, the accumulation of NO3-?N and NH4-+N were significantly decreased. However, there were minor differences in activities of N metabolism enzymes and the content of osmotic adjustment substances under 1 mM Put treatment. These findings suggest that 1 mM exogenous Spm or Spd could enhance the capacity of N metabolism, promote growth and increase resistance to high concentrations of NO3?. The ameliorating effect of Spd was the best, and that of Put the worst.  相似文献   

5.
研究了不同浓度NaCl胁迫下,香根草(Vetiteria zizanioides)根、叶中的游离态、结合态、束缚态多胺(PAs)[包括腐胺(Put),尸胺(Cad),亚精胺(Sod)和精胺(Spm)]含量的变化。在中度盐胁迫(100,200mmol L^-1NaCl)9天时,香根草基本能够正常生长,但在重度盐胁迫(300mmol L^-1NaCl)下,其生长受到严重抑制。在上述3个不同浓度的NaCl胁迫下,香根草根、叶中游离态Put,Cad,spd,Stma和总的游离态PAs含量明显下降,在高盐浓度下下降幅更大;结合态Put,Cad,Sod,Spm和总的结合态PAs含量显著上升,但在重度盐胁迫下升幅较小或与对照相当;束缚态Put,Cad和总的束缚态PAs含量均减少,而束缚态Spd和Spm含量在叶中是下降的,在根中则增加,且在中度盐胁迫下更明显。对根和叶片而言,除游离态(Spd+Spm),Put比值在重度盐胁迫下较对照显著下降外,其它游离态、结合态、束缚态和总的(Spd+Spm)/Put比值在不同盐胁迫下均上升,在中度盐胁迫下更明显。这表明,维持多胺总量的稳态和较高的(Spd+Spm)/Put比值是香根草适应中度盐胁迫的一个重要机制。  相似文献   

6.
Polyamines (PAs) are abundant polycationic compounds involved in many physiological processes in plants, including somatic embryogenesis. This study investigates the role of PAs on cellular growth and structure of pro‐embryogenic masses (PEMs), endogenous PA and proton pump activities in embryogenic suspension cultures of Araucaria angustifolia. The embryogenic suspension cultures were incubated with putrescine (Put), spermidine (Spd), spermine (Spm) and the inhibitor methylglyoxal‐bis(guanylhydrazone) (MGBG), respectively (1 mM). After 24 h and 21 days, the cellular growth and structure of PEMs, endogenous PA contents and proton pump activities were analyzed. The addition of Spm reduced the cellular growth and promoted the development of PEMs in embryogenic cultures, which could be associated with a reduction in the activities of proton pumps, such as H+‐ATPase P‐ and V‐types and H+‐PPases, and alterations in the endogenous PA contents. Spm significantly affected the physiology of the A. angustifolia somatic embryogenesis suspension, as it potentially affects cellular growth and structure of PEMs through the modulation of proton pump activities. This work demonstrates the involvement of exogenous PAs in the modulation of cellular growth and structure of PEMs, endogenous PA levels and proton pump activities during somatic embryogenesis. To our knowledge, this study is the first to report a relationship between PAs and proton pump activities in these processes. The results obtained in this study offer new perspectives for studies addressing the role of PAs and proton pump on somatic embryogenesis in this species.  相似文献   

7.
Incorporation of L-[U-14C] arginine or L-[U-14C] ornithine into putrescine (Put), spermidine (Spd) and spermine (Spm) in embryonectomized barley seeds (Hordeum vulgare L. cv. Himalaya) was studied following imbition with methylglyoxal-bis (guanylhydrazone) (MGBG) and abscisic acid (ABA). Both radiolabeled amino acids were incorporated into the amines as a result of active polyamine biosynthesis in the seed during imbibition. In the aleurone layer, the Spd and Spn existed mainly in the free form (acid soluble). However about 50% of Put was recovered in conjugated form(s) (acid insoluble). Imbibition with 5 and 10M ABA for 3 days increased the accumulation of the free form of 14C-Put, probably as a result of inhibition (70%) of 14C-Spd accumulation. The ABA treatment showed no significant effect on levels of the conjugated form of Put and Spd. Imbibition with millimolar concentrations of MGBG resulted in (i) abnormal accumulation of the free form of Put and incorporation of 14C-amino acids into the diamine, (ii) progressive inhibition of the accumulation of the free forms of 14C-Spd and Spm, and (iii) reduction of the 14C incorporation into the conjugated forms of Put and Spd. Uptake of 14C-amino acids was not affected by MGBG treatment. The results indicate that MGBG may inhibit not only the synthesis of Spd and Spm, but the catabolism (e.g. oxidation) of Put in the aleurone layer.This paper is published with the approval of the director of the Kentucky Agricultural Experiment Station.  相似文献   

8.
In this study we examined the effect of polyamines (PAs) putrescine (Put), spermidine (Spd) and spermine (Spm) on growth, morphology evolution, endogenous PAs levels and nitric oxide (NO) release in Ocotea catharinensis somatic embryo cultures. We observed that Spd and Spm reduced culture growth, permitted embryo morphogenetic evolution from the earliest to last embryo development stages, increased endogenous PAs levels, and induced NO release in O. catharinensis somatic embryos. On the other hand, Put had little effect on these parameters. Spd and Spm could successfully be used to promote somatic embryo maturation in O. catharinensis. The results suggest that Spd and Spm have an important role during the growth, development and morphogenetic evolution of somatic embryos, through alterations in the endogenous nitric oxide and PAs metabolism in this species.  相似文献   

9.
We analyzed molecularly and biochemically a series of transgenic rice lines expressing the oat adc (arginine decarboxylase) cDNA under the control of the constitutive maize ubiquitin 1 promoter. We established baseline biochemical parameters to elucidate the role of polyamines (PAs) during morphogenesis. We measured mRNA levels, ADC enzyme activity and cellular PAs in dedifferentiated callus. Polyamine levels were also quantified in two subsequent developmental stages – regenerating tissue and differentiated shoots. We observed significant (P<0.05) differences in the levels of individual PAs at the three developmental stages. The amounts of putrescine (Put) and spermidine (Spd) in dedifferentiated transgenic callus were lower than those in the wild type or in hpt (hygromycin resistant)-controls, whereas the amount of spermine (Spm) was increased up to two-fold. In regenerating tissue, this trend was reversed, with significantly higher levels of Put and Spd (P<0.05), and lower levels of Spm (P<0.05) compared to non-transformed or hpt-control tissues at the same developmental stage. In differentiated shoots, there was a general increase in PA levels, with significant increases in Put, Spd, and Spm (P<0.05); on occasion reaching six times the level observed in wild type and hpt-control tissues. These results contrast those we reported previously using the weaker CaMV 35S promoter driving adc expression. mRNA measurements and ADC enzyme activity were consistently higher (P<0.01) in all tissues expressing pUbiadcs compared to equivalent tissues engineered with 35Sadc. Our findings are consistent with a threshold model which postulates that high adc expression leading to production of Put above a basal level is necessary to generate a big enough metabolic pool to trigger PA flux through the pathway leading to an increase in the concentration of Spd and Spm. This can be best accomplished by a strong constitutive promoter driving adc. We discuss our results in the context of flux through the PA pathway and its impact on morphogenesis.  相似文献   

10.
To investigate the effect of exogenous Spermidine (Spd) and Spermine (Spm) on drought-induced damage to seedlings of Cerasus humili, relative water content (RWC), malondialdehyde content, relative electrolyte leakage, superoxide (O2 ?, SOD) generation rate, hydrogen peroxide (H2O2), endogenous polyamines (PAs), antioxidant enzymes [SOD and peroxidase (POD)] activities, PA-biosynthetic enzymes [arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC)] activities, as well as photosynthetic parameters, were measured in greenhouse cultured seedlings of C. humili. The results showed that either exogenous Spd or Spm (0.2 mM) significantly enhanced the level of RWC and prevented drought-induced lipid peroxidation. They also significantly enhanced photosynthetic capability and decreased O2 ? generation rate and H2O2 content. In addition, Spd and Spm helped to maintain SOD and POD activities in C. humili seedlings subjected to water stress, suggesting that they exerted a positive effect on antioxidant systems. The contents of endogenous free putrescine, Spd and Spm were increased to different extents in water-stressed C. humili seedlings. By the end of drought treatment (21 days) with exogenous Spd or Spm, the contents of free Spd increased by 30 and 38 %, respectively, and endogenous Spm increased by 41 and 26 %, respectively, compared with water-stressed plants. Furthermore, exogenous Spd or Spm enhanced the activities of ADC, ODC, and SAMDC. The pretreatment with Spd or Spm prevents oxidative damage induced by drought, and the protective effect of Spd was found to be greater than that of Spm.  相似文献   

11.
Recently we showed that ABA is at least partly responsible for the induction of the polyamine exodus pathway in Vitis vinifera plants. Both sensitive and tolerant plants employ this pathway to orchestrate stress responses, differing between stress adaptation and programmed cell death. Herein we show that ABA is an upstream signal for the induction of the polyamine catabolic pathway in Vitis vinifera. Thus, amine oxidases are producing H2O2 which signals stomata closure. Moreover, the previously proposed model for the polyamine catabolic pathway is updated and discussed.Key words: plant growth, abscissic acid, polyamines, amine oxidases, signaling, oxidative stress, programmed cell deathWe have shown that tobacco salinity induces an exodus of the polyamine (PA) spermidine (Spd) into the apoplast where it is oxidized by polyamine oxidase (PAO) generating hydrogen peroxide (H2O2). Depending on the size of H2O2, it signals either tolerance-effector genes or the programmed cell death syndrome1 (PCD). PAs are ubiquitous and biologically active molecules. In the recent years remarkable progress has been accomplished regarding the regulation of PAs biosynthesis and catalysis, not only under normal physiological but also under stress conditions.1 The most studied PAs are the diamine Putrescine (Put) and its derivatives the triamine Spd and the tetramine spermine (Spm). They are present in the cells in soluble form (S), or conjugated either to low molecular weight compounds (soluble hydrolyzed form, SH) or to “macro” molecules or cell walls (pellet hydrolyzed form, PH). In higher plants, Put is synthesized either directly from ornithine via ornithine decarboxylase (ODC; EC 4.1.1.17) or indirectly from arginine via arginine decarboxylase (ADC; EC 4.1.1.19). Spd and Spm are synthesized via Spd synthase (EC 2.5.1.16, SPDS) and Spm synthase (EC 2.5.1.22, SPMS), respectively, by sequential addition of aminopropyl groups to Put, catalyzed by S-adenosyl-L-methionine decarboxylase (SAMDC; EC 4.1.1.50).2,3 In plants, PAs are present in the cytoplasm, as well as in cellular organelles.4 Recently it was shown that during stress, they are secreted into the apoplast where they are oxidized by amine oxidases (AOs), such as diamine oxidase for Put (DAO, E.C. 1.4.3.6) and polyamine oxidase (PAO, E.C. 1.4.3.4) for Spd and Spm.1,5,6 Oxidation of PAs generates, amongst other products, H2O21,7,8 which is involved in cell signaling processes coordinated by abscissic acid (ABA),9 but also acts as efficient oxidant and, at high concentration, orchestrates the PCD syndrome.6,10 Two types of PA catabolism by PAO are known in plants: the terminal and the back-conversion pathways. The terminal one takes place in the apoplast, produces except H2O2, 1,3-diaminopropane and an aldehyde depending on the species. On the other hand, the back-conversion pathway is intracellular (cytoplasm and peroxisomes) resulting to the production of H2O2 and the sequential production of Put by Spm via Spd.1,7 Now we have shown that PA exodus also occurs in Vitis vinifera and this phenomenon is at least partially induced by abscissic acid (ABA).11 Thus, exogenous application of ABA results to PA exodus into the apoplast of grapevine. PA is oxidized by an AO resulting to production of H2O2. When the titer of H2O2 is below a threshold, expression of tolerance-effector genes is induced, while when it exceeds this threshold the programmed cell death (PCD) syndrome is induced.  相似文献   

12.
13.
We developed a mouse monoclonal antibody (mAb; APUT-32, IgG1 subisotype mAb) against putrescine (Put) conjugated to bovine serum albumin using a glutaraldehyde (GA)-sodium borohydride procedure, for applications in immunocytochemistry (ICC). The antibody specificity was evaluated by an ELISA binding test, simulating the ICC of tissue sections. APUT-32 mAb was highly specific to Put, and distinguished alterations in the chemical structure of other polyamine (PA) analogs, showing 3.8% crossreaction with cadaverine, 3.3% with spermidine (Spd), and 2.3% with 1,3-diaminopropane. Comparable results in immunoreactivity of APUT-32 mAb were obtained with the ELISA inhibition test. By the indirect immunoperoxidase method using the APUT-32 mAb, Put-like immunoreactivities were observed in the cytoplasm of HeLa and MCF-7 cell lines fixed with GA in combination with NaBH4 reduction, but almost no immunoreaction was seen in the cytoplasm of the human melanoma BD cell line. On the other hand, the same method but using a previously prepared ASPM-29 mAb, specific for spermine (Spm) and Spd, produced intense immunostaining in the cytoplasm of all the three cell types. The Put-like immunoreaction was completely abolished by absorption of the APUT-32 mAb with 10 microg/ml Put-human serum albumin conjugate prepared using GA and NaBH4. HPLC analysis was also performed for the levels of each of the PAs in the three types of cell, showing that the levels of Put detected were much lower than those of Spm and Spd, and were strikingly different in the three cell lines among which the human melanoma BD cell line contained the lowest levels of Put. These results strongly suggest that APUT-32 mAb reacts specifically with Put in the tumor cells and therefore has the potential as a new tool for elucidating the biological roles of Put in cells and tissues.  相似文献   

14.
We developed a mouse monoclonal antibody (ASPD-19, IgG3 sub-isotype mAb) against spermidine (Spd) conjugated to bovine serum albumin (BSA) using a mixture of glutaraldehyde (GA) and paraformaldehyde (PFA)-sodium borohydride for applications in immunoelectron microscopic studies. The antibody specificity was evaluated by an ELISA binding test simulating the immunocytochemistry (ICC) of tissue sections. The ASPD-19 mAb is highly specific for Spd and Spm, almost the same degree to each, and can distinguish alterations in the chemical structure of other polyamine (PA) analogs, showing less than 3.2% cross-reaction with N(1)-acetylspermidine, acetylspermine, or N(8)-acetylspermidine. By an indirect immunoperoxidase method using the ASPD-19 mAb, PA-like immunoreactivities were observed in different tissues fixed with Karnovsky fixative (a mixture of GA and PFA) in combination with borohydride reduction. In contrast, immunoreactivity was very low in tissues when the borohydride reduction step was omitted. The PA-like immunoreaction was completely abolished by the adsorption of the ASPD-19 mAb with 100 microg/ml of Spd or Spm, but was inhibited little or none by other PA-related compounds or amino acids. A light microscopic ICC method using ASPD-19 produced immunostaining of PAs in certain cells in rat tissues with high biosynthetic activities (small intestine, pancreas and spinal cord). A pre-embedding immunoelectron microscopic study using rat spinal cord showed PA immunoreactivity located predominantly on free (polysomes) and attached ribosomes of the rough endoplasmic reticulum (Nissl bodies) in the cytoplasm of motor neurons. These results are in complete agreement with the results obtained by our recent ICC method using another mAb (ASPM-29) produced against GA-conjugated Spm.  相似文献   

15.
The effects of exogenous spermidine (Spd) application to hypoxic nutrient solution on the contents of endogenous polyamines (PAs) and respiratory metabolism in the roots of cucumber (Cucumis sativus L.) seedlings were investigated. Cucumber seedlings were grown hydroponically in control and hypoxic nutrient solutions with and without addition of Spd at a concentration of 0.05 mM. The activities of key enzymes involved in the tricarboxylic acid cycle (TCAC), such as succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH), were significantly inhibited under root-zone hypoxia with dissolved oxygen (DO) at 1 mg/l. In contrast, the activities of enzymes involved in the process of fermentation, such as pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), lactate dehydrogenase (LDH), and alanine aminotransferase (AlaAT), were significantly increased. Thus, aerobic respiration was inhibited and fermentation was enhanced in the roots of cucumber seedlings as a result of decreasing ATP content to inhibit the dry weight of seedlings under hypoxic stress. Moreover, the contents of free, soluble conjugated, and insoluble bound putrescine (Put), Spd, and spermine (Spm) in the roots of cucumber seedlings were significantly increased under hypoxia stress. Interestingly, application of Spd to hypoxic roots markedly suppressed the accumulation of free Put and, in contrast, promoted an increase in free Spd and Spm, as well as soluble conjugated and insoluble bound Put, Spd, and Spm contents. From these data, we deduced that exogenous Spd promotes the conversion of free Put into free Spd and Spm, and soluble conjugated and insoluble bound PAs under hypoxia stress. Furthermore, the activities of LDH, PDC, and ADH were suppressed and, in contrast, the activities of SDH and IDH were enhanced by application of exogenous Spd to hypoxic roots. As a result, aerobic respiration was enhanced but fermentation metabolism was inhibited in the roots of cucumber seedlings, leading to an increase in ATP content to alleviate the inhibited dry weight of seedlings due to hypoxia stress. These results suggest that application of Spd to hypoxic nutrient solution promoted conversion of free Put into free Spd and Spm as well as soluble conjugated and insoluble bound PAs, further enhanced IDH and SDH activities, and inhibited ethanol fermentation and lactate fermentation, resulting in increased ATP content and eventually enhanced tolerance of cucumber plants to root-zone hypoxia.  相似文献   

16.
The photo-stability of photosystem I (PSI) is of high importance for the photosynthetic processes. For this reason, we studied the protective action of two biogenic polyamines (PAs) spermine (Spm) and spermidine (Spd) on PSI activity in isolated thylakoid membranes subjected to photoinhibition. Our results show that pre-loading thylakoid membranes with Spm and Spd reduced considerably the inhibition of O2 uptake rates, P700 photooxidation and the accumulation of superoxide anions (O2 ) induced by light stress. Spm seems to be more effective than Spd in preserving PSI photo-stability. The correlation of the extent of PSI protection, photosystem II (PSII) inhibition and O2 generation with increasing Spm doses revealed that PSI photo-protection is assumed by two mechanisms depending on the PAs concentration. Given their antioxidant character, PAs scavenge directly the O2 generated in thylakoid membranes at physiological concentration (1 mM). However, for non-physiological concentration, the ability of PAs to protect PSI is due to their inhibitory effect on PSII electron transfer.  相似文献   

17.
120mmol·L^-1NaCl胁迫30d,耐盐性强的‘金丝小枣’叶片细胞质膜、液泡膜共价结合态腐胺(Put)、亚精胺(Spd)、精胺(Spm)含量及多胺(PAs)总水平与对照无显著性差异,但耐盐性弱的‘冬枣’叶片质膜共价结合态Put、Spd、Spm含量和PAs总水平及液泡膜Spd含量均显著降低;‘金丝小枣’叶片类囊体膜共价结合态Put含量、PAs总水平较对照显著降低,‘冬枣’则是Put、Spd、Spm含量及PAs总水平均显著降低。盐胁迫下,‘金丝小枣’叶片细胞质膜、液泡膜、类囊体膜非共价结合态Put、Spd、Spm含量及PAs总水平下降,但其中仅类囊体膜Spd含量显著低于对照,而‘冬枣’的3种膜上非共价结合态的这些多胺及其总水平均显著低于对照。与对照相比,盐胁迫下耐盐性不同的2个枣品种,叶片细胞质膜、液泡膜和类囊体膜H+-ATP酶活性均降低,但降低幅度因枣品种和生物膜种类不同而异,且H+-ATP酶活性与相应膜结合态多胺水平存在极紧密的正相关关系。结果表明,膜结合态多胺参与枣品种耐盐性的表达,调节盐胁迫下枣叶细胞中溶质的跨膜运输。  相似文献   

18.
19.
Changes in polyamines (PAs) in cells and cultivation media of alfalfa (Medicago sativa L.) and tobacco bright yellow 2 (BY-2) (Nicotiana tabacum L.) cell suspension cultures were studied over their growth cycles. The total content of PAs (both free and conjugated forms) was nearly 10 times higher in alfalfa, with high level of free putrescine (Put) (in exponential growth phase it represented about 65-73% of the intracellular Put pool). In contrast, the high content of soluble Put conjugates was found in tobacco cells (in exponential phase about 70% of the intracellular Put). Marked differences occurred in the amount of PAs excreted into the cultivation medium: alfalfa cells excreted at the first day after inoculation 2117.0, 230.5, 29.0 and 88.0 nmol g(-1) of cell fresh weight (FW) of Put, spermidine (Spd), spermine (Spm) and cadaverine (Cad), respectively, while at the same time tobacco cells excreted only small amount of Put and Spd (12.7 and 2.4 nmol g(-1) FW, respectively). On day 1 the amounts of Put, Spd, Spm and Cad excreted by alfalfa cells represented 21, 38, 12 and 15% of the total pool (intra- plus extra-cellular contents) of Put, Spd, Spm and Cad, respectively. In the course of lag-phase and the beginning of exponential phase the relative contents of extracellular PAs continually decreased (with the exception of Cad). On day 10, the extracellular Put, Spd, Spm and Cad still represented 11.3, 10.9, 2.1 and 27% of their total pools. The extracellular PAs in tobacco cells represented from day 3 only 0.1% from their total pools. The possible role of PA excretion into the cultivation medium in maintenance of intracellular PA contents in the cells of the two cell culture systems, differing markedly in growth rate and PA metabolism is discussed.  相似文献   

20.
Polyamines (PAs) belong to plant growth regulators and in complex with classical phytohormones take part in regulation of seed dormancy and germination. Although the impact of reactive oxygen (ROS) and nitrogen (RNS) species on seed germination is well described, the cross talk of PAs with ROS/RNS has never been analyzed. Due to the close connection of PAs and ethylene biosynthetic pathways to arginine (Arg)-dependent NO biosynthesis we investigated production of nitric oxide (NO), peroxynitrite (ONOO?) and the level of O 2 ?? or H2O2 in apple embryos, germination of which was PA regulated. PAs: putrescine (Put) and spermidine (Spd) in contrast to spermine (Spm) stimulated germination of apple embryos. Among amino acids, stimulation of germination was observed in Arg and ornithine (Orn) only. Dormancy removal of embryos by PAs was associated with increased accumulation of H2O2 and O 2 ?? in embryonic axes. At the same stage of completion of sensu stricto germination the stimulatory effect of PAs (Put and Spd) and amino acids, mainly Arg and Orn, was accompanied by enhanced NO and ONOO? production in embryonic axis. The beneficial effect of PAs (Put and Spd) and their precursors on germination of apple embryos was removed by NO scavenging, suggesting a crucial role of NO in termination of embryo germination and radicle growth. Moreover, activity of polyamine oxidase in embryo axes was greatly enhanced by embryo fumigation with NO. Our data demonstrate the interplay of RNS/ROS with PAs and point to NO action as an integrator of endogenous signals activating germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号