首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catarrhine primates were the first group of species studied with comparative molecular cytogenetics. Many of the fundamental techniques and principles of analysis were initially applied to comparisons in these primates, including interspecific chromosome painting, reciprocal chromosome painting and the extensive use of cloned DNA probes for evolutionary analysis. The definition and importance of chromosome syntenies and associations for a correct cladistics analysis of phylogenomic relationships were first applied to catarrhines. These early chromosome painting studies vividly illustrated a striking conservation of the genome between humans and macaques. Contemporarily, it also revealed profound differences between humans and gibbons, a group of species more closely related to humans, making it clear that chromosome evolution did not follow a molecular clock. Chromosome painting has now been applied to more that 60 primate species and the translocation history has been mapped onto the major taxonomic divisions in the tree of primate evolution. In situ hybridization of cloned DNA probes, primarily BAC-FISH, also made it possible to more precisely map breakpoints with spanning and flanking BACs. These studies established marker order and disclosed intrachromosomal rearrangements. When applied comparatively to a range of primate species, they led to the discovery of evolutionary new centromeres as an important new category of chromosome evolution. BAC-FISH studies are intimately connected to genome sequencing, and probes can usually be assigned to a precise location in the genome assembly. This connection ties molecular cytogenetics securely to genome sequencing, assuring that molecular cytogenetics will continue to have a productive future in the multidisciplinary science of phylogenomics.  相似文献   

2.
Flow cytogenetics and chromosome sorting   总被引:1,自引:0,他引:1  
L S Cram 《Human cell》1990,3(2):99-106
This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.  相似文献   

3.
Cytogenetics was conceived in the late 1800s and nurtured through the early 1900s by discoveries pointing to the chromosomal basis of inheritance. The relevance of chromosomes to human health and disease was realized more than half a century later when improvements in techniques facilitated unequivocal chromosome delineation. Veterinary cytogenetics has benefited from the information generated in human cytogenetics which, in turn, owes its theoretical and technical advancement to data gathered from plants, insects and laboratory mammals. The scope of this science has moved from the structure and number of chromosomes to molecular cytogenetics for use in research or for diagnostic and prognostic purposes including comparative genomic hybridization arrays, single nucleotide polymorphism array-based karyotyping and automated systems for counting the results of standard FISH preparations. Even though the counterparts to a variety of human diseases and disorders are seen in domestic animals, clinical applications of veterinary cytogenetics will be less well exploited mainly because of the cost-driven nature of demand on diagnosis and treatment which often out-weigh emotional and sentimental attachments. An area where the potential of veterinary cytogenetics will be fully exploited is reproduction since an inherited aberration that impacts on reproductive efficiency can compromise the success achieved over the years in animal breeding. It is gratifying to note that such aberrations can now be tracked and tackled using sophisticated cytogenetic tools already commercially available for RNA expression analysis, chromatin immunoprecipitation, or comparative genomic hybridization using custom-made microarray platforms that allow the construction of microarrays that match veterinary cytogenetic needs, be it for research or for clinical applications. Judging from the technical refinements already accomplished in veterinary cytogenetics since the 1960s, it is clear that the importance of the achievements to date are bound to be matched or out-weighed by what awaits to be accomplished in the not-too-far future.  相似文献   

4.
Human cytogenetics: 46 chromosomes, 46 years and counting   总被引:1,自引:0,他引:1  
Human cytogenetics was born in 1956 with the fundamental, but empowering, discovery that normal human cells contain 46 chromosomes. Since then, this field and our understanding of the link between chromosomal defects and disease have grown in spurts that have been fuelled by advances in cytogenetic technology. As a mature enterprise, cytogenetics now informs human genomics, disease and cancer genetics, chromosome evolution and the relationship of nuclear structure to function.  相似文献   

5.
One of the main genetic factors determining the functional activity of the genome in somatic cells, including brain nerve cells, is the spatial organization of chromosomes in the interphase nucleus. For a long time, no studies of human brain cells were carried out until high-resolution methods of molecular cytogenetics were developed to analyze interphase chromosomes in nondividing somatic cells. The purpose of the present work was to assess the potential of high-resolution methods of interphase molecular cytogenetics for studying chromosomes and the nuclear organization in postmitotic brain cells. A high efficiency was shown by such methods as multiprobe and quantitative fluorescence in situ hybridization (Multiprobe FISH and QFISH), ImmunoMFISH (analysis of the chromosome organization in different types of brain cells), and interphase chromosome-specific multicolor banding (ICS-MCB). These approaches allowed studying the nuclear organization depending on the gene composition and types of repetitive DNA of specific chromosome regions in certain types of brain cells (in neurons and glial cells, in particular). The present work demonstrates a high potential of interphase molecular cytogenetics for studying the structural and functional organizations of the cell nucleus in highly differentiated nerve cells. Analysis of interphase chromosomes of brain cells in the normal and pathological states can be considered as a promising line of research in modern molecular cytogenetics and cell neurobiology, i. e., molecular neurocytogenetics.  相似文献   

6.
Following the rediscovery of Mendel's work in 1900, the field of genetics advanced rapidly. Human genetics, however, lagged behind; this was especially noticeable in cytogenetics, which was already a mature discipline in experimental forms in the 1950s. We did not know the correct human chromosome number in 1955, let alone were we able to detect a chromosomal abnormality. In 1956 a discovery was reported that markedly altered human cytogenetics and genetics. The following is an analysis of that discovery.  相似文献   

7.
One of the main genetic factors determining the functional activity of the genome in somatic cells, including brain nerve cells, is the spatial organization of chromosomes in the interphase nucleus. For a long time, no studies of human brain cells were carried out until high-resolution methods of molecular cytogenetics were developed to analyze interphase chromosomes in nondividing somatic cells. The purpose of the present work was to assess the potential of high-resolution methods of interphase molecular cytogenetics for studying chromosomes and the nuclear organization in postmitotic brain cells. A high efficiency was shown by such methods as multiprobe and quantitative fluorescence in situ hybridization (Multiprobe FISH and QFISH), ImmunoMFISH (analysis of the chromosome organization in different types of brain cells), and interphase chromosome-specific multicolor banding (ICS-MCB). These approaches allowed studying the nuclear organization depending on the gene composition and types of repetitive DNA of specific chromosome regions in certain types of brain cells (in neurons and glial cells, in particular). The present work demonstrates a high potential of interphase molecular cytogenetics for studying the structural and functional organizations of the cell nucleus in highly differentiated nerve cells. Analysis of interphase chromosomes of brain cells in the normal and pathological states can be considered as a promising line of research in modern molecular cytogenetics and cell neurobiology, i. e., molecular neurocytogenetics.  相似文献   

8.
Detection of chromosome aneuploidies in uncultured amniocytes is possible using fluorescence in situ hybridization (FISH). We herein describe the results of the first clinical program which utilized FISH for the rapid detection of chromosome aneuploidies in uncultured amniocytes. FISH was performed on physician request, as an adjunct to cytogenetics in 4,500 patients. Region-specific DNA probes to chromosomes 13, 18, 21, X, and Y were used to determine ploidy by analysis of signal number in hybridized nuclei. A sample was considered to be euploid when all autosomal probes generated two hybridization signals and when a normal sex chromosome pattern was observed in greater than or equal to 80% of hybridized nuclei. A sample was considered to be aneuploid when greater than or equal to 70% of hybridized nuclei displayed the same abnormal hybridization pattern for a specific probe. Of the attempted analyses, 90.2% met these criteria and were reported as informative to referring physicians within 2 d of receipt. Based on these reporting parameters, the overall detection rate for aneuploidies was 73.3% (107/146), with an accuracy of informative results for aneuploidies of 93.9% (107/114). Compared to cytogenetics, the accuracy of all informative FISH results, euploid and aneuploid, was 99.8%, and the specificity was 99.9%. In those pregnancies where fetal abnormalities had been observed by ultrasound, referring physicians requested FISH plus cytogenetics at a significantly higher rate than they requested cytogenetics alone. The current prenatal FISH protocol is not designed to detect all chromosome abnormalities and should only be utilized as an adjunctive test to cytogenetics. This experience demonstrates that FISH can provide a rapid and accurate clinical method for prenatal identification of chromosome aneuploidies.  相似文献   

9.
Comparative chromosome painting has shown that synteny has been conserved for large segments of the genome in various placental mammals. Advances such as spectral karyotyping and multicolour ‘bar coding’ lend speed and precision to comparative molecular cytogenetics. Reciprocal chromosome painting and hybridisations with probes such as yeast artificial chromosomes, cosmids, and fibre fluorescence in situ hybridisation allow subchromosomal assignments of chromosome regions and can identify breakpoints of rearranged chromosomes. Advances in molecular cytogenetics can now be used to test the hypothesis that chromosome rearrangement breakpoints in human pathology and in evolution are correlated.  相似文献   

10.
一例罕见的复杂易位携带者的染色体绘画研究   总被引:7,自引:0,他引:7  
傅俊江  夏家辉 《遗传学报》1996,23(4):255-260
本文报道了一例罕见的复杂易位男性携带者,结婚8年,其妻连续7次流产、死胎和出生早夭的畸型儿。用染色体显微切割、PCR技术构建的人类7号和8号染色体特异性探针地对其进行了染色体绘画研究,分析确定其核型为:46,XY,-7,-8,-9,+der(7)、t(7;9)(q2200;p24),+der(8)invins(8;7)(q2100;q31.2q2200),+der(9)t(9;7)(p24;q31.2).ishder(7)t(7;9)(wcp7+),der(8)invins(8;7)(wcp7+,wcp8+),der(9)t(9;7)(wcp7+)。染色体绘画技术为研究染色体异常提供了一种有效的分子细胞遗传学技术,本文并对携带者复杂易位的发生机理进行了讨论。  相似文献   

11.
We review here the progress that has been achieved using molecular cytogenetics to analyze the genome structure of sugarcane (Saccharum spp) and banana (Musa spp), two crops that are polyploid, of interspecific origin and with chromosomes not distinguishable by their gross morphology. In Saccharum, molecular cytogenetics enabled us to determine the basic chromosome number of two species, Saccharum officinarum and S. spontaneum, involved in the origin of modern cultivars, to quantify the proportion of chromosomes of these species in the genome of modern cultivars, to assess the extent of interspecific chromosome recombination and to clarify the origin of the related species S. barberi. These techniques are also used to monitor introgression with related genera. In Musa, GISH enabled us to differentiate the four genomes involved in banana cultivars and allowed us to determine the genome constitution of several cultivars. FISH was used to analyze the distribution of repeated sequences along the genome.  相似文献   

12.
Hans de Jong 《Génome》2003,46(6):943-946
This short review presents a historical perspective of chromosome research during the last 50 years. It shows how molecular knowledge and technology of DNA entered cytogenetics step by step making it now daily practice in almost every modern chromosome lab. A crucial milestone in these decades has been the development of in situ protocols by Pardue and Gall, among others, initially only with isotopic labels, and without fluorescence microscopy and sophisticated detection systems. But these very first in situ hybridizations played a decisive role in the discovery of chromosome banding profiles, which were obtained under specific chemical, physical, or enzymatic conditions, thus effecting stainability of specific chromosome regions. In the decades thereafter, numerous technical improvements were achieved leading to complex multi-colour fluorescence in situ hybridization (FISH) protocols for mammals, plants, and insects. Highly improved detection systems of the FISH signals further allowed detection of DNA targets of up to 50 bp, whereas other protocols, which were developed to stretch chromatin fibres to the full length of native DNA, improved spatial resolution of adjacent targets in the light microscope to 1 kb.  相似文献   

13.
Fluorescence in situ hybridization (FISH) on human chromosomes in meta- and interphase is a well-established technique in clinical and tumor cytogenetics and for studies of evolution and interphase architecture. Many different protocols for labeling the DNA probes used for FISH have been published. Here we describe for the first time the successful use of Photoprobe biotin-labeled DNA probes in FISH experiments. Yeast artificial chromosome (YAC) and whole chromosome painting (wcp) probes were tested.  相似文献   

14.
Cytogenetic analyses of horses have benefited the horse industry by identifying chromosomal aberrations causing congenital abnormalities, embryonic loss and infertility. Technical advances in cytogenetics enabled the identification of chromosome specific aberrations. More recently, advances in genomic tools have been used to more precisely define chromosome abnormalities. In this report we review the history of equine clinical cytogenetics, identify historical landmarks for equine clinical cytogenetics, discuss how the current use of genomic tools has benefited this area, and how future genomics tools may enhance clinical cytogenetic studies in the horse.  相似文献   

15.
Fluorescence in situ hybridization (FISH) provides one of the most effective and rapid approaches for assigning and ordering DNA fragments within single eukaryotic chromosome bands. These techniques have wide applications not only for the mapping of the human genome and the genomes of other organisms, but also in clinical cytogenetics, somatic cell genetics, cancer diagnosis and gene expression studies.  相似文献   

16.
The author describes his introduction to the field of cytogenetics, with his first viewing of himself, cytogenetically, down the microscope, and the progression of human cytogenetics as an area of study up to its modern integration with molecular genetics and computer technology.  相似文献   

17.
J D Habbema 《Biometrics》1979,35(1):103-118
The basic technical facts of human cytogenetics and the laboratory methods employed in chromosome research are explained in simple terms. The main variables used to describe chromosome images are defined and discussed. Three discriminant analysis models for chromosome classification are developed: one in which each chromosome is classified in isolation, a modification in which the cell, if normal, contains 2 chromosomes of each of the 23 kinds, and a final one in which the cell is the unit of analysis instead of the chromosome. Suggestions are made to reduce the calculations involved and to take into account missing chromosomes. The problem of detection and classification of aberrative chromosomes is studied, also in relation to multiple cell analysis. Finally four relevant problems are briefly discussed: selection of metaphase spreads, selection of variables, uncertain reference classification and measurement of performance.  相似文献   

18.
Fluorescent in situ hybridization with chromosome-specific DNA libraries (chromosome painting) is an important new method for assessing chromosome rearrangements. In the research presented in this paper, two familial reciprocal translocations have been studied in the balanced and unbalanced forms, using both traditional G-banding techniques and chromosome painting. Although for each case two chromosomes were involved in the rearrangement, we found that only one chromosome library was suitable for detecting the translocation. These findings illustrate both the potential and the limitations of chromosome painting as a diagnostic tool in cytogenetics.  相似文献   

19.
Harper PS 《Human genetics》2006,119(1-2):226-232
The correct determination of the human diploid chromosome number as 46, by J-H Tjio and A Levan, at the University of Lund, Sweden, occurred 50 years ago, in December 1955; the finding was published in April 1956, ending a period of more than 30 years when the number had been thought to be 48. The background to the discovery and the surrounding factors are reassessed, as are the reasons why previous investigators persistently misidentified the precise number. The necessity for multiple technological advances, the power of previously accepted conclusions in influencing the interpretation of later results, and the importance of other work already undertaken in Lund, are all relevant factors for the occurrence of this discovery, the foundation for modern human cytogenetics, at this particular time and place.  相似文献   

20.
Anomalies of chromosome number and structure are among frequent causes of intellectual disability (ID) and psychomotor developmental delay. The great heterogeneity of ID is reflected in the diversity of the possible aberration types and causative chromosomal regions. In this context, conventional cytogenetics using light microscopy detect—amongst others—structural aberrations of sizes above 5–10 megabases (Mb), and also in the form of small mosaics, and locates them within the genome. Clinically suspected microdeletion and microduplication syndromes of much smaller aberration sizes can be detected by fluorescence in situ hybridization. Chromosomal microarrays (CMAs) can identify submicroscopic microdeletions and -duplications in the entire genome owing to their much superior resolution, which can reach significantly less than 0.1 Mb; however, CMAs cannot give evidence about the location of the duplications and usually barely detect low-grade mosaics of less than 20%. Because of their varying abilities, conventional cytogenetics and CMAs complement each other and detect causative chromosomal aberrations in approximately 15% each of patients with ID, including Down syndrome. Together with modern sequencing techniques, they constitute an important element of the etiological analysis of ID in human genetics. Typical chromosome aberration types are discussed with examples and are categorized in an overview of the present-day situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号