首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A pig-skin preparation enriched in epidermal G1-chalone when administered to cells of the rat tongue epithelial line RTE2 at concentrations of 3-300 micrograms/ml (dry mass) caused a 60% reduction in cell number. Three other cell lines showed essentially no growth inhibition during chalone treatment. The kinetics of chalone inhibition were similar to those observed in mouse epidermis in vivo. Five hours after the addition of chalone preparation in fresh medium a decrease in the rate of DNA synthesis was observed. Maximum inhibition at 12 h was followed by a subsequent increase in DNA synthesis, reaching control values again after 30 h. The inhibitory effect was dose-dependent up to 3 micrograms/ml. At higher concentrations the degree of inhibition remained constant at about 50% of the control up to 300 micrograms/ml. Removal of added chalone by changing the medium at the time of maximum inhibition gave rise to a complete recovery within 9 h. These results indicate a cell-line specific, non-toxic and reversible inhibitory effect of the chalone preparation which resembles that observed in the living animal. The RTE2 cell line may thus be considered to provide a highly sensitive experimental system suitable for more detailed studies on the mechanism of action of epidermal G1-chalone.  相似文献   

2.
Several reports suggest that duodenogastroesophageal reflux may produce esophagitis, Barrett's esophagus and esophageal carcinoma. And it is well known that the incidence of adenocarcinoma arising from Barrett's esophagus has been increasing during the past decade. On the other hand, cyclooxygenase-2 and prostaglandins, produced by the catalytic reaction of cyclooxygenase-2, are considered to relate to carcinogenesis of the digestive tract and other malignant tumors. Recent reports suggest that cyclooxygenase-2 is induced in Barrett's esophagus and esophageal carcinoma. The purpose of this study is to investigate the reaction of cyclooxygenase-2 expression and prostaglandinE2 production on normal human esophageal epithelial cells cultured with gastroduodenal components. Normal human esophageal epithelial cells were cultured with chenodeoxycholic acid, trypsin and in acidic condition, individually and with different combinations of these three factors. After culturing, cyclooxygenase-2 expression in the cells and amount of prostglandinE2 in culture media was evaluated by immunoblotting and enzyme-immunoassay, respectively after culturing the cells. Cyclooxygenase-2 expression was up-regulated by bile acid and prostaglandinE2 production was enhanced by bile acid with trypsin, acidic condition or both of these components, without a synergistic effect on cyclooxygenase-2 expression. Production of prostaglandinE2 via these factors was suppressed by the cyclooxygenase-2 selective inhibitor JTE-522.The results suggest that duodenogastroesophageal reflux may induce cyclooxygenase-2 expression and prostaglandinE2 production in esophageal epithelial cells, cyclooxygenase-2 specific inhibitors may have a chemopreventive effect on esophageal carcinoma.  相似文献   

3.
It was shown in the culture of rat bone marrow cells in experimental polycythemia that the chalone activity of erythrocytic chalone considerably drops in the presence of phytohemagglutinin (PHA). The chalone inhibits the agglutinating activity of PHA with respect to bone marrow cells. Absorption of the chalone on the immobilized PHA leads to disappearance from it and of PAS-positive bands recorded electrophoretically and to a strong decrease in PAS-negative band intensity. Experiments with preliminary incubation of rat red cells before preparation of the chalone suggest that in the course of its preparation two polypeptides one of which is PAS-positive are released into the medium. It is suggested that the chalone includes superficial membrane proteins of red cells, possibly, in the form of a combination of PAS-positive and PAS-negative bands. Potential mechanisms of chalone release from the surface of cells and features of their action on the cells are discussed.  相似文献   

4.
The effect of adrenaline and Ehrlich ascite carcinoma (EAC) chalone on cell division was studied. It has been established that EAC chalone inhibited cell proliferation. The action of adrenaline was also accompanied by a decrease in mitotic index, but the inhibitory effect of the hormone was weaker than that of chalone, it occurred later and its duration was less. A combined effect of adrenaline and chalone depended on the time interval between the administration of the substances. It has been found that chalone administration 1 h after adrenaline administration prolonged mitotic inhibitory effect by 4 h and its synchronous action on cell division in EAC was weak during the experiment. Combined effect of adrenaline and chalone did not differ from the effect of chalone alone if chalone was administered 3 h after adrenaline administration.  相似文献   

5.

Objective

Besides reducing gastric acid secretion, proton pump inhibitors (PPIs) suppress Th2-cytokine-stimulated expression of an eosinophil chemoattractant (eotaxin-3) by esophageal epithelial cells through acid-independent, anti-inflammatory mechanisms. To explore acid-inhibitory and acid-independent, anti-inflammatory PPI effects in reducing esophageal eosinophilia, we studied eotaxin-3 expression by the proximal and distal esophagus of children with esophageal eosinophilia before and after PPI therapy. In vitro, we studied acid and bile salt effects on IL-13-stimulated eotaxin-3 expression by esophageal epithelial cells.

Design

Among 264 children with esophageal eosinophilia seen at a tertiary pediatric hospital from 2008 through 2012, we identified 10 with esophageal biopsies before and after PPI treatment alone. We correlated epithelial cell eotaxin-3 immunostaining with eosinophil numbers in those biopsies. In vitro, we measured eotaxin-3 protein secretion by esophageal squamous cells stimulated with IL-13 and exposed to acid and/or bile salt media, with or without omeprazole.

Results

There was strong correlation between peak eosinophil numbers and peak eotaxin-3-positive epithelial cell numbers in esophageal biopsies. Eotaxin-3 expression decreased significantly with PPIs only in the proximal esophagus. In esophageal cells, exposure to acid-bile salt medium significantly suppressed IL-13-induced eotaxin-3 secretion; omeprazole added to the acid-bile salt medium further suppressed that eotaxin-3 secretion, but not as profoundly as at pH-neutral conditions.

Conclusion

In children with esophageal eosinophilia, PPIs significantly decrease eotaxin-3 expression in the proximal but not the distal esophagus. In esophageal squamous cells, acid and bile salts decrease Th2 cytokine-stimulated eotaxin-3 secretion profoundly, possibly explaining the disparate PPI effects on the proximal and distal esophagus. In the distal esophagus, where acid reflux is greatest, a PPI-induced reduction in acid reflux (an effect that could increase eotaxin-3 secretion induced by Th2 cytokines) might mask the acid-independent, anti-inflammatory PPI effect of decreasing cytokine-stimulated eotaxin-3 secretion.  相似文献   

6.
S-adenosylhomocysteine hydrolase (SAHH) is the sole enzyme that catalyses the hydrolysis of S-adenosylhomocysteine (SAH) in methylation reaction. Previous studies have shown that its inhibition or deficiency leads to several human disorders such as severe coagulopathy, hepatopathy and myopathy. However, the effects of SAHH on esophageal squamous cell carcinoma (ESCC) cells have not been explored so far. To determine whether SAHH is involved in carcinogenesis of the esophagus, we investigated the expression of SAHH in ESCC and normal esophageal epithelial cells and found that SAHH was downregulated in ESCC cells compared with normal esophageal epithelial cells (P < 0.05). The overexpressed SAHH in ESCC cells promoted cell apoptosis, inhibited cell migration and adhesion, but did not affect the cell proliferation and cell cycle. Furthermore, an interaction of SAHH with receptor of activated C kinase 1 (RACK1) protein was detected by coimmunoprecipitation and an increased RACK1, which is caused by overexpression of SAHH, was verified by Western blotting. The findings mentioned above demonstrate that SAHH can promote apoptosis, inhibit migration and adhesion of ESCC cells suggesting that it may be involved in carcinogenesis of the esophagus.  相似文献   

7.
8.
Developmental patterning and growth of the vertebrate digestive and respiratory tracts requires interactions between the epithelial endoderm and adjacent mesoderm. The esophagus is a specialized structure that connects the digestive and respiratory systems and its normal development is critical for both. Shh signaling from the epithelium regulates related aspects of mammalian and zebrafish digestive organ development and has a prominent effect on esophageal morphogenesis. The mechanisms underlying esophageal malformations, however, are poorly understood. Here, we show that zebrafish Ihha signaling from the epithelium acting in parallel, but independently of Shh, controls epithelial and mesenchymal cell proliferation and differentiation of smooth muscles and neurons in the gut and swimbladder. In zebrafish ihha mutants, the esophageal and swimbladder epithelium is dysmorphic, and expression of fgf10 in adjacent mesenchymal cells is affected. Analysis of the development of the esophagus and swimbladder in fgf10 mutant daedalus (dae) and compound dae/ihha mutants shows that the Ihha–Fgf10 regulatory interaction is realized through a signaling feedback loop between the Ihha-expressing epithelium and Fgf10-expressing mesenchyme. Disruption of this loop further affects the esophageal and swimbladder epithelium in ihha mutants, and Ihha acts in parallel to but independently of Shha in this process. These findings contribute to the understanding of epithelial–mesenchymal interactions and highlight an interaction between Hh and Fgf signaling pathways during esophagus and swimbladder development.  相似文献   

9.
The specific action of a pig skin fraction enriched in epidermal G1-chalone, a tissuespecific inhibitor of epidermal DNA synthesis, was investigated by means of flow cytofluorometry. The results indicate that G1-chalone inhibits progression of partially synchronized rat tongue epithelial cells (line RTE-2) through the cell cycle at a point 2 h prior to the beginning of the S-phase. Approximately 8 h after chalone addition, the cells can overcome the inhibition and begin to enter the S-phase. The duration of this delay is concentrationindependent, but the fraction of cells affected is proportional to the chalone concentration. The progression of cells which already have entered S-phase is not affected. In contrast to the G1-chalone preparation, aphidicolin, a potent inhibitor of DNA polymerase α, clearly shows S-phase-specific inhibition. These results indicate that the epidermal G1-chalone inhibits epidermal cell proliferation in a fully reversible manner by a highly specific effect on cell cycle traverse.  相似文献   

10.
The specific action of a pig skin fraction enriched in epidermal G1-chalone, a tissue-specific inhibitor of epidermal DNA synthesis, was investigated by means of flow cytofluorometry. The results indicate that G1-chalone inhibits progression of partially synchronized rat tongue epithelial cells (line RTE-2) through the cell cycle at a point 2 h prior to the beginning of the S-phase. Approximately 8 h after chalone addition, the cells can overcome the inhibition and begin to enter the S-phase. The duration of this delay is concentration-independent, but the fraction of cells affected is proportional to the chalone concentration. The progression of cells which already have entered S-phase is not affected. In contrast to the G1-chalone preparation, aphidicolin, a potent inhibitor of DNA polymerase alpha, clearly shows S-phase-specific inhibition. These results indicate that the epidermal G1-chalone inhibits epidermal cell proliferation in a fully reversible manner by a highly specific effect on cell cycle traverse.  相似文献   

11.
It has previously been indicated that the inhibitory power of the granulocytic chalone is not influenced by adrenalin. It is now shown that this is true both in absence and in presence of exogenous hydrocortisone. It is also shown that hydrocortisone itself does not cause significant inhibition of DNA synthesis in rat bone marrow cells in vitro, but that it does act to augment the inhibitory effect which the granulocytic chalone induces. It is suggested that the primary action of hydrocortisone may be on the cell membrane which changes the cell wall permeability to chalone, perhaps by reducing its rate of loss from the cells.  相似文献   

12.
该研究通过比较人正常食管鳞状上皮不同的原代培养方法,以期为不同的实验目的提供不同的培养方法。实验用到的正常食管粘膜上皮来源于食管癌患者手术切除的标本,采用组织块法和酶消化法,分别用DMEM/F12混合培养基和K-SFM无血清培养基进行培养。通过直接观察、细胞形态学观察和免疫细胞化学方法观察细胞的生长情况、细胞形态学特征及鉴定所得到的细胞,比较不同方法与不同培养基组合中原代培养细胞的生长状况。用组织块法,在DMEM/F12混合培养基中人正常食管上皮细胞生长较好,细胞融合较快,成纤维细胞污染较少,15~17天上皮细胞铺满瓶底的70%~80%,获得的细胞数量大,但细胞传代后成纤维细胞污染严重。用酶消化法,在K-SFM无血清培养基中人正常食管上皮细胞生长好,细胞融合快,成纤维细胞污染基本消除,细胞纯度高,10~12天细胞便可以铺满瓶底的70%~80%,这种方法培养的细胞可以冻存、复苏和传代。其余各种培养方法所得细胞无论在生长状态、培养周期、成纤维细胞污染和传代方面均较前两种方法差。以上各种方法培养的细胞经免疫细胞化学染色鉴定证实细胞呈广谱细胞角蛋白阳性,确定是食管上皮来源的细胞。酶消化法加K-SFM无血清培养基是本实...  相似文献   

13.
The study was made of the effect of various concentrations of chalone-containing preparation from ascitic Ehrlich tumor on DNA synthesis in the tumor. The preparation was shown to suppress DNA synthesis in dose-dependent manner. The dose dependence was characterized by the effect of saturation which is likely to reflect binding of chalone molecules with specific cell receptors.  相似文献   

14.
The opossum esophagus, like that of humans, contains a network of submucosal glands with the capacity to secrete bicarbonate ions into the esophageal lumen. To evaluate the role of these glands in protecting the epithelial surface from acid insult, we measured the lumen-to-surface pH gradient in opossum esophagus at different luminal pH and compared it to that of rabbit esophagus, an organ devoid of submucosal glands. Sections of opossum and rabbit esophageal epithelium were mounted luminal side up in a modified Ussing chamber. pH-sensitive microelectrodes, positioned within 5 microm of the epithelial cell surface, were used to monitor surface pH during perfusion with solutions of different pH. At luminal pH 7. 5, the pH(s) of both opossum and rabbit were similar (pH(s) = 7.5). Lowering luminal pH from 7.5 to 3.5 in opossum decreased pH(s) to 4.2+/-0.16, a value significantly higher than pH of perfusate, whereas in rabbit this maneuver decreased pH(s) to 3.69+/-0.08, a value not significantly different from pH of perfusate. In opossum but not in rabbit, addition of carbachol to the serosal solution increased basal pH(s) to 7.8+/- 0.1 and significantly blunted the decline in pH(s) on perfusion with acidic Ringer solution (pH 3.5), with pH(s) falling to 5.6+/-0.45. The effect of carbachol on surface buffering was inhibited by prior treatment with atropine. Luminal acidification to pH 2.0 in opossum (as in rabbit) abolished the lumen-to-surface pH gradient even after addition of serosal carbachol. We conclude that the presence of submucosal glands in esophagus contributes through bicarbonate secretion to creation of a lumen-to-surface pH gradient. Although this gradient can be modulated by carbachol, its capacity to buffer (and therefore to protect) the epithelial surface against back-diffusing H(+) is limited and dissipated at pH 2.0.  相似文献   

15.
CCN1 is a matricellular protein involved in both wound healing and cancer cell invasion. Increased CCN1 expression has been associated with the development of Barrett’s esophagus and the increased risk of progression to esophageal adenocarcinoma. In both cases, acid reflux is a major contributor. Low pH has been shown to induce CCN1 gene expression in esophageal epithelial cells. Here we demonstrated that both CCN1 and low pH could cause esophageal epithelial cell transformation, including loss of E-cadherin, disruption of cell-cell junctions, and expression of mesenchymal markers. Furthermore, knockdown of CCN1 through RNA interference sufficiently attenuated acid-driven cell phenotypic changes, while over-expression of CCN1 exacerbated these effects, indicating a critical role of CCN1 in acid-induced esophageal epithelial cell transformation. Given the pivotal role of low pH in gastro-esophageal reflux disease and its progression towards esophageal adenocarcinoma, our study identified CCN1 as a key molecule mediating this process.  相似文献   

16.
Studies were performed to investigate the effect of prostaglandin E2 on esophageal motility in 12 healthy volunteers. PGE2 infusion caused a dose-dependent reduction in the lower esophageal sphincter pressure. The threshold dose was less than 0.05 mug-kg-1-min-1 and maximal reduction of pressure (60%) occurred with a dose of 0.4 mug-kg-1-min-1. In contrast to its effect on the lower esophageal sphincter, PGE2 did not alter the pressure in the upper esophageal sphincter. PGE2 did not influence resting esophageal pressures; the amplitude of peristaltic contractions was reduced in the lower but not in the upper part of the body of the esophagus. These studies show that in man PGE2 exerts selective inhibitory influence on the activity of the lower part of the esophagus and lower esophageal sphincter which are composed of smooth muscle fibers.  相似文献   

17.
The serum of patients with progressive psoriasis lessens the inhibitory activity of epidermal chalones if it is added to the cultural medium before chalones. On the contrary, chalones inhibit DNA synthesis in epithelial cells if they are added to the cultural medium before psoriatic serum. The blood serum of patients with stationary and regressive psoriasis does not exert any effect on chalone activity.  相似文献   

18.
In normal conditions the granulocytic cell population is prevented from excessive cell proliferation by a humoral mechanism based on a specific feedback inhibitor, granulocytic chalone. In conditions of acute functional demand a tissue-specific stimulator, granulocytic antichalone, replaces chalone in rat serum. Mature granulocytes contain, and presumably produce, the chalone which is also present in fresh normal serum. Thus, the inhibitor is both humoral and present within the same cell system on which it acts: the action of this chalone is target tissue specific as it only inhibits granulocytic precursor cells in normal rat bone marrow in vitro. Granulocytic chalone and antichalone were partly purified by gel filtration on Sephadex; the elution parameters suggested molecular weights of 4000 and 30,000–35,000, respectively. Granulocytic chalone was not separated from the erythrocytic chalone (present in fresh normal serum and in blood erythrocytes) on Sephadex; however, separation at the cellular level was easily achieved.  相似文献   

19.
A I Antokhin  Iu A Romanov 《Tsitologiia》1982,24(11):1312-1318
The mitosis inhibitory action of chalone-containing preparation of the Ehrlich ascite tumour was shown to depend on the time of its administration on round the clock, and on the circadian rhythm phase of the mitotic activity in this tumour. This allowed a conclusion that the chalone system of the tumour may be involved in the formation of the circadian rhythm of cell division. It was found that Ehrlich's ascite tumour chalone system regulated DNA synthesis influencing the cell passage from G1-phase of the mitotic cycle to S-phase, and the processes occurring during S-phase.  相似文献   

20.
We hypothesized that differences among individuals in reflux-induced oxidant production by esophageal squamous epithelial cells might contribute to the development of Barrett's esophagus. We studied the effects of acid and bile acids on the production of reactive oxygen species (ROS) in esophageal squamous cell lines derived from gastroesophageal reflux disease patients with (NES-B3T) and without (NES-G2T) Barrett's esophagus and in a Barrett's epithelial cell line (BAR-T). Cells were incubated with an ROS-sensitive probe and exposed to acidic medium, neutral bile acid medium, or acidic bile acid medium. ROS were quantified in the presence and absence of diphenyleneiodonium chloride (DPI, an NADPH oxidase inhibitor), N(G)-monomethyl-l-arginine (l-NMMA, a nitric oxide synthase inhibitor), and rotenone (a mitochondrial electron transport chain inhibitor). Acidic bile acid medium induced ROS production in both squamous cell lines; however, only DPI blocked ROS production by NES-B3T cells, whereas both DPI and l-NMMA blocked ROS production by NES-G2T cells. In BAR-T cells, acidic medium and acidic bile acid medium induced the production of ROS; l-NMMA prevented ROS production after exposure to acidic medium, whereas ROS production induced by acidic bile acid medium was blocked by DPI. These studies demonstrate that there are differences between esophageal squamous cells and Barrett's epithelial cells and between esophageal squamous cells from gastroesophageal reflux disease patients with and without Barrett's esophagus in the mechanisms of oxidant production induced by exposure to acid and bile acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号