首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cochlear outer hair cells (OHCs) are thought to play an essential role in the high sensitivity and sharp frequency selectivity of the hearing organ by generating forces that amplify the vibrations of this organ at frequencies up to several tens of kHz. This tuning process depends on the mechanical properties of the cochlear partition, which OHC activity has been proposed to modulate on a cycle-by-cycle basis. OHCs have a specialized shell-core ultrastructure believed to be important for the mechanics of these cells and for their unique electromotility properties. Here we use atomic force microscopy to investigate the mechanical properties of isolated living OHCs and to show that indentation mechanics of their membrane is consistent with a shell-core organization. Indentations of OHCs are also found to be highly nonhysteretic at deformation rates of more than 40 microm/s, which suggests the OHC lateral wall is a highly elastic structure, with little viscous dissipation, as would appear to be required in view of the very rapid changes in shape and mechanics OHCs are believed to undergo in vivo.  相似文献   

2.
The organ of Corti contains two different types of auditory receptors; the inner (IHCs) and outer (OHCs) hair cells. This dualism is further represented in their innervation, IHCs being innervated by type I neurons, and OHCs by type II neurons (in man, named small ganglion cells). Two efferent systems are also present. Here, we have analyzed the expression of the 57-kDa neuron-specific intermediate filament protein peripherin (PP) in human cochlea. In the human organ of Corti, PP seems to be specifically expressed in OHC afferents. Small or type II spiral ganglion cell bodies also intensely express PP. Thus, PP can be used as a marker for the characterization of the innervation of the OHC system in man.  相似文献   

3.
The efferent (olivo-cochlear) innervation of the organ of Corti was studied using a monoclonal antibody against choline acetyltransferase (ChAT). In the inner spiral bundle (ISB), below the inner hair cells (IHCs), the anti-ChAT immunoreactivity was observed within unvesiculated fibers and vesiculated varicosities. Unreactive varicosities, at least as numerous as the immunoreactive ones, were also detected. Both types of vesiculated varicosities synapsed with the dendrites of the primary auditory neurons (afferent fibers) connected to the IHCs. At the outer hair cell (OHC) level, nearly all the vesiculated terminals making axo-somatic synapses with the OHCs were anti-ChAT immunoreactive. Only few terminals synapsing with the OHCs were unreactive. These findings allowed the differentiation of at least three types of efferent synapses in the organ of Corti. In the ISB, a first population of axo-dendritic synapses seems to be cholinergic whereas a second population might use another neurotransmitter. At the OHC level, our results support the hypothesis that acetylcholine is the neurotransmitter of nearly all the large axo-somatic synapses. The rare unreactive axo-somatic synapses could constitute a fourth and minor type of efferent synapse. Thus, it would be helpful to subclassify the efferent innervations of the organ of Corti according to their neurochemical nature. A re-evaluation of the whole body of available electrophysiological data would be also necessary, as until now, acetylcholine was considered as being the only efferent cochlear neurotransmitter.  相似文献   

4.
The organ of Corti (OC) is the auditory epithelium of the mammalian cochlea comprising sensory hair cells and supporting cells riding on the basilar membrane. The outer hair cells (OHCs) are cellular actuators that amplify small sound-induced vibrations for transmission to the inner hair cells. We developed a finite element model of the OC that incorporates the complex OC geometry and force generation by OHCs originating from active hair bundle motion due to gating of the transducer channels and somatic contractility due to the membrane protein prestin. The model also incorporates realistic OHC electrical properties. It explains the complex vibration modes of the OC and reproduces recent measurements of the phase difference between the top and the bottom surface vibrations of the OC. Simulations of an individual OHC show that the OHC somatic motility lags the hair bundle displacement by ∼90 degrees. Prestin-driven contractions of the OHCs cause the top and bottom surfaces of the OC to move in opposite directions. Combined with the OC mechanics, this results in ∼90 degrees phase difference between the OC top and bottom surface vibration. An appropriate electrical time constant for the OHC membrane is necessary to achieve the phase relationship between OC vibrations and OHC actuations. When the OHC electrical frequency characteristics are too high or too low, the OHCs do not exert force with the correct phase to the OC mechanics so that they cannot amplify. We conclude that the components of OHC forward and reverse transduction are crucial for setting the phase relations needed for amplification.  相似文献   

5.
6.
The outer hair cell (OHC) of the mammalian inner ear exhibits an unusual form of somatic motility that can follow membrane-potential changes at acoustic frequencies. The cellular forces that produce this motility are believed to amplify the motion of the cochlear partition, thereby playing a key role in increasing hearing sensitivity. To better understand the role of OHC somatic motility in cochlear micromechanics, we developed an excised cochlea preparation to visualize simultaneously the electrically-evoked motion of hundreds of cells within the organ of Corti (OC). The motion was captured using stroboscopic video microscopy and quantified using cross-correlation techniques. The OC motion at approximately 2-6 octaves below the characteristic frequency of the region was complex: OHC, Deiter's cell, and Hensen's cell motion were hundreds of times larger than the tectorial membrane, reticular lamina (RL), and pillar cell motion; the inner rows of OHCs moved antiphasic to the outer row; OHCs pivoted about the RL; and Hensen's cells followed the motion of the outer row of OHCs. Our results suggest that the effective stimulus to the inner hair cell hair bundles results not from a simple OC lever action, as assumed by classical models, but by a complex internal motion coupled to the RL.  相似文献   

7.
The mammalian hearing organ, the cochlea, contains an active amplifier to boost the vibrational response to low level sounds. Hallmarks of this active process are sharp location-dependent frequency tuning and compressive nonlinearity over a wide stimulus range. The amplifier relies on outer hair cell (OHC)-generated forces driven in part by the endocochlear potential, the ∼+80 mV potential maintained in scala media, generated by the stria vascularis. We transiently eliminated the endocochlear potential in vivo by an intravenous injection of furosemide and measured the vibrations of different layers in the cochlea’s organ of Corti using optical coherence tomography. Distortion product otoacoustic emissions were also monitored. After furosemide injection, the vibrations of the basilar membrane lost the best frequency (BF) peak and showed broad tuning similar to a passive cochlea. The intra-organ of Corti vibrations measured in the region of the OHCs lost the BF peak and showed low-pass responses but retained nonlinearity. This strongly suggests that OHC electromotility was operating and being driven by nonlinear OHC current. Thus, although electromotility is presumably necessary to produce a healthy BF peak, the mere presence of electromotility is not sufficient. The BF peak recovered nearly fully within 2 h, along with the recovery of odd-order distortion product otoacoustic emissions. The recovery pattern suggests that physical shifts in operating condition are a critical step in the recovery process.  相似文献   

8.
Immunolabeling with antibodies against connexins 26 and 30 showed that, in the guinea pig cochlea, supporting Deiters″ cells are massively interconnected and form an orderly network within the organ of Corti. In paired patch-clamp recordings the coupling ratio (CR) of adjacent Deiters″ cells at the apex of the cochlea (~0.31) was 3-fold smaller than in isolated cell pairs due to shunting afforded by multicellular connectivity. With sinusoidal current stimuli the delay in signal propagation between adjacent cells increased with increasing frequency whereas the amplitude did not change significantly up to 200 Hz (corner frequency Fc ~220 Hz). Depolarizing voltage commands applied to an outer hair cell (OHC) elicited outward potassium currents in the OHC and inward currents in the abutting Deiters″ cells, supplying direct evidence for potassium buffering in the organ of Corti. Computational analysis indicates that electrical signals injected into a Deiters″ cell are transmitted across a network segment spanning 8 cell diameters. Thus electrical coupling in the organ of Corti is unlikely to influence the selectivity of frequency filtering performed mechanically by the mammalian cochlea.  相似文献   

9.
Immunolabeling with antibodies against connexins 26 and 30 showed that, in the guinea pig cochlea, supporting Deiters' cells are massively interconnected and form an orderly network within the organ of Corti. In paired patch-clamp recordings the coupling ratio (CR) of adjacent Deiters' cells at the apex of the cochlea (approximately 0.31) was 3-fold smaller than in isolated cell pairs due to shunting afforded by multicellular connectivity. With sinusoidal current stimuli the delay in signal propagation between adjacent cells increased with increasing frequency whereas the amplitude did not change significantly up to 200 Hz (corner frequency Fc approximately 220 Hz). Depolarizing voltage commands applied to an outer hair cell (OHC) elicited outward potassium currents in the OHC and inward currents in the abutting Deiters' cells, supplying direct evidence for potassium buffering in the organ of Corti. Computational analysis indicates that electrical signals injected into a Deiters' cell are transmitted across a network segment spanning 8 cell diameters. Thus electrical coupling in the organ of Corti is unlikely to influence the selectivity of frequency filtering performed mechanically by the mammalian cochlea.  相似文献   

10.
Isolated outer hair cells (OHCs) and explants ot the organ of Corti were obtained from the cochlea of the echolocating bat, Carollia perspicillata, whose hearing range extends up to about 100 kHz. The OHCs were about 10–30 m long and produced resting potentials between-30 to -69 mV. During stimulation with a sinusoidal extracellular voltage field (voltage gradient of 2 mV/m) cyclic length changes were observed in isolated OHCs. The displacements were most prominent at the level of the cell nucleus and the cuticular plate. In the organ of Corti explants, the extracellular electric field induced a radial movement of the cuticular plate which was observed using video subtraction and photodiode techniques. Maximum displacements of about 0.3–0.8 m were elicited by stimulus frequencies below 100 Hz. The displacement amplitude decreased towards the noise level of about 10–30 nm for stimulus frequencies between 100–500 Hz, both in apical and basal explants. This compares well with data from the guinea pig, where OHC motility induced by extracellular electrical stimulation exhibits a low pass characteristic with a corner frequency below 1 kHz. The data indicate that fast OHC movements presumably are quite small at ultrasonic frequencies and it remains to be solved how they participate in amplifying and sharpening cochlear responses in vivo.Abbreviations BM basilar membrane - FFT fast Fourier Transfer - IHC inner hair cell - OHC outer hair cell  相似文献   

11.
Lim KM  Li H 《Journal of biomechanics》2007,40(6):1362-1371
The frequency response of outer hair cells (OHCs) of different lengths is studied using a mathematical model of a two-layer cylindrical shell with orthotropic properties. Material properties in the model are determined from experimental measurements reported in the literature, and the variation of material properties with the cell length is studied. The cortical lattice's Poisson ratios are found to remain fairly constant with cell length, while its stiffness changes significantly with cell length. The natural frequencies corresponding to several modes of deformation of an OHC with intracellular and extracellular fluids are calculated from this model. Our results suggest that the best frequency in the cochlea at the position where the OHC is located corresponds to different modes of deformation of the OHC, depending on the OHC length. For short OHCs, the best frequency is close to the natural frequency of the axisymmetric mode; for long OHCs, it is close to the natural frequencies of the beam-like bending and pinched modes. Such a difference in resonant modes for short and long OHCs at the best frequency suggests that different modes of OHC elongation motility may be present in amplifying the basilar membrane motion in the high and low frequency regions of the cochlea.  相似文献   

12.
《Biophysical journal》2021,120(17):3550-3565
The mammalian cochlea relies on the active forcing of sensory outer hair cells (OHCs) to amplify traveling wave responses along the basilar membrane. These forces are the result of electromotility, wherein current through the OHCs leads to conformational changes in the cells that provide stresses on surrounding structures. OHC transducer current can be detected via the voltage in the scala tympani (the cochlear microphonic, CM), and the CM can be used as an indicator of healthy cochlear operation. The CM represents a summation of OHC currents (the inner hair cell contribution is known to be small) and to use CM to probe the properties of OHC transduction requires a model that simulates that summation. We developed a finite element model for that purpose. The pattern of current generators (the model input) was initially based on basilar membrane displacement, with the current size based on in vitro data. The model was able to reproduce the amplitude of experimental CM results reasonably well when the input tuning was enhanced slightly (peak increased by ∼6 dB), which can be regarded as additional hair bundle tuning, and with a current/input value of 200–260 pA/nm, which is ∼4 times greater than the largest in vitro measures.  相似文献   

13.
Dallos P  Wu X  Cheatham MA  Gao J  Zheng J  Anderson CT  Jia S  Wang X  Cheng WH  Sengupta S  He DZ  Zuo J 《Neuron》2008,58(3):333-339
It is a central tenet of cochlear neurobiology that mammalian ears rely on a local, mechanical amplification process for their high sensitivity and sharp frequency selectivity. While it is generally agreed that outer hair cells provide the amplification, two mechanisms have been proposed: stereociliary motility and somatic motility. The latter is driven by the motor protein prestin. Electrophysiological phenotyping of a prestin knockout mouse intimated that somatic motility is the amplifier. However, outer hair cells of knockout mice have significantly altered mechanical properties, making this mouse model unsatisfactory. Here, we study a mouse model without alteration to outer hair cell and organ of Corti mechanics or to mechanoelectric transduction, but with diminished prestin function. These animals have knockout-like behavior, demonstrating that prestin-based electromotility is required for cochlear amplification.  相似文献   

14.
Acoustic stimulation gates mechanically sensitive ion channels in cochlear sensory hair cells. Even in the absence of sound, a fraction of these channels remains open, forming a conductance between hair cells and the adjacent fluid space, scala media. Restoring the lost endogenous polarization of scala media in an in vitro preparation of the whole cochlea depolarizes the hair cell soma. Using both digital laser interferometry and time-resolved confocal imaging, we show that this causes a structural refinement within the organ of Corti that is dependent on the somatic electromotility of the outer hair cells (OHCs). Specifically, the inner part of the reticular lamina up to the second row of OHCs is pulled toward the basilar membrane, whereas the outer part (third row of OHCs and the Hensen's cells) unexpectedly moves in the opposite direction. A similar differentiated response pattern is observed for sound-evoked vibrations: restoration of the endogenous polarization decreases vibrations of the inner part of the reticular lamina and results in up to a 10-fold increase of vibrations of the outer part. We conclude that the endogenous polarization of scala media affects the function of the hearing organ by altering its geometry, mechanical and electrical properties.  相似文献   

15.
Cochlear outer hair cell bending in an external electric field.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have used a high-resolution motion analysis system to reinvestigate shape changes in isolated guinea pig cochlear outer hair cells (OHCs) evoked by low-frequency (2-3 Hz) external electric stimulation. This phenomenon of electromotility is presumed to result from voltage-dependent structural changes in the lateral plasma membrane of the OHC. In addition to well-known longitudinal movements, OHCs were found to display bending movements when the alternating external electric field gradients were oriented perpendicular to the cylindrical cell body. The peak-to-peak amplitude of the bending movement was found to be as large as 0.7 microm. The specific sulfhydryl reagents, p-chloromercuriphenylsulfonic acid and p-hydroxymercuriphenylsulfonic acid, that suppress electrically evoked longitudinal OHCs movements, also inhibit the bending movements, indicating that these two movements share the same underlying mechanism. The OHC bending is likely to result from an electrical charge separation that produces depolarization of the lateral plasma membrane on one side of the cell and hyperpolarization on the other side. In the cochlea, OHC bending could produce radial distortions in the sensory epithelium and influence the micromechanics of the organ of Corti.  相似文献   

16.
The outer hair cell (OHC) in the mammalian ear has a unique membrane potential-dependent motility, which is considered to be important for frequency discrimination (tuning). The OHC motile mechanism is located at the cell membrane and is strongly influenced by its passive mechanical properties. To study the viscoelastic properties of OHCs, we exposed cells to a hypoosmotic solution for varying durations and then punctured them, to immediately release the osmotic stress. Using video records of the cells, we determined both the imposed strain and the strain after puncturing, when stress was reset to zero. The strain data were described by a simple rheological model consisting of two springs and a dashpot, and the fit to this model gave a time constant of 40 +/- 19 s for the relaxation (reduction) of tension during prolonged strain. For time scales much shorter or longer than this, we would expect essentially elastic behavior. This relaxation process affects the membrane tension of the cell, and because it has been shown that membrane tension has a modulatory role in the OHC's motility, this relaxation process could be part of an adaptation mechanism, with which the motility system of the OHC can adjust to changing conditions and maintain optimum membrane tension.  相似文献   

17.
The organization of the plasma membrane of cells in lipid domains affects the way the membrane interacts with the underlying protein skeleton, which in turn affects the lateral mobility of lipid and protein molecules in the membrane. Membrane fluidity properties can be monitored by various approaches, the most versatile of which is fluorescence recovery after photobleaching (FRAP). We extended previous FRAP experiments on isolated cochlear outer hair cells (OHCs) by analyzing the two-dimensional pattern of lipid diffusion in the lateral membrane of these cells. We found that membrane lipid mobility in freshly isolated OHCs is orthotropic, diffusion being faster in the axial direction of the cell and slower in the circumferential direction. Increasing the cell's turgor pressure by osmotic challenge reduced the axial diffusion constant, but had only a slight effect on circumferential diffusion. Our results suggest that lipid mobility in the OHC plasma membrane is affected by the presence of the cell's orthotropic membrane skeleton. This effect could reflect interaction with spectrin filaments or with other membrane skeletal proteins. We also performed a number of FRAP measurements in temporal bone preparations preserving the structural integrity of the hearing organ. The diffusion rates measured for OHCs in this preparation were in good agreement with those obtained in isolated OHCs, and comparable to the mobility rates measured on the sensory inner hair cells. These observations support the idea that the plasma membranes of both types of hair cells share similar highly fluid phases in the intact organ. Lipid mobility was significantly slower in the membranes of supporting cells of the organ of Corti, which could reflect differences in lipid phase or stronger hindrance by the cytoskeleton in these membranes.  相似文献   

18.
19.
BackgroundMutations in GJB2, which encodes connexin 26 (Cx26), a cochlear gap junction protein, represent a major cause of pre-lingual, non-syndromic deafness. The degeneration of the organ of Corti observed in Cx26 mutant—associated deafness is thought to be a secondary pathology of hearing loss. Here we focused on abnormal development of the organ of Corti followed by degeneration including outer hair cell (OHC) loss.MethodsWe investigated the crucial factors involved in late-onset degeneration and loss of OHC by ultrastructural observation, immunohistochemistry and protein analysis in our Cx26-deficient mice (Cx26f/fP0Cre).ResultsIn ultrastructural observations of Cx26f/fP0Cre mice, OHCs changed shape irregularly, and several folds or notches were observed in the plasma membrane. Furthermore, the mutant OHCs had a flat surface compared with the characteristic wavy surface structure of OHCs of normal mice. Protein analysis revealed an increased protein level of caveolin-2 (CAV2) in Cx26f/fP0Cre mouse cochlea. In immunohistochemistry, a remarkable accumulation of CAV2 was observed in Cx26f/fP0Cre mice. In particular, this accumulation of CAV2 was mainly observed around OHCs, and furthermore this accumulation was observed around the shrunken site of OHCs with an abnormal hourglass-like shape.ConclusionsThe deformation of OHCs and the accumulation of CAV2 in the organ of Corti may play a crucial role in the progression of, or secondary OHC loss in, GJB2-associated deafness. Investigation of these molecular pathways, including those involving CAV2, may contribute to the elucidation of a new pathogenic mechanism of GJB2-associated deafness and identify effective targets for new therapies.  相似文献   

20.
The mammalian auditory sensory epithelium (the organ of Corti) contains a number of unique cell types that are arranged in ordered rows. Two of these cell types, inner and outer pillar cells (PCs), are arranged in adjacent rows that form a boundary between a single row of inner hair cells and three rows of outer hair cells (OHCs). PCs are required for auditory function, as mice lacking PCs owing to a mutation in Fgfr3 are deaf. Here, using in vitro and in vivo techniques, we demonstrate that an Fgf8 signal arising from the inner hair cells is the key component in an inductive pathway that regulates the number, position and rate of development of PCs. Deletion of Fgf8 or inhibition of binding between Fgf8 and Fgfr3 leads to defects in PC development, whereas overexpression of Fgf8 or exogenous Fgfr3 activation induces ectopic PC formation and inhibits OHC development. These results suggest that Fgf8-Fgfr3 interactions regulate cellular patterning within the organ of Corti through the induction of one cell fate (PC) and simultaneous inhibition of an alternate fate (OHC) in separate progenitor cells. Some of the effects of both inhibition and overactivation of the Fgf8-Fgfr3 signaling pathway are reversible, suggesting that PC differentiation is dependent upon constant activation of Fgfr3 by Fgf8. These results suggest that PCs might exist in a transient state of differentiation that makes them potential targets for regenerative therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号