首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AREB(ABA responsive element binding protein)/ABF(ABRE binding factors)转录因子即ABA(脱落酸)应答元件结合蛋白,参与调控ABA相关基因的表达,提高植物对环境胁迫的适应能力。本文从AREBs的克隆与表达、在抗非生物胁迫中的作用以及参与的ABA信号转导等方面阐述现有的研究进展。  相似文献   

2.
As sessile organisms, plants have developed specific mechanisms that allow them to rapidly perceive and respond to stresses in the environment. Among the evolutionarily conserved pathways, the ABA (abscisic acid) signaling pathway has been identified as a central regulator of abiotic stress response in plants, triggering major changes in gene expression and adaptive physiological responses. ABA induces protein kinases of the SnRK family to mediate a number of its responses. Recently, MAPK (mitogen activated protein kinase) cascades have also been shown to be implicated in ABA signaling. Therefore, besides discussing the role of ABA in abiotic stress signaling, we will also summarize the evidence for a role of MAPKs in the context of abiotic stress and ABA signaling.  相似文献   

3.
根据植物病理学和微生物生态学原理,建立了脱落酸(ABA)产生菌的筛选模型。从不同的植物寄主上分离到36株真菌,其中有十余株菌株能产生天然的脱落酸,这些真菌分别属于葡萄孢属(Botrytis)、青霉属(Penicilium)、根霉属(Rhizopus)和镰孢属(Fusarium)。其中一株ABA的产量达到46g/g培养基,经鉴定为灰葡萄孢(B.cinerea)。在此基础上,对该菌株的培养条件进行了优化。  相似文献   

4.
5.
Abscisic acid (ABA) is a major plant hormone that controls germination, seedling growth, and seed development. During the vegetative phase, ABA plays a key regulatory role in adaptive responses to common abiotic stresses, such as drought, high salinity, and cold. In seeds, ABA modulates the synthesis of storage components and prevents the precocious germination of embryos. ABA-regulated processes are critical for plant growth and survival, especially under unfavorable environmental conditions. Numerous genetic and biochemical studies to delineate signal transduction pathways have led to the identification of a large number of ABA signaling components. However, our knowledge about specific response pathways is still fragmentary. Over the past several years, significant progress has been made in identifying key regulators of early events in the ABA response. In this short review, new advances in ABA signaling research, especially those focused on ABA receptors, will be summarized.  相似文献   

6.
干旱和ABA对同核异质冬小麦叶片蛋白的影响   总被引:5,自引:0,他引:5  
利用双向凝胶电泳研究了冬小麦核质杂种NC4、NC37和它们的核供体丰抗13的3个品种幼苗在水分胁迫和外施ABA条件下叶片中蛋白质代谢的变化。结果表明水分胁迫可抑制3种小麦叶片中一些蛋白质合成,使蛋白数量减少,而在NC4、NC37两个核质杂种中有1个PI5.8、20kD的新合成蛋白点出现,根部外伤ABA也可诱导该蛋白合成,核供体丰抗13幼苗中,ABA可诱导合成该蛋白,而水分胁迫时该蛋白没有出现,表明该蛋白由核基因编码,而其表达可能由细胞质中与ABA有关的某种机制调控。  相似文献   

7.
Luo J  Zhao LL  Gong SY  Sun X  Li P  Qin LX  Zhou Y  Xu WL  Li XB 《遗传学报》2011,38(11):557-565
The mitogen-activated protein kinase (MAPK) cascade is one of the major and evolutionally conserved signaling pathways and plays a pivotal role in the regulation of stress and developmental signals in plants.Here,we identified one gene,GhMPK6,encoding an MAPK protein in cotton.GFP fluorescence assay demonstrated that GhMAPK6 is a cytoplasm localized protein.Quantitative RT-PCR analysis revealed that mRNA accumulation of GhMPK6 was significantly promoted by abscisic acid (ABA).Overexpression of GhMPK6 gene in the T-DNA insertion mutant atmkkl (SALK_015914) conferred a wild-type phenotype to the transgenic plants in response to ABA.Under ABA treatment,cotyledon greening/expansion in GhMPK6 transgenic lines and wild type was significantly inhibited,whereas the atmkkl mutant showed a relatively high cotyledon greening/expansion ratio.Furthermore,CAT1 expression and H2O2 levels in leaves of GhMPK6 transgenic lines and wild type were remarkably higher than those of atmkkl mutant with ABA treatment.Collectively,our results suggested that GhMPK6 may play an important role in ABA-induced CAT1 expression and H2O2 production.  相似文献   

8.
脱水素研究进展   总被引:15,自引:0,他引:15  
脱水素(dehydrin)是植物体内的一种LEA蛋白,能够在植物胚胎发育后期以及逆境下大量表达,广泛存在于植物界。它是具有高度热稳定性的亲水性蛋白,有三类非常保守的区域,即K,Y和S片段。依据这三类片段的组成情况,可将脱水素分为5个基本类别。脱水素可通过多种转运方式定位于植物细胞的不同部位,以行使其功能。其基因的表达存在依赖ABA和不依赖ABA两种途径,并且受到多种环境因素的影响,能稳定细胞膜和许多大分子的结构以避免脱水对细胞造成的伤害。近年来,脱水素的结构和组成、在细胞中的定位及转运、基因的表达与调控、功能与作用机理等方面的研究已取得了很大的进展。  相似文献   

9.
10.
Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. Type 2C PPs (PP2Cs) represent the major group of PPs in plants, and recent discovery of novel abscisic acid (ABA) receptors (ABARs) has placed the PP2Cs at the center stage of the major signaling pathway regulating plant responses to stresses and plant development. Several studies have provided deep insight into vital roles of the PP2Cs in various plant processes. Global analyses of the PP2C gene family in model plants have contributed to our understanding of their genomic diversity and conservation, across plant species. In this review, we discuss the genomic and structural accounts of PP2Cs in plants. Recent advancements in their interaction paradigm with ABARs and sucrose nonfermenting related kinases 2 (SnRK2s) in ABA signaling are also highlighted. In addition, expression analyses and important roles of PP2Cs in the regulation of biotic and abiotic stress responses, potassium (K+) deficiency signaling, plant immunity and development are elaborated. Knowledge of functional roles of specific PP2Cs could be exploited for the genetic manipulation of crop plants. Genetic engineering using PP2C genes could provide great impetus in the agricultural biotechnology sector in terms of imparting desired traits, including a higher degree of stress tolerance and productivity without a yield penalty.  相似文献   

11.
Asr is a family of genes that maps to chromosome 4 of tomato. Asr2, a recently reported member of this family, is believed to be regulated by abscisic acid (ABA), stress and ripening. A genomic Asr2 clone has been fully sequenced, and candidate upstream regulatory elements have been identified. To prove that the promoter region is functional in vivo, we fused it upstream of the β-glucuronidase (GUS) reporter gene. The resulting chimeric gene fusion was used for transient expression assays in papaya embryogenic calli and leaves. In addition, the same construct was used to produce transgenic tomato, papaya, tobacco, and potato plants. Asr2 upstream sequences showed promoter function in all of these systems. Under the experimental conditions tested, ABA stimulated GUS expression in papaya and tobacco, but not in tomato and potato systems. Received: 24 March 1997 / Accepted: 26 November 1997  相似文献   

12.
Rock CD  Sun X 《Planta》2005,222(1):98-106
Studies of abscisic acid (ABA) and auxin have revealed that these pathways impinge on each other. The Daucus carota (L.) Dc3 promoter: uidA (-glucuronidase: GUS) chimaeric reporter (ProDc3:GUS) is induced by ABA, osmoticum, and the auxin indole-3-acetic acid (IAA) in vegetative tissues of transgenic Arabidopsis thaliana (L.) Heynh. Here, we describe the root tissue-specific expression of ProDc3:GUS in the ABA-insensitive-2 (abi2-1), auxin-insensitive-1 (aux1), auxin-resistant-4 (axr4), and rooty (rty1) mutants of Arabidopsis in response to ABA, IAA and synthetic auxins naphthalene acetic acid (NAA), and 2, 4-(dichlorophenoxy) acetic acid. Quantitative analysis of ProDc3:GUS expression showed that the abi2-1 mutant had reduced GUS activity in response to ABA, IAA, or 2, 4-d, but not to NAA. Similarly, chromogenic staining of ProDc3:GUS activity showed that the aux1 and axr4 mutants gave predictable hypomorphic ProDc3:GUS expression phenotypes in roots treated with IAA or 2, 4-d, but not the diffusible auxin NAA. Likewise the rty mutant, which accumulates auxin, showed elevated ProDc3:GUS expression in the absence or presence of hormones relative to wild type. Interestingly, the aux1 and axr4 mutants showed a hypomorphic effect on ABA-inducible ProDc3:GUS expression, demonstrating that ABA and IAA signaling pathways interact in roots. Possible mechanisms of crosstalk between ABA and auxin signaling are discussed.  相似文献   

13.
14.
We carried out activation tagging screen to isolate genes regulating abscisic acid (ABA) response. From the screen of approximately 10,000 plants, we isolated ca 100 ABA response mutants. We characterized one of the mutants, designated ahs1, in this study. The mutant is ABA-hypersensitive, and AtMYB52 was found to be activated in the mutant. Overexpression analysis to recapitulate the mutant phenotypes demonstrated that ATMYB confers ABA-hypersensitivity during postgermination growth. Additionally, AtMYB52 overexpression lines were drought-tolerant and their seedlings were salt-sensitive. Changes in the expression levels of a few genes involved in ABA response or cell wall biosynthesis were also observed. Together, our data suggest that AtMYB52 is involved in ABA response. Others previously demonstrated that AtMYB52 regulates cell wall biosynthesis; thus, our results imply a possible connection between ABA response and cell wall biosynthesis.  相似文献   

15.
16.
17.
Abscisic acid (ABA) accumulation has been analyzed in irrigated and water-stressed wild-type and the vtc-1 mutant of Arabidopsis thaliana, which shows an ascorbate deficiency in leaves of approximately 60%. The amounts of ABA increased progressively up to 2.3-fold in water-stressed wild-type plants, whereas levels were kept at low levels in the irrigated plants. In contrast, initial increases followed by a sharp decrease of abscisic acid levels were observed in water-stressed vtc-1 mutants. Furthermore, the levels of this phytohormone increased up to fivefold in irrigated mutants. This differential accumulation of ABA in the mutant strongly correlated with the ascorbate redox state, but not with ascorbate levels. Changes in ABA levels in leaves paralleled those of chloroplasts. Immunolocalization studies showed a differential ABA accumulation in chloroplasts of vtc-1 mutants, which displayed the highest ABA labeling in irrigated plants. Our results indicate an altered pattern of ABA accumulation in the vtc-1 mutant compared to the wild type, under both irrigated conditions and water-stress conditions, which is strongly dependent on the ascorbate redox state.  相似文献   

18.
19.
Due to their immobility, plants have developed sophisticated mechanisms to robustly monitor and appropriately respond to dynamic changes in nutrient availability. Carbon (C) and nitrogen (N) are especially important in regulating plant metabolism and development, thereby affecting crop productivity. In addition to their independent utilization, the ratio of C to N metabolites in the cell, referred to as the “C/N balance”, is important for the regulation of plant growth, although molecular mechanisms mediating C/N signaling remain unclear. Recently ABI1, a protein phosphatase type 2C (PP2C), was shown to be a regulator of C/N response in Arabidopsis plants. ABI1 functions as a negative regulator of abscisic acid (ABA) signal transduction. ABA is versatile phytohormone that regulates multiple aspects of plant growth and adaptation to environmental stress. This review highlights the regulation of the C/N response mediated by a non-canonical ABA signaling pathway that is independent of ABA biosynthesis, as well as recent findings on the direct crosstalk between multiple cellular signals and the ABA signaling cascade.  相似文献   

20.
泛素化修饰调控脱落酸介导的信号途径   总被引:1,自引:0,他引:1  
于菲菲  谢旗 《遗传》2017,39(8):692-706
泛素化修饰是一种重要的蛋白质翻译后修饰,通过调节蛋白的活性和稳定性等影响其功能的发挥,在真核生物的生命过程中具有非常重要的作用。泛素化修饰通过精细地调控植物激素脱落酸(abscisic acid, ABA)的合成和信号转导过程的关键因子,影响植物对ABA的响应,参与植物生长发育过程及对干旱、盐和冷胁迫等不良环境的应答。本文概述了植物中泛素化修饰的相关组分(包括泛素连接酶E3、泛素结合酶E2、26S蛋白酶体)和内膜运输相关蛋白,以及这些蛋白调控ABA合成和信号转导过程的最新研究进展,提出该研究领域需要解决的新问题,以期为相关领域的科研人员进一步了解翻译后修饰如何调控激素信号的转导途径提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号