首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypothalamic orexin neurons project to the hindbrain, and 4th-ventricle intracerebroventricular (4th-icv) injection of orexin-A treatment increases food intake. We assessed the effects of hindbrain orexin-A and the orexin-1-receptor antagonist SB334867 on meal pattern in rats consuming standard chow. When injected 4th-icv shortly before dark onset, lower doses of orexin-A increased food intake over a 2-h period by increasing the size of the first meal relative to vehicle, whereas the highest dose increased food intake by causing the second meal to be taken sooner. Conversely, hindbrain SB334867 reduced food intake by decreasing the size of the first meal of the dark phase. We also examined the effects of 4th-icv orexin-A and SB334867 on locomotor activity. Only the highest dose of orexin-A increased activity, and SB334867 had no effect. In addition, hindbrain SB334867 induced c-Fos in the nucleus of the solitary tract. These data support the suggestion that endogenous hindbrain orexin-A acts to limit satiation. Both orexin-A and the pancreatic satiation hormone amylin require an intact area postrema to affect food intake, so we asked whether 4th-icv orexin-A impairs the satiating effect of peripheral amylin treatment. Amylin reduced the size of the first meal of the dark cycle when rats were pretreated with 4th-icv saline, yet amylin was ineffective after 4th-icv orexin-A pretreatment. Using double-label immunohistochemistry, we determined that some orexin-A fibers in the area postrema are located in proximity to amylin-responsive neurons. Therefore, hindbrain orexin-A may increase food intake, in part, by reducing the ability of rats to respond to amylin during a meal.  相似文献   

2.
Amylin receptor blockade stimulates food intake in rats   总被引:1,自引:0,他引:1  
Amylin is postulated to act as a hormonal signal from the pancreas to the brain to inhibit food intake and regulate energy reserves. Amylin potently reduces food intake, body weight, and adiposity when administered systemically or into the brain. Whether selective blockade of endogenous amylin action increases food intake and adiposity remains to be clearly established. In the present study, the amylin receptor antagonist acetyl-[Asn(30), Tyr(32)] sCT-(8-32) (AC187) was used to assess whether action of endogenous amylin is essential for normal satiation to occur. Non-food-deprived rats received a 3- to 4-h intravenous infusion of AC187 (60-2,000 pmol.kg(-1).min(-1)), either alone or coadministered with a 3-h intravenous infusion of amylin (2.5 or 5 pmol.kg(-1).min(-1)) or a 2-h intragastric infusion of an elemental liquid diet (4 kcal/h). Infusions began just before dark onset. Food intake and meal patterns during the first 4 h of the dark period were determined from continuous computer recordings of changes in food bowl weight. Amylin inhibited food intake by approximately 50%, and AC187 attenuated this response by approximately 50%. AC187 dose-dependently stimulated food intake (maximal increases from 76 to 171%), whether administered alone or with an intragastric infusion of liquid diet. Amylin reduced mean meal size and meal frequency, AC187 attenuated these responses, and AC187 administration alone increased mean meal size and meal frequency. These results support the hypothesis that endogenous amylin plays an essential role in reducing meal size and increasing the postmeal interval of satiety.  相似文献   

3.
4.
This study investigated the chronic effect of enterostatin on body weight and some of the associated changes in postprandial metabolism. Rats were adapted to 6 h of food access/day and a choice of low-fat and high-fat (HF) food and then given enterostatin or vehicle by an intraperitoneally implanted minipump delivering 160 nmol enterostatin/h continuously over a 5-day infusion period. Enterostatin resulted in a slight but significant reduction of HF intake and body weight. After the last 6-h food access period, enterostatin-treated animals had lower plasma triglyceride and free fatty acid but higher plasma glucose and lactate levels than control animals. Enterostatin infusion resulted in increased uncoupling protein-2 (UCP2) expression in various tissues, including epididymal fat and liver. UCP2 was reduced in the pancreas of enterostatin-treated animals, and this was associated with increased plasma levels of insulin and amylin. Whether these two hormones are involved in the observed decreased food intake due to enterostatin remains to be determined. As lipid metabolism appeared to be altered by enterostatin, we measured peroxisome proliferator-activated receptor (PPAR) expression in tissues and observed that PPARalpha, -beta, -gamma1, and -gamma2 expression were modified by enterostatin in epididymal fat, pancreas, and liver. This further links altered lipid metabolism with body weight loss. Our data suggest that alterations in UCP2 and PPARgamma2 play a role in the control of insulin and amylin release from the pancreas. This implies that enterostatin changes lipid and carbohydrate metabolic pathways in addition to its effects on food intake and energy expenditure.  相似文献   

5.
An overview is presented of those signals generated by the gastrointestinal (GI) tract during meals that interact with the central nervous system to create a sensation of fullness and satiety. Although dozens of enzymes, hormones, and other factors are secreted by the GI tract in response to food in the lumen, only a handful are able to influence food intake directly. Most of these cause meals to terminate and hence are called satiety signals, with CCK being the most investigated. Only one GI signal, ghrelin, that increases meal size has been identified. The administration of exogenous CCK or other satiety signals causes smaller meals to be consumed, whereas blocking the action of endogenous CCK or other satiety signals causes larger meals to be consumed. Satiety signals are relayed to the hindbrain, either indirectly via nerves such as the vagus from the GI tract or else directly via the blood. Most factors that influence how much food is eaten during individual meals act by changing the sensitivity to satiety signals. This includes adiposity signals as well as habits and learning, the social situation, and stressors.  相似文献   

6.
Many peptides have been shown to modulate nutrient intake. In most cases, these peptides decrease food intake, but in a few cases they have been demonstrated to stimulate feeding. Infusion of insulin peripherally will decrease food intake unless hypoglycemia occurs where the reduced glucose is a stimulus to feeding. Other pancreatic hormones including glucagon, amylin, pancreatic polypeptide, and enterostatin reduce food intake. Of the gastrointestinal hormones, cholecystokinin has been the most widely studied and reduces food intake in a number of species, including human beings. Gastrin-releasing peptide and its relative bombesin have been shown to decrease food intake in experimental animals and man. Somatostatin reduces food intake in experimental animals, but no clinical studies are available. Four pituitary peptides also modify food intake. Vasopressin decreases feeding. In contrast, injections of desacetyl melanocyte stimulating hormone (dMSH), growth hormone, and prolactin are associated with increased food intake. Finally, there are a group of miscellaneous peptides which modulate feeding. β-casomorphin, a hepta peptide produced during the hydrolysis of casein, stimulates food intake in experimental animals. In contrast, the other pep tides in this group including calcitonin, apolipoprotein A-IV, the cyclized form of histidyl-proline, several cytokines, and thyrotropin-releasing hormone decrease food intake. Many of these peptides act on gastrointestinal or hepatic receptors which relay messages to the brain via the afferent vagus nerve. As a group they provide a number of leads for potential drug development.  相似文献   

7.
Amylin and insulin interact to reduce food intake in rats.   总被引:1,自引:0,他引:1  
We investigated the hypothesis that amylin and insulin, hormones co-secreted by pancreatic B-cells in response to a nutrient stimulus, interact to reduce food intake. A paradigm was employed that assessed food intake in adult male rats after bolus intravenous (i.v.) infusion at dark onset. In one experiment, rats received saline or amylin (0.1, 0.5 or 1.0 nmol). All amylin doses significantly suppressed 1 h intake, and although significant decreases in cumulative intake persisted for 2 h after 0.5 and 1.0 nmol, a significant increase of food intake actually occurred relative to saline during the interval from 1 to 2 h post-infusion. In another experiment, rats received saline, 0.25 nmol amylin, 10 mU insulin, or the combination of amylin plus insulin. Neither amylin nor insulin alone significantly changed cumulative food intake at any time point as compared to saline. However, the combination significantly reduced intake relative not only to saline but also to amylin and insulin alone after 1, 2, and 4 hours. These data are consistent with the hypothesis that endogenous amylin and insulin interact to reduce food intake and, ultimately, body weight.  相似文献   

8.
Syntheses, structures and anorectic effects of human and rat amylin.   总被引:3,自引:0,他引:3  
Amylin, a 37-residue polypeptide with a single disulfide bond originally isolated from the pancreas of type-II diabetic patients, has been shown to cause peripheral insulin resistance and to attenuate the inhibition of hepatic glucose output by insulin. We have also shown that amylin is present in the rat hypothalamus and that it inhibits food intake by rats. In order to further investigate the anorectic properties we synthesized both human and rat amylin by the solid phase method and purified to homogeneity in an overall yield of 10-20%. Structural analyses indicated that human amylin exhibited predominantly a beta-sheet structure at both acidic and alkaline pH, whereas no ordered structure was evident in the case of rat amylin. Intrahypothalamic injection of rat amylin resulted in a potent dose-dependent inhibitory effect on the food intake by rats adapted to eat their daily ration of food in an eight-hour period. Human amylin was less effective as an anorectic agent. Furthermore, rat amylin completely blocked the potent orexigenic effect of neuropeptide Y (NPY). These investigations show that there is a fundamental difference in the secondary structures of human and rat amylin and that rat amylin is a potent inhibitor of both basal and NPY-induced feeding by rats.  相似文献   

9.
Adipose tissue is a dynamic endocrine and paracrine organ producing a large number of signalling proteins collectively termed adipokines. Some of them are mediators in the cross‐talk between adipose tissue and the brain in regulating food intake and energy homoeostasis. However, the hypothalamus is not the only brain target for adipokines, and food intake is not the only biological effect of these signals. Rather, some adipokines support various cognitive functions and exert neurotrophic activity. Current data on adipose‐derived neuropeptides, neurotrophic factors, pituitary hormones and hypothalamic releasing factors is highlighted in this review. We propose that adipose tissue is a member of the diffuse neuroendocrine system. Cumulatively, this is conceptualized as neuroadipology, a new example of a link between neurobiology and other topics, such as neuroimmunology and neuroendocrinology. Because adipose tissue is a bona fide endocrine organ, neuroadipology may be considered a new discipline in neuroendocrinology. It may have a wide‐ranging potential within a variety of neuronal and metabolic functions in health and disease.  相似文献   

10.
Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1), in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined. Here we investigate a potential role for altered gut feedback signaling in the effects of SP1 on food intake. We examined responses to peripheral administration of cholecytokinin (CCK), amylin, and the glucagon like peptide-1 (GLP-1) receptor agonist, exendin-4. Intraperitoneal administration of CCK at doses ranging from 1–10 nmol/kg significantly reduced glucose intake in wild type (WT) mice, but failed to affect intake in SP1 transgenic mice. Moreover, there was a significant attenuation of CCK-induced c-Fos expression in the dorsal vagal complex in SP1 transgenic mice. In contrast, WT and SP1 transgenic mice were similarly responsive to both amylin and exendin-4 treatment. These studies demonstrate that SP1 results in a CCK response deficiency that may contribute to the increased meal size and overall hyperphagia in synphillin-1 transgenic mice.  相似文献   

11.
CART peptides are anorexigenic and are widely expressed in the central and peripheral nervous systems, as well as in endocrine cells in the pituitary, adrenal medulla and the pancreatic islets. To study the role of CART in islet function, we used CART null mutant mice (CART KO mice) and examined insulin secretion in vivo and in vitro, and expression of islet hormones and markers of beta-cell function using immunocytochemistry. We also studied CART expression in the normal pancreas. In addition, body weight development and food intake were documented. We found that in the normal mouse pancreas, CART was expressed in numerous pancreatic nerve fibers, both in the exocrine and endocrine portion of the gland. CART was also expressed in nerve cell bodies in the ganglia. Double immunostaining revealed expression in parasympathetic (vasoactive intestinal polypeptide (VIP)-containing) and in fewer sensory fibers (calcitonin gene-related peptide (CGRP)-containing). Although the expression of islet hormones appeared normal, CART KO islets displayed age dependent reduction of pancreatic duodenal homeobox 1 (PDX-1) and glucose transporter-2 (GLUT-2) immunoreactivity, indicating beta-cell dysfunction. Consistent with this, CART KO mice displayed impaired glucose-stimulated insulin secretion both in vivo after an intravenous glucose challenge and in vitro following incubation of isolated islets in the presence of glucose. The impaired insulin secretion in vivo was associated with impaired glucose elimination, and was apparent already in young mice with no difference in body weight. In addition, CART KO mice displayed increased body weight at the age of 40 weeks, without any difference in food intake. We conclude that CART is required for maintaining normal islet function in mice.  相似文献   

12.
Insulin is the main hormone involved in the regulation of glycaemia, its impaired secretion is a hallmark of type I and type II diabetic individuals. Additionally, insulin is involved in lipogenesis and weight gain, provoking an anorexigenic action. The endocannabinoid system contributes to the physiological regulation of energy balance, food intake and lipid and glucose metabolisms. Despite that, an experimental link between the endocannabinoid system and the endocrine pancreas has not yet been described. Using quantitative real-time PCR and immunocytochemistry, we have demonstrated the existence of both CB1 and CB2 receptors in the endocrine pancreas. While the CB1 receptor is mainly expressed in non-beta-cells, the CB2 type exists in beta- and non-beta-cells within the islet. The endocannabinoid 2-arachidonylglycerol (2-AG) through CB2 receptors regulates [Ca(2+)](i) signals in beta-cells and as a consequence, it decreases insulin secretion. This effect may be a new component involved in the orexigenic effect of endocannabinoids and constitutes a potential target for pharmacologic manipulation of the energy balance.  相似文献   

13.
Amylin has been co-secreted from pancreatic islet beta-cells in constant proportion with insulin in some studies. We measured basal and glucose-stimulated amylin and insulin secretion from isolated perfused pancreases of normal and diabetic fatty Zucker rats. Glucose concentrations in the perfusion buffer were increased then decreased in small steps to mimic physiologic changes occurring after a meal. The absolute rate of amylin secretion and the molar ratio of amylin to insulin secreted from diabetic pancreases increased dramatically when infused glucose concentrations fell. Similar changes also occurred in normal pancreases, although the absolute change in amylin secretion was smaller. These studies provide the first evidence that (i) there is a mechanism within the pancreas whereby independent secretion of amylin and insulin can occur; (ii) the molar ratio of amylin to insulin secreted from both normal and diabetic pancreases can vary over a wide range; and (iii) there are important differences in the kinetics of amylin and insulin secretion or their coupling to stimulation by glucose between the isolated pancreases of normal rats and those with genetically transmitted insulin resistance and diabetes mellitus.  相似文献   

14.
Zinc is a key component of several proteins, interacting with the pancreatic hormones insulin and amylin. The role of zinc in insulin oligomerization and crystallinity is well established, although the effects of dietary zinc restriction on both energetic metabolism and β-pancreatic hormonemia and morphology remain unexplored. Here we report the effects of dietary zinc restriction on the endocrine pancreas and metabolic phenotype of mice. Nontransgenic male Swiss mice were fed a low-zinc or control diet for 4 weeks after weanling. Growth, glycemia, insulinemia and amylinemia were lower and pancreatic islets were smaller in the intervention group despite the preserved insulin crystallinity in secretory granules. We found strong immunostaining for insulin, amylin and oligomers in apoptotic pancreatic islet. High production of β-pancreatic hormones in zinc-restricted animals counteracted the reduced islet size caused by apoptosis. These data suggest that zinc deficiency is sufficient to promote islet β-cell hormonal disruption and degeneration.  相似文献   

15.
Leptin receptor (LepRb) signaling in the hindbrain is required for energy balance control. Yet the specific hindbrain neurons and the behavioral processes mediating energy balance control by hindbrain leptin signaling are unknown. Studies here employ genetic [adeno-associated virally mediated RNA interference (AAV-RNAi)] and pharmacological methodologies to specify the neurons and the mechanisms through which hindbrain LepRb signaling contributes to the control of food intake. Results show that AAV-RNAi-mediated LepRb knockdown targeting a region encompassing the mNTS and area postrema (AP) (mNTS/AP LepRbKD) increases overall cumulative food intake by increasing the size of spontaneous meals. Other results show that pharmacological hindbrain leptin delivery and RNAi-mediated mNTS/AP LepRb knockdown increased and decreased the intake-suppressive effects of intraduodenal nutrient infusion, respectively. These meal size and intestinally derived signal amplification effects are likely mediated by LepRb signaling in the mNTS and not the AP, since 4th icv and mNTS parenchymal leptin (0.5 μg) administration reduced food intake, whereas this dose did not influence food intake when injected into the AP. Overall, these findings deepen the understanding of the distributed neuronal systems and behavioral mechanisms that mediate the effects of leptin receptor signaling on the control of food intake.  相似文献   

16.
Cui C  Ohnuma H  Daimon M  Susa S  Yamaguchi H  Kameda W  Jimbu Y  Oizumi T  Kato T 《Peptides》2008,29(7):1241-1246
Although accumulating evidence has shown crucial roles of ghrelin and insulin in food intake and energy metabolism, the exact relationship between these hormones remains unclear. In this study, we determined the in vivo effect of ghrelin on insulin secretion. We demonstrated that ghrelin inhibited the glucose-stimulated release of insulin when infused into the portal vein of Wistar rats. However, ghrelin infusion into the femoral vein did not induce such an inhibitory effect. Hepatic vagotomy or coinfusion with atropine methyl bromide diminished the inhibitory effect of ghrelin on glucose-stimulated insulin secretion. In conclusion, ghrelin exerts an inhibitory effect on glucose-stimulated insulin secretion via the hepatic portal system and the vagus nerve. The decrease in ghrelin level after a meal is important for the occurrence of the incretin effect in rats.  相似文献   

17.
《Regulatory peptides》1987,17(5):269-276
The 27-amino acid peptide gastrin releasing peptide (GRP-(1–27)) was infused at 4 dose levels (0.01, 0.1, 1.0, and 10 nM) into the arterial line of the isolated perfused porcine pancreas. Infusions were performed at 3 different perfusate glucose levels (3.5, 5.0, and 8.0 mM) and at two levels of amino acids (5 and 15 mM). GRP-(1–27) stimulated insulin and pancreatic polypeptide secretion and inhibited somatostatin secretion in a dose-dependent manner. Glucagon secretion was unaffected by infusion of GRP under all circumstances. The effect of GRP-(1–27) on insulin secretion was enhanced with increasing perfusate glucose levels, whereas the effects upon somatostatin and pancreatic polypeptide secretion were independent of perfusate glucose levels. The responses to GRP were unaffected by elevation of the concentration of amino acids in the perfusate. The effects of GRP were unaffected by atropine at 10−6 M. The localization of GRP within the porcine pancreas, its release during electrical stimulation of the vagus nerve, and its potent effects upon pancreatic endocrine secretion make it conceiveable that the peptide participates in parasympathetic regulation of pancreatic endocrine secretion.  相似文献   

18.
Leptin enhances insulin sensitivity in addition to reducing food intake and body weight. Recently, amylin, a pancreatic β-cell-derived hormone, was shown to restore a weight-reducing effect of leptin in leptin-resistant diet-induced obesity. However, whether amylin improves the effect of leptin on insulin sensitivity in diet-induced obesity is unclear. Diet-induced obese (DIO) mice were infused with either saline (S), leptin (L; 500 μg·kg?1·day?1), amylin (A; 100 μg·kg?1·day?1), or leptin plus amylin (L/A) for 14 days using osmotic minipumps. Food intake, body weight, metabolic parameters, tissue triglyceride content, and AMP-activated protein kinase (AMPK) activity were examined. Pair-feeding and weight-matched calorie restriction experiments were performed to assess the influence of food intake and body weight reduction. Continuous L/A coadministration significantly reduced food intake, increased energy expenditure, and reduced body weight, whereas administration of L or A alone had no effects. L/A coadministration did not affect blood glucose levels during ad libitum feeding but decreased plasma insulin levels significantly (by 48%), suggesting the enhancement of insulin sensitivity. Insulin tolerance test actually showed the increased effect of insulin in L/A-treated mice. In addition, L/A coadministration significantly decreased tissue triglyceride content and increased AMPKα2 activity in skeletal muscle (by 67%). L/A coadministration enhanced insulin sensitivity more than pair-feeding and weight-matched calorie restriction. In conclusion, this study demonstrates the beneficial effect of L/A coadministration on glucose and lipid metabolism in DIO mice, indicating the possible clinical usefulness of L/A coadministration as a new antidiabetic treatment in obesity-associated diabetes.  相似文献   

19.
Long term oestradiol treatments stimulate the B cell of the endocrine pancreas. The first effects of oestradiol-17-beta were studied in ovariectomized rats, 16 hours after a subcutaneous injection of various concentrations of this hormone (0, 2.5, 25, 50 micrograms). Plasma oestradiol concentrations, food intake and insulin secretion from islets of Langerhans were measured. Oestradiol always decreased food intake and insulin secretion. However, this inhibiting effect of oestradiol on the B cell was also found in fasted rats. This negative action did not appear on basal insulin secretion but on glucose-induced insulin response. It was characterized by a decrease in the B cell capacity of response to glucose. Short and long term opposite actions of oestradiol on the B cell of the endocrine pancreas could be compared to similar effects shown with glucocorticoids.  相似文献   

20.
Brain-derived neurotrophic factor (BDNF) and TrkB receptor signaling contribute to the central nervous system (CNS) control of energy balance. The role of hindbrain BDNF/TrkB receptor signaling in energy balance regulation is examined here. Hindbrain ventricular BDNF suppressed body weight through reductions in overall food intake and meal size and by increasing core temperature. To localize the neurons mediating the energy balance effects of hindbrain ventricle-delivered BDNF, ventricle subthreshold doses were delivered directly to medial nucleus tractus solitarius (mNTS). mNTS BDNF administration reduced food intake significantly, and this effect was blocked by preadministration of a highly selective TrkB receptor antagonist {[N2-2-2-Oxoazepan-3-yl amino]carbonyl phenyl benzo (b)thiophene-2-carboxamide (ANA-12)}, suggesting that TrkB receptor activation mediates hindbrain BDNF's effect on food intake. Because both BDNF and leptin interact with melanocortin signaling to reduce food intake, we also examined whether the intake inhibitory effects of hindbrain leptin involve hindbrain-specific BDNF/TrkB activation. BDNF protein content within the dorsal vagal complex of the hindbrain was increased significantly by hindbrain leptin delivery. To assess if BDNF/TrkB receptor signaling acts downstream of leptin signaling in the control of energy balance, leptin and ANA-12 were coadministered into the mNTS. Administration of the TrkB receptor antagonist attenuated the intake-suppressive effects of leptin, suggesting that mNTS TrkB receptor activation contributes to the mediation of the anorexigenic effects of hindbrain leptin. Collectively, these results indicate that TrkB-mediated signaling in the mNTS negatively regulates food intake and, in part, the intake inhibitory effects of leptin administered into the NTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号