首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. Deprived of vitamin B12, Euglena gracilis strain Z ceases to divide which we believe to be a function of the light regime: division inhibition occurs more quickly in continuous light than in alternating (6L : 6D) light and not at all in total darkness. This phenomenon is dependent on the carbon source; cells grown in glutamate-malate medium do not divide regardless of the culture conditions while dl -lactate as carbon source permits growth in darkness in the absence of B12. Conditions which lead to an increased O2 or decreased CO2 tension in the medium, such as agitation in darkness or incubation in red or white light, result in inhibition of division. This inhibition can be reversed by re-transferring the cells to still culture in the dark or, in the case of light-induced blockage, by the addition of DCMU.  相似文献   

2.
Sugar-beet plants ( Beta vulgaris L. cv. Monohill) were cultivated for 4 weeks in a complete nutrient solution. Indirect effects of cadmium were studied by adding 5, 10 or 20 μ M CdCl2 to the culture medium while direct effects were determined by adding 1, 5, 20, 50 or 2 000 μ M CdCl2 to the assay media. The photosynthetic properties were characterized by measurement of CO2 fixation in intact plants, fluorescence emission by intact leaves and isolated chloroplasts, photosystem (PS) I and PSII mediated electron transport of isolated chloroplasts, and CO2-dependent O2 evolution by protoplasts. When directly applied to isolated leaves, protoplasts and chloroplasts. Cd2+ impeded CO2 fixation without affecting the rates of electron transport of PSI or PSII or the rate of dark respiration. When Cd2+ was applied through the culture medium the capacity for, and the maximal quantum yield of CO2 assimilation by intact plants both decreased. This was associated with: (1) decreased total as well as effective chlorophyll content (PSII antennae size), (2) decreased coupling of electron transport in isolated chloroplasts, (3) perturbed carbon reduction cycle as indicated by fluorescence measurements. Also, protoplasts isolated from leaves of Cd2+-cultivated plants showed an increased rate of dark respiration.  相似文献   

3.
The Nostoc-Gunnera symbiosis: carbon fixation and translocation   总被引:2,自引:0,他引:2  
The in vitro specific activity of ribulose-1,5-bisphosphate carboxylase (Rubisco; EC 4. 1. 1. 39) and the dark and light in vivo CO2 fixation activities were determined in the cyanobiont of Gunnera . Compared to the free-living isolate Nostoc PCC 9231, the in vitro Rubisco activity was high, while the in vivo CO2 fixation was very low. Light did not significantly influence CO2 fixation if the cyanobiont was left in the sliced Gunnera tissues, while a small light stimulation was found for CO2 fixation of the freshly-isolated cyanobiont. The adjacent non-infected Gunnera tissue showed a very low CO2 fixation. A rapid translocation of fixed 14CO2 from leaves towards apical parts of the plant was apparent, in particular to the symbiotic tissue. The 14C label appeared mainly in soluble form in this tissue and was rapidly catabolised as shown by 14C chase experiments. Also, short-term experiments revealed that maximum 14C accumulation occurred in the symbiotic tissue showing the highest rates of nitrogen fixation (Söderbäck et al. 1990), about 10–15 mm from the plant apex. The data were taken to indicate that there is a modification in the photosynthetic light reaction of the cyanobiont and that the cyanobiont lives heterotrophically in the dark on photo-synthate rapidly delivered from nearby leaves of the host plant.  相似文献   

4.
Photoassimilation of Glycolate, Glycine and Serine by Euglena gracilis   总被引:1,自引:0,他引:1  
SYNOPSIS. Glycolate was readily utilized for growth by Euglena gracilis , strain Z, in the light at pH 3.8 under a variety of atmospheric conditions, including CO2-free air and nitrogen. Glycolate did not support growth in the dark as sole carbon source; no significant uptake of glycolate was observed under these conditions. However, cells grown in the light with glycolate as sole carbon source were still capable of glycolate uptake for up to 3 hr after transfer to darkness, and glycolate was taken up by cells utilizing glucose in the dark. The energy requirement for glycolate utilization could thus be met either by light, or by the aerobic metabolism of glucose in the dark. DCMU, an inhibitor of photosystem II, inhibited photoassimilation of glycolate. In the light, but again not in the dark, glycine and serine also served as sole source of carbon under CO2-free air, but not under nitrogen. Net release of ammonia to the medium accompanied the photoassimilation of glycine and serine. Of the several metabolicallyrelated compounds tested, only glycolate was utilized as sole carbon source in the light under "anaerobic" conditions. A lag in net chlorophyll synthesis occurred during the photoassimilation of glycolate glycine or serine. Determination of rates of photosynthetic 14CO2 fixation confirmed that some inhibition of photosynthetic capacity had occurred in response to utilization of glycolate and related compounds.  相似文献   

5.
The stomatal response to CO2 is linked to changes in guard cell zeaxanthin*   总被引:4,自引:2,他引:2  
The mechanisms mediating CO2 sensing and light–CO2 interactions in guard cells are unknown. In growth chamber-grown Vicia faba leaves kept under constant light (500 μ mol m–2 s–1) and temperature, guard cell zeaxanthin content tracked ambient [CO2] and stomatal apertures. Increases in [CO2] from 400 to 1200 cm3 m–3 decreased zeaxanthin content from 180 to 80 mmol mol–1 Chl and decreased stomatal apertures by 7·0 μ m. Changes in zeaxanthin and aperture were reversed when [CO2] was lowered. Guard cell zeaxanthin content was linearly correlated with stomatal apertures. In the dark, the CO2-induced changes in stomatal aperture were much smaller, and guard cell zeaxanthin content did not change with chamber [CO2]. Guard cell zeaxanthin also tracked [CO2] and stomatal aperture in illuminated stomata from epidermal peels. Dithiothreitol (DTT), an inhibitor of zeaxanthin formation, eliminated CO2-induced zeaxanthin changes in guard cells from illuminated epidermal peels and reduced the stomatal CO2 response to the level observed in the dark. These data suggest that CO2-dependent changes in the zeaxanthin content of guard cells could modulate CO2-dependent changes of stomatal apertures in the light while a zeaxanthin-independent CO2 sensing mechanism would modulate the CO2 response in the dark.  相似文献   

6.
Abstract Dimethyl sulphide (DMS) was degraded by acclimatized activated sludge and by a mixed culture of Thiobacillus thioparus TK-1 and Pseudomonas sp. AK-2. While both these organisms persisted in stable co-culture on DMS, it was found that T. thioparus TK-1 and the derived strain TK-m grew in pure culture on DMS, and oxidized DMS with an apparent K m of 4.5 × 10−5 M. During growth, all the DMS-sulphur was oxidized stoichiometrically to sulphate but no methanol was detected in pure cultures of TK-m. DMS-carbon was probably converted to CO2, since the fixation of 14CO2 was progressively diluted during growth of a culture on 14CO2 and DMS. Growth yields were consistent with autotrophic growth, dependent on the oxidation of the methyl residues to CO2 (probably with formaldehyde as a first intermediate) and the sulphide to sulphate. The organism thus appears to exhibit a mixture, from the one substrate, of chemolithotrophic and methylotrophic energy generation supporting autotrophic growth with CO2 fixation.  相似文献   

7.
SYNOPSIS. Light-dependent incorporation of acetate occurs in an obligate phototrophic strain of Euglena gracilis (strain L). Assimilation is into all major biochemical fractions. Acetate does not induce operation of the glyoxylate by-pass as it does in heterotrophic strains; neither does it stimulate oxygen consumption. Acetate will not replace CO2 in phototrophic growth. A number of carbon sources tested would not support growth in the dark, and glucose was not incorporated either in the light or the dark.  相似文献   

8.
Delayed luminescence was measured from samples of a synchronously growing cell culture of the unicellular green alga, Scenedesmus obtusiusculus Chod., every second hour during the 24 h cell cycle under a 15/9 h lighi/dark regime. Both high (air + 2.5% CO2) and low (0.03% CO2) CO2 conditions were used. Under high CO2 conditions, while light excitation induces formation of a late (maximum reached after 10–60 s) transient peak in delayed luminescence in cells sampled after 10–16 h in the cell cycle. During most of the cell cycle low CO2 conditions stimulate a late transient peak formation. Excitation with 700 nm light, but not with 680 nm light, induces a late transient peak in delayed luminescence under high CO2 conditions. The transient peak is more or less pronounced depending on the cell stage. The variations might be due to a changing capacity for light-induced state I/stale II transitions during the cell cycle. It is assumed that the formation of a late transient peak in delayed luminescence is due to ATP hydrolyzation and is thus favoured by a high ATP/NADPH ratio. Hydrolyzation of ATP affects the transthylakoidal ΔpH, which regulates the reverse electron flow to the plastoquinone-pool and QA/QB, thus affecting the decay kinetics of the delayed luminescence.  相似文献   

9.
Evidence from previous studies suggested that adjustments in assimilate formation and partitioning in leaves might occur over time when plants are exposed to enriched atmospheric CO2. We examined assimilate relations of source (primary unifoliolate) and developing sink (second mainstem trifoliolate) leaves of soybean [ Glycine max (L.) Merr. cv. Lee] plants for 12 days after transfer from a control (350 μl l−1) to a high (700 μ l−1) CO2 environment. Similar responses were evident in the two leaf types. Net CO2 exchange rate (CER) immediately increased and remained elevated in high CO2. Initially, the additional assimilate at high CO2 levels in the light and was utilized in the subsequent dark period. After approximately 7 days, assimilate export in the light began to increase and by 12 days reached rates 3 to 5 times that of the control. In the developing sink leaf, high rates of export in the light occurred as the leaf approached full expansion. The results indicate that a specific acclimation process occurs in source leaves which increases the capacity for assimilate export in the light phase of the diurnal cycle as plants adjust to enriched CO2 and a more rapid growth rate.  相似文献   

10.
The variations in δ 13C in both leaf carbohydrates (starch and sucrose) and CO2 respired in the dark from the cotyledonary leaves of Phaseolus vulgaris L. were investigated during a progressive drought. As expected, sucrose and starch became heavier (enriched in 13C) with decreasing stomatal conductance and decreasing p i/ p a during the first half (15 d) of the dehydration cycle. Thereafter, when stomata remained closed and leaf net photosynthesis was near zero, the tendency was reversed: the carbohydrates became lighter (depleted in 13C). This may be explained by increased p i/ p a but other possible explanations are also discussed. Interestingly, the variations in δ 13C of CO2 respired in the dark were correlated with those of sucrose for both well-watered and dehydrated plants. A linear relationship was obtained between δ 13C of CO2 respired in the dark and sucrose, respired CO2 always being enriched in 13C compared with sucrose by ≈ 6‰. The whole leaf organic matter was depleted in 13C compared with leaf carbohydrates by at least 1‰. These results suggest that: (i) a discrimination by ≈ 6‰ occurs during dark respiration processes releasing 13C-enriched CO2; and that (ii) this leads to 13C depletion in the remaining leaf material.  相似文献   

11.
The objective of this investigation was to examine the effect of an elevated atmospheric CO2 partial pressure ( p CO2) on the N-sink strength and performance of symbiotic N2 fixation in Trifolium repens L. cv. Milkanova. After initial growth under ambient p CO2 in a nitrogen-free nutrient solution, T. repens in the exponential growth stage was exposed to ambient and elevated p CO2 (35 and 60 Pa) and two levels of mineral N (N-free and 7·5 mol m–3 N) for 36 d in single pots filled with silica sand in growth chambers. Elevated p CO2 evoked a significant increase in biomass production from day 12 after the start of CO2 enrichment. For plants supplied with 7·5 mol m–3 N, the relative contribution of symbiotically fixed N (%Nsym) as opposed to N assimilated from mineral sources (15N-isotope-dilution method), dropped to 40%. However, in the presence of this high level of mineral N, %Nsym was unaffected by atmospheric p CO2 over the entire experimental period. In plants fully dependent on N2 fixation, the increase in N yield reflects a stimulation of symbiotic N2 fixation that was the result of the formation of more nodules rather than of higher specific N2 fixation. These results are discussed with regard to physiological processes governing symbiotic N2 fixation and to the response of symbiotic N2 fixation to elevated p CO2 in field-grown T. repens .  相似文献   

12.
Respiration in a future, higher-CO2 world   总被引:20,自引:9,他引:11  
Abstract. Apart from its impact on global warming, the annually increasing atmospheric [CO2] is of interest to plant scientists primarily because of its direct influence on photosynthesis and photorespiration in C3 species. But in addition, 'dark' respiration, another major component of the carbon budget of higher plants, may be affected by a change in [CO2] independent of an increase in temperature. Literature pertaining to an impact of [CO2] on respiration rate is reviewed. With an increase in [CO2], respiration rate is increased in some cases, but decreased in others. The effects of [CO2] on respiration rate may be direct or indirect. Mechanisms responsible for various observations are proposed. These proposed mechanisms relate to changes in: (1) levels of nonstructural carbohydrates, (2) growth rate and structural phytomass accumulation, (3) composition of phytomass, (4) direct chemical interactions between CO2 and respiratory enzymes, (5) direct chemical interactions between CO2 and other cellular components, (6) dark CO2 fixation rate, and (7) ethylene biosynthesis rate. Because a range-of (possibly interactive) effects exist, and present knowledge is limited, the impact of future [CO2] on respiration rate cannot be predicted. Theoretical considerations and types of experiments that can lead to an increase in the understanding of this issue are outlined.  相似文献   

13.
Entry of the divalent cations Ni2+, Co2+ and Zn2+ into cells of maize ( Zea mays L. cv. Dekalb XL 85) root tissue is accompanied by an acidification of the incubation medium, a decrease in both the pH of the cell sap and the level of malate in the cells, and by an inhibition of dark fixation of CO2. K+, on the contrary, induces only a very low acidification of the incubation medium, does not change either the pH of the cell sap or the malate level in the cells, and induces an increase in CO2 dark fixation. Different mechanisms are postulated for the stimulation of proton extrusion by divalent cations and K+.  相似文献   

14.
Abstract Air grown cultures of the cyanobacterium Synechococcus 6301, when incubated under continuous illumination with nitrate as the sole nitrogen source, started to liberate nitrite from the second day of inoculation. Nitrite accumulation depended on culture density and was caused by CO2 deficiency since it could be prevented by addition of 5% CO2 to the gas stream. Nitrite excreted during growth with air (0.035% CO2) was taken up after an increase in CO2 concentration to 5%.
In sulfur depleted cultures, nitrite excretion took place also with saturating CO2 concentration. In this case nitrite accumulation could be reversed by addition of a suitable sulfur source.
Under both conditions for nitrite accumulation, carbon and sulfur deficiency, a significant decrease in nitrite reductase activity was observed which might account for nitrite liberation.  相似文献   

15.
A green-pigmented callus of the moss, Sphagnum imbricatum Hornsch. ex. Russ., was induced and a chlorophyllous cell suspension culture was established using a modified Murashige and Skoog's medium without plant hormones. Cell growth in the light in the presence of glucose started after a short lag and was exponential for 12 days. The chlorophyll level was about 15 μg (mg cell dry weight)−1 and photosynthetic activity ca 20 to 50 μmol O2 (mg chlorophyll)−1h−1. Cell growth in the light was negligible in the absence of glucose under ordinary air, but photoautotrophic growth was possible under elevated CO2 concentrations. In the dark, the moss cells grew heterotrophically and continued to synthesize chlorophyll, although at a much reduced rate. The suspension-cultured cells redifferentiated protonemata and shoots when transferred to solid Knop's medium. In contrast to the callus cells, which could not assimilate nitrate, redifferentiated plantlets could use nitrate as the sole nitrogen source.  相似文献   

16.
Rapidly dividing photoautotrophic cell suspensions from Chenopodium rubrum L. assimilated about 85 μmol CO2 (mg chlorophyll)−1 h−1. During the late stationary phase of culture growth, CO2 fixation rate was reduced to about 60 μmol CO2 (mg chlorophyll)−1 h−1. Actively dividing cells characteristically incorporated a smaller proportion of 14C into starch than cells from non-dividing stationary phases. In rapidly dividing cells, [14C]-turnover from free sugars, sugar-phosphates, organic and amino acids was substantially higher compared to non-dividing cells from stationary growth phase. Higher proportions of photosynthetically fixed carbon were channelled into proteins, lipids and structural components in actively dividing cells than in non-dividing cells. In the latter. 14C was preferentially channeled into starch, and a striking increase in starch accumulation was observed. The transfer of non-dividing, stationary growth-phase cells into fresh culture medium resulted in an increase in the maximum extractable activities of some enzymes involved in the glycolytic and dark respiratory pathways and in the citric acid cycle. In contrast, the maximum extractable activities of the chloroplastic enzymes, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.38) and NADP+-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) were highest after the cells had reached the stationary growth phase.  相似文献   

17.
Chlorophyllous cells in suspension culture from the moss, Barbula unguculata Hedw., grown under photoheterotrophic conditions were transferred to photoautotrophic conditions. The cells started to grow photoautotrophically without selection. Maximum growth was observed under irradiances of more than 5 W m2 and in an atmosphere enriched with 1% (v/v) CO2. Under optimum growth conditions, dry weight and chlorophyll content in the culture had increased 20-fold after 20 days of cell growth. High concentration of chlorophyll [10–20 μg (mg dry weight)−1] and high photosynthetic actively [30–70 μmol O2 evolved (mg chlorophyll)−1 h−1] were observed throughout the culture period. In sugar-free culture medium, cell growth did not occur in the dark or in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) under light, although cell growth was observed in glucose-containing medium under those conditions. When cells that were grown photoautotrophically for one year were transferred to glucose-containing medium under ordinary air, they started to grow heterotrophically both in the light and in the dark.  相似文献   

18.
To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata , which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in p CO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low p CO2. Stomata did not respond to a decreased p CO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal p CO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to p CO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low p CO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species.  相似文献   

19.
To determine how increased atmospheric CO2 will affect the physiology of coppiced plants, sprouts originating from two hybrid poplar clones ( Populus trichocarpa × P. deltoides - Beaupre and P. deltoides × P. nigra - Robusta) were grown in open-top chambers containing ambient or elevated (ambient + 360 μmol mol−1) CO2 concentration. The effects of elevated CO2 concentration on leaf photosynthesis, stomatal conductance, dark respiration, carbohydrate concentration and nitrogen concentration were measured. Furthermore, dark respiration of leaves was partitioned into growth and maintenance components by regressing specific respiration rate vs specific growth rate. Sprouts of both clones exposed to CO2 enrichment showed no indication of photosynthetic down-regulation. During reciprocal gas exchange measurements, CO2 enrichment significantly increased photosynthesis of all sprouts by approximately 60% ( P < 0.01) on both an early and late season sampling date, decreased stomatal conductance of all sprouts by 10% ( P < 0.04) on the early sampling date and nonsignificantly decreased dark respiration by an average of 11%. Growth under elevated CO2 had no consistent effect on foliar sugar concentration but significantly increased foliar starch by 80%. Respiration rate was highly correlated with both specific growth rate and percent nitrogen. Long-term CO2 enrichment did not significantly affect the maintenance respiration coefficient or the growth respiration coefficient. Carbon dioxide enrichment affected the physiology of the sprouts the same way it affected these plants before they were coppiced.  相似文献   

20.
Starch degradation was investigated during anaerobic dark incubation in the algae Chlamydomonas reinhardii, Chlorogonium elongatum and Chlorella fusca . The pathway of algal formate fermentation was elucidated by determination of the relationship between substrate consumption and product accumulation. The fate of reducing equivalents was also determined. Investigations were done on dependence of pH, fermentation time, cell cycle, and after addition of H2, hypophosphite and inhibitors of protein synthesis.
A mixed acid fermentation that produced formate, acetate and ethanol (2:1:1) with only small amounts of H2 and CO2 was shown for the algal strains used. The failure of inhibition with cycloheximide and chloramphenicol indicated the constitutive presence of all fermenting enzymes. Nevertheless, glycerol, D(–)lactate and stoichiometrical amounts of ethanol and CO2 were found additionally at extreme pH (pH 4.6 and 7.9), and after addition of H2 and hypophosphite (7 m M ). During long-term incubation (28 h) fermentation changed from mixed acid to ethanol production. The pathways of algal fermentation did not depend on cell cycle, and fermentation rate corresponded directly to the actual starch content of algal cells. The results gave evidence for synthesis of formate during anaerobic metabolism in algae by a thioclastic cleavage of pyruvate via the enzyme pyruvate formate lyase. This indicated an algal fermentation pathway thought to be present only in procaryotic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号