首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The translocations between the supernumerary B chromosomes and the normal A chromosomes of maize provide a valuable tool for gene localizations, dosage studies and characterization of mutants as null, leaky or gain-of-function. A procedure is described, that relies on recombination in the B chromosome, for marking each of the various B-A translocations with a single dominant marker that will allow dosage classifications of individuals at the mature kernel stage. This marker is R-scm3, which conditions anthocyanin pigment in the aleurone of the endosperm and the scutellum of the embryo. A test for recombination in the B chromosome was conducted by crossing together two translocations, that were broken on opposite sides of the B centromere, and in different A chromosome arms, namely TB-1La and TB-10L18. An example was recovered that linked genetic markers on 1L and 10L to the B centromere. Cytological examination at pachytene of meiosis confirmed the new chromosomal linkage. The use of this procedure to produce a comprehensive set of uniformly marked B-A translocations is discussed.  相似文献   

2.
Chromosome translocations induced by DNA damaging agents, such as ionizing radiation and certain chemotherapies, alter genetic information resulting in malignant transformation. Abrogation or loss of the ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, increases the incidence of chromosome translocations. However, how ATM protects cells from chromosome translocations is still unclear. Chromosome translocations involving the MLL gene on 11q23 are the most frequent chromosome abnormalities in secondary leukemias associated with chemotherapy employing etoposide, a topoisomerase II poison. Here we show that ATM deficiency results in the excessive binding of the DNA recombination protein RAD51 at the translocation breakpoint hotspot of 11q23 chromosome translocation after etoposide exposure. Binding of Replication protein A (RPA) and the chromatin remodeler INO80, which facilitate RAD51 loading on damaged DNA, to the hotspot were also increased by ATM deficiency. Thus, in addition to activating DNA damage signaling, ATM may avert chromosome translocations by preventing excessive loading of recombinational repair proteins onto translocation breakpoint hotspots.  相似文献   

3.
Chromosome breakage and recombination at fragile sites.   总被引:15,自引:0,他引:15       下载免费PDF全文
Chromosomal fragile sites are points on chromosomes that usually appear as nonstaining chromosome or chromatid gaps. It has frequently been suggested that fragile sites may be involved in chromosome breakage and recombination events. We and others have previously shown that fragile sites predispose to intrachromosomal recombination as measured by sister-chromatid exchanges. These findings suggested that fragile site expression often, if not always, is accompanied by DNA strand breakage. In the present report, fragile sites are shown to predispose to deletions and interchromosomal recombination. By use of somatic cell hybrids containing either human chromosome 3 or the fragile X chromosome, deletions and translocations were induced by FUdR or aphidicolin with breakpoints at the fragile sites Xq27 or 3p14.2 (FRA3B) or at points so close to the fragile sites as to be cytogenetically indistinguishable. Southern blot analysis of DNA from a panel of chromosome 3 deletion and translocation hybrids was then utilized to detect loss or retention of markers flanking FRA3B and to corroborate the cytogenetic evidence that the breakpoints were at this fragile site. One cell line with a reciprocal translocation between human chromosome 3 (with breakpoint at 3p14.2) and a hamster chromosome showed cytogenetically that the fragile site was expressed on both derivative chromosomes, supporting the hypothesis that the fragile site represents a repeated sequence. The approach described provides a means of generating specific rearrangements in somatic cell hybrids with a breakpoint at a fragile site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To investigate patterns of genetic recombination within a heterozygous paracentric inversion of chromosome 9 (46XY inv[9] [q32q34.3]), we performed sperm typing using a series of polymorphic microsatellite markers spanning the inversion region. For comparison, two donors with cytogenetically normal chromosomes 9, one of whom was heterozygous for a pericentric chromosome 2 inversion (46XY inv[2] [p11q13]), were also tested. Linkage analysis was performed by use of the multilocus linkage-analysis program SPERM, and also CRI-MAP, which was adapted for sperm-typing data. Analysis of the controls generated a marker order in agreement with previously published data and revealed no significant interchromosomal effects of the inv(2) on recombination on chromosome 9. FISH employing cosmids containing appropriate chromosome 9 markers was used to localize the inversion breakpoint of inv(9). Analysis of inv(9) sperm was performed by use of a set of microsatellite markers that mapped centromeric to, telomeric to, and within the inversion breakpoints. Three distinct patterns of recombination across the region were observed. Proximal to the centromeric breakpoint, recombination was similar to normal levels. Distal to the telomeric breakpoint, there was an increase in recombination found in the inversion patient. Finally, within the inversion, recombination was dramatically reduced, but several apparent double recombinants were found. A putative model explaining these data is proposed.  相似文献   

5.
E D Nagy  M Molnár-Láng  G Linc  L Láng 《Génome》2002,45(6):1238-1247
Five wheat-barley translocations in a wheat background were characterized through the combination of cytogenetic and molecular genetic approaches. The wheat chromosome segments involved in the translocations were identified using sequential GISH and two-colour FISH with the probes pSc119.2 and pAs1. The barley chromatin in these lines was identified using SSR markers. A total of 45 markers distributed over the total barley genome were selected from a recently published linkage map of barley and tested on the translocation lines. The following translocations were identified: 2DS.2DL-1HS, 3HS.3BL, 6BS.6BL-4HL, 4D-5HS, and 7DL.7DS-5HS. Wheat-barley disomic and ditelosomic addition lines for the chromosomes 3HS, 4H, 4HL, 5H, 5HL, and 6HS were used to determine the correct location of 21 markers and the position of the centromere. An intragenomic translocation breakpoint was detected on the short arm of the barley chromosome 5H with the help of SSR marker analysis. Physical mapping of the SSR markers on chromosomes 1H and 5H was carried out using the intragenomic and the interspecific translocation breakpoints, as well as the centromere, as physical landmarks.  相似文献   

6.
Tennyson RB  Ebran N  Herrera AE  Lindsley JE 《Genetics》2002,160(4):1363-1373
Chromosomal translocations are common genetic abnormalities found in both leukemias and solid tumors. While much has been learned about the effects of specific translocations on cell proliferation, much less is known about what causes these chromosome rearrangements. This article describes the development and use of a system that genetically selects for rare translocation events using the yeast Saccharomyces cerevisiae. A translocation YAC was created that contains the breakpoint cluster region from the human MLL gene, a gene frequently involved in translocations in leukemia patients, flanked by positive and negative selection markers. A translocation between the YAC and a yeast chromosome, whose breakpoint falls within the MLL DNA, physically separates the markers and forms the basis for the selection. When RAD52 is deleted, essentially all of the selected and screened cells contain simple translocations. The detectable translocation rates are the same in haploids and diploids, although the mechanisms involved and true translocation rates may be distinct. A unique double-strand break induced within the MLL sequences increases the number of detectable translocation events 100- to 1000-fold. This novel system provides a tractable assay for answering basic mechanistic questions about the development of chromosomal translocations.  相似文献   

7.
Structural chromosomal rearrangements occur commonly in the general population. Individuals that carry a balanced translocation are at risk of having unbalanced offspring; therefore, the frequency of translocations in couples with recurrent spontaneous abortions is higher than that in the general population. The constitutional t(11;22) translocation is the most common recurrent non-Robertsonian translocation in humans and may serve as a model to determine the mechanism that causes recurrent meiotic translocations. We previously localized the t(11;22) translocation breakpoint to a region on 22q11 within a low-copy repeat, termed "LCR22." To define the breakpoint on 11q23 and to ascertain whether this region shares homology with LCR22 sequences, we performed haplotype analysis on patients with der(22) syndrome. We found that the breakpoint on 11q23 occurred between two genetic markers, D11S1340 and APOC3-tetra, both being present within a single bacterial-artificial-chromosome clone. To determine whether the breakpoint occurred within the same region among a larger set of carriers, we performed FISH mapping studies. The breakpoints were all within the same clone, suggesting that this region may harbor sequences that are prone to breakage. We narrowed the breakpoint interval, in both derivative chromosomes from two unrelated carriers, to a 190-bp, AT-rich repeat, which indicates that this repeat may mediate recombination events on chromosome 11. Interestingly, the LCR22s harbor AT-rich repeats, suggesting that this sequence motif may mediate recombination events in nonhomologous chromosomes during meiosis.  相似文献   

8.
K. S. McKim  A. M. Howell    A. M. Rose 《Genetics》1988,120(4):987-1001
In the nematode Caenorhabditis elegans, recombination suppression in translocation heterozygotes is severe and extensive. We have examined the meiotic properties of two translocations involving chromosome I, szT1(I;X) and hT1(I;V). No recombination was observed in either of these translocation heterozygotes along the left (let-362-unc-13) 17 map units of chromosome I. Using half-translocations as free duplications, we mapped the breakpoints of szT1 and hT1. The boundaries of crossover suppression coincided with the physical breakpoints. We propose that DNA sequences at the right end of chromosome I facilitate pairing and recombination. We use the data from translocations of other chromosomes to map the location of pairing sites on four other chromosomes. hT1 and szT1 differed markedly in their effect on recombination adjacent to the crossover suppressed region. hT1 had no effect on recombination in the adjacent interval. In contrast, the 0.8 map unit interval immediately adjacent to the szT1(I;X) breakpoint on chromosome I increased to 2.5 map units in translocation heterozygotes. This increase occurs in a chromosomal interval which can be expanded by treatment with radiation. These results are consistent with the suggestion that the szT1(I) breakpoint is in a region of DNA in which meiotic recombination is suppressed relative to the genomic average. We propose that DNA sequences disrupted by the szT1 translocation are responsible for determining the frequency of meiotic recombination in the vicinity of the breakpoint.  相似文献   

9.
Chromosome translocations in breast cancer with breakpoints at 8p12   总被引:1,自引:0,他引:1  
Unbalanced chromosome translocations with breakpoints around 8p12, resulting in loss of distal 8p, are common in carcinomas. We have mapped the 8p12 breakpoints in three breast cancer cell lines, T-47D, MDA-MB-361, and ZR-75-1, using YACs and PACs between D8S540 and D8S255 by fluorescence in situ hybridization. All three lines had a breakpoint close to D8S505, proximal to HGL. Each breakpoint was distinct, but all were within 0.5 to 1.5 Mb of each other. The T-47D cell line had a straightforward translocation, but in MDA-MB-361 and ZR-75-1 the translocations were accompanied by local rearrangements of surprising complexity. Small regions of 8p from close to the breakpoint were duplicated or amplified as inserts in the attached chromosome fragment. ZR-75-1 also had retained a separate fragment of about 1 Mb, from the region 1 to 3 Mb telomeric to the common breakpoint, that included HGL. This line also had an interstitial deletion several megabases more centromeric. The data suggest that breakpoints on 8p12 are clustered in a small region and show that translocations breaking there may be accompanied by additional rearrangements.  相似文献   

10.
C. A. Malcolm  P. Mali 《Genetica》1986,70(1):37-42
The development of two genetic sexing systems for Anopheles stephensi based on the visible mutant black larvae (Bl) are reported. Two Y-linked translocations, T(Y-3)20 and T(Y-3)24, induced by 5 Krads X-ray irradiation were found to have breakpoints almost completely linked to Bl, showing recombination frequencies of less than 0.05% and 0.9% respectively. These strains can be maintained as stable inbreeding populations in which males are easily selected at the late 3rd or 4th larval instar by their half-black appearance, which is distinct from the full black phenotype of the females.A third Y-linked translocation, T(Y-3)9, in which the breakpoint showed only 0.7% recombination with an adult morphological mutant, short palpi (sp) was also isolated. Linkage between the breakpoint of 5 Y-linked translocations and the DDT resistance gene locus (DDT) was established providing incentive for further studies. Only two translocations showing poor linkage between the breakpoint and the dieldrin resistance gene locus (Dl) were identified. Linkage data and cytology indicated that each of the Y-chromosone 3 translocations studied involved the 3R arm, and not 3L where Dl is located.  相似文献   

11.
A total of 15 polymorphic markers were used to construct a genetic map that encompasses the NF1 locus on chromosome 17. The markers were a subset of a large collection of chromosome 17-specific probes and were selected for marker typing in NF1 families after physical localization to the pericentric region of the chromosome. Multilocus data for a total of 17 informative NF1 families and 39 other families were included in genetic analyses. No recombination was observed between NF1 and four markers, one or more of which was informative in 86% of parents. More-refined physical mapping studies demonstrated that all four of the markers are proximal to the chromosome 17 translocation breakpoints from two NF1 patients bearing balanced translocations. The region flanking the disease locus spans a distance of 1 centimorgan (cM) in males and 9 cM in females. Close flanking markers were informative in 76% of meioses. Sex differences in recombination rates in the pericentric region were highly significant statistically.  相似文献   

12.
The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination–repair mechanisms seem to predominate. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we investigated the constitutional rearrangements of 1p36. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions, such as microhomology of up to three nucleotides, along with no significant sequence identity in close proximity to the breakpoint regions. All the breakpoints appeared to be unique and their occurrence was limited to non-repetitive, unique DNA sequences. Several recombination- or cleavage-associated motifs that may promote non-homologous recombination were observed in close proximity to the junctions. We conclude that NHEJ is likely the mechanism of DNA repair that generates these rearrangements. Additionally, two apparently pure terminal deletions were also investigated, and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90–98% identity. Segmental duplications can serve as substrates for ectopic homologous recombination or stimulate genomic rearrangements.  相似文献   

13.
The genetic constitutions of chromosome 2M of Aegilops comosa and the derived wheat-Ae. comosa translocations were analyzed by molecular cytogenetic techniques. Hybridization of 15 RFLP markers covering the entire length of the group-2 chromosomes revealed that chromosome 2M was structurally rearranged compared to the homoeologous chromosomes of wheat by either a pericentric inversion or a terminal intrachromosomal translocation. The breakpoint of the rearrangement was located in a region between the loci Xpsr131 and Xcdo405, resulting in the translocation of 47% of 2MS to 2ML. This aberrant structure of 2M allowed homoeologous recombination between 2M and its wheat counterpart only in the translocated segment on 2ML. C-banding and genomic in situ hybridization analyses confirmed that all translocation chromosomes consisted of the complete 2MS arm, a large part of 2ML, and very small distal segments derived from 2AS or 2DS, as expected from the aberrant structure of chromosome 2M. Thus, the translocation in the line 2A-2M?4/2 can be described as T2AS-2M?1L???2M?1S and the translocations in the lines Compair and 2D-2M?3/8 as T2DS-2M?1L???2M?1S. RFLP analysis determined the breakpoints in these translocation chromosomes to be within the telomeric 16% of the wheat chromosome arms. The breakpoint of the 2A/2M translocation was between Xbcd348 and Xcdo783, and that of the 2D/2M translocation was between Xcdo783 and Xpsr666. Because the translocation chromosomes retain the structural aberration found in chromosome 2M, further exploitation of the wheat-Ae. comosa translocations for cultivar improvement is questionable.  相似文献   

14.
Felix CA  Kolaris CP  Osheroff N 《DNA Repair》2006,5(9-10):1093-1108
Acute leukemias with balanced chromosomal translocations, protean morphologic and immunophenotypic presentations but generally shorter latency and absence of myelodysplasia are recognized as a complication of anti-cancer drugs that behave as topoisomerase II poisons. Translocations affecting the breakpoint cluster region of the MLL gene at chromosome band 11q23 are the most common molecular genetic aberrations in leukemias associated with the topoisomerase II poisons. These agents perturb the cleavage-religation equilibrium of topoisomerase II and increase cleavage complexes. One model suggests that this damages the DNA directly and leads to chromosomal breakage, which may result in untoward DNA recombination in the form of translocations. This review will summarize the evidence for topoisomerase II involvement in the genesis of translocations and extension of the model to acute leukemia in infants characterized by similar MLL translocations.  相似文献   

15.
The t(11;22) is the only known recurrent, non-Robertsonian constitutional translocation. We have analyzed t(11;22) balanced-translocation carriers from multiple unrelated families by FISH, to localize the t(11;22) breakpoints on both chromosome 11 and chromosome 22. In 23 unrelated balanced-translocation carriers, the breakpoint was localized within a 400-kb interval between D22S788 (N41) and ZNF74, on 22q11. Also, 13 of these 23 carriers were tested with probes from chromosome 11, and, in each, the breakpoint was localized between D11S1340 and APOA1, on 11q23, to a region 相似文献   

16.
Zhang Y  Rowley JD 《DNA Repair》2006,5(9-10):1282-1297
Recurring chromosome abnormalities are strongly associated with certain subtypes of leukemia, lymphoma and sarcomas. More recently, their potential involvement in carcinomas, i.e. prostate cancer, has been recognized. They are among the most important factors in determining disease prognosis, and in many cases, identification of these chromosome abnormalities is crucial in selecting appropriate treatment protocols. Chromosome translocations are frequently observed in both de novo and therapy-related acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). The mechanisms that result in such chromosome translocations in leukemia and other cancers are largely unknown. Genomic breakpoints in all the common chromosome translocations in leukemia, including t(4;11), t(9;11), t(8;21), inv(16), t(15;17), t(12;21), t(1;19) and t(9;22), have been cloned. Genomic breakpoints tend to cluster in certain intronic regions of the relevant genes including MLL, AF4, AF9, AML1, ETO, CBFB, MYHI1, PML, RARA, TEL, E2A, PBX1, BCR and ABL. However, whereas the genomic breakpoints in MLL tend to cluster in the 5' portion of the 8.3 kb breakpoint cluster region (BCR) in de novo and adult patients and in the 3' portion in infant leukemia patients and t-AML patients, those in both the AML1 and ETO genes occur in the same clustered regions in both de novo and t-AML patients. These differences may reflect differences in the mechanisms involved in the formation of the translocations. Specific chromatin structural elements, such as in vivo topoisomerase II (topo II) cleavage sites, DNase I hypersensitive sites and scaffold attachment regions (SARs) have been mapped in the breakpoint regions of the relevant genes. Strong in vivo topo II cleavage sites and DNase I hypersensitive sites often co-localize with each other and also with many of the BCRs in most of these genes, whereas SARs are associated with BCRs in MLL, AF4, AF9, AML1, ETO and ABL, but not in the BCR gene. In addition, the BCRs in MLL, AML1 and ETO have the lowest free energy level for unwinding double strand DNA. Virtually all chromosome translocations in leukemia that have been analyzed to date show no consistent homologous sequences at the breakpoints, whereas a strong non-homologous end joining (NHEJ) repair signature exists at all of these chromosome translocation breakpoint junctions; this includes small deletions and duplications in each breakpoint, and micro-homologies and non-template insertions at genomic junctions of each chromosome translocation. Surprisingly, the size of these deletions and duplications in the same translocation is much larger in de novo leukemia than in therapy-related leukemia. We propose a non-homologous chromosome recombination model as one of the mechanisms that results in chromosome translocations in leukemia. The topo II cleavage sites at open chromatin regions (DNase I hypersensitive sites), SARs or the regions with low energy level are vulnerable to certain genotoxic or other agents and become the initial breakage sites, which are followed by an excision end joining repair process.  相似文献   

17.
The objective of this study was to investigate the frequency and type of chromosome segregation patterns in cleavage stage embryos obtained from male carriers of Robertsonian (ROB) and reciprocal (REC) translocations undergoing preimplantation genetic diagnosis (PGD) at our reproductive center. We used FISH to analyze chromosome segregation in 308 day 3 cleavage stage embryos obtained from 26 patients. The percentage of embryos consistent with normal or balanced segregation (55.1% vs. 27.1%) and clinical pregnancy (62.5% vs. 19.2%) rates were higher in ROB than the REC translocation carriers. Involvement of non-acrocentric chromosome(s) or terminal breakpoint(s) in reciprocal translocations was associated with an increase in the percent of embryos consistent with adjacent 1 but with a decrease in 3∶1 segregation. Similar results were obtained in the analysis of nontransferred embryos donated for research. 3∶1 segregation was the most frequent segregation type in both day 3 (31%) and spare (35%) embryos obtained from carriers of t(11;22)(q23;q11), the only non-random REC with the same breakpoint reported in a large number of unrelated families mainly identified by the birth of a child with derivative chromosome 22. These results suggest that chromosome segregation patterns in day 3 and nontransferred embryos obtained from male translocation carriers vary with the type of translocation and involvement of acrocentric chromosome(s) or terminal breakpoint(s). These results should be helpful in estimating reproductive success in translocation carriers undergoing PGD.  相似文献   

18.
Salient features of the first meiotic division are independent segregation of chromosomes and homologous recombination (HR). In non-sexually reproducing, homozygous species studied to date HR is absent. In this study, we constructed the first linkage maps of homozygous, bivalent-forming Oenothera species and provide evidence that HR was exclusively confined to the chromosome ends of all linkage groups in our population. Co-segregation of complementary DNA-based markers with the major group of AFLP markers indicates that HR has only a minor role in generating genetic diversity of this taxon despite its efficient adaptation capability. Uneven chromosome condensation during meiosis in Oenothera may account for restriction of HR. The use of plants with ancient chromosomal arm arrangement demonstrates that limitation of HR occurred before and independent from species hybridizations and reciprocal translocations of chromosome arms-a phenomenon, which is widespread in the genus. We propose that consecutive loss of HR favored the evolution of reciprocal translocations, beneficial superlinkage groups and ultimately permanent translocation heterozygosity.  相似文献   

19.
20.
Previous genetic analyses of chromosome 17 markers and NF1 (Fain et al. 1987) were extended in an attempt to order marker loci that map physically to 17cen----17q12. Three additional markers (HHH202, CRI-L581, and CRI-L946) were included in the analyses. Recombinants within the cluster of seven unordered marker loci were identified by pairwise analyses for each family and by examining the within-sibship segregation patterns for different markers. Changes in the segregation pattern for different loci define genetic breakpoints. Given that interference is complete in the region, markers with the same segregation pattern lie on one side of the breakpoint, while markers with different segregation patterns lie on opposite sides of the breakpoint. If the order of boundary markers is known, markers on each side of a breakpoint can be oriented in relation to the centromere. The order cen-(HHH202/NF1)-(EW207)-(EW203/CRI-L581)- (CRI-L946)-(HOX-2/NGFR)-qter was inferred by combining information from physical breakpoints in a panel of mouse/human hybrids and information from genetic breakpoints found in 16 NF1 families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号