共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
It is investigated whether protein segments predicted to have a well-defined conformational preference in the absence of tertiary interactions are conserved in families of homologous proteins. The prediction method follows the procedures of Rooman, M., Kocher, J.-P., and Wodak, S. (preceding paper in this issue). It uses a knowledge-based force field that incorporates only local interactions along the sequence and identifies segments whose lowest energy structure displays a sizable energy gap relative to other computed conformations. In 13 of the protein families and subfamilies considered that are sufficiently homologous to have similar 3D structures, at least one region is consistently predicted as having the same preferred conformation in virtually all family members. These regions are between 4 and 26 residues long. They are often located at chain ends and correspond primarily to segments of secondary structure heavily involved in interactions with the rest of the protein, suggesting that they could act as nuclei around which other parts of the structure would assemble. Experimental data on early folding intermediates or on protein fragments with appreciable structure in aqueous solution are available for more than half of the protein families. Comparison of our results with these data is quite favorable. They reveal that each of the experimentally identified early formed, or independently stable, substructures harbors at least one of the segments consistently predicted as having a preferred conformation by our procedure. The implications of our findings for the conservation of folding pathways in homologous proteins are discussed. 相似文献
3.
Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data 总被引:5,自引:0,他引:5
Extensive studies aiming to establish the structure and root of the Eukaryota tree by phylogenetic analyses of molecular sequences have thus far not resulted in a generally accepted tree. To re-examine the eukaryotic phylogeny using alternative genes, and to obtain a more robust inference for the root of the tree as well as the relationship among major eukaryotic groups, we sequenced the genes encoding isoleucyl-tRNA and valyl-tRNA synthetases, cytosolic-type heat shock protein 90, and the largest subunit of RNA polymerase II from several protists. Combined maximum likelihood analyses of 22 protein-coding genes including the above four genes clearly demonstrated that Diplomonadida and Parabasala shared a common ancestor in the rooted tree of Eukaryota, but only when the fast-evolving sites were excluded from the original data sets. The combined analyses, together with recent findings on the distribution of a fused dihydrofolate reductase-thymidylate synthetase gene, narrowed the possible position of the root of the Eukaryota tree on the branch leading to Opisthokonta or to the common ancestor of Diplomonadida/Parabasala. However, the analyses did not agree with the position of the root located on the common ancestor of Opisthokonta and Amoebozoa, which was argued by Stechmann and Cavalier-Smith [Curr. Biol. 13:R665-666, 2003] based on the presence or absence of a three-gene fusion of the pyrimidine biosynthetic pathway: carbamoyl-phosphate synthetase II, dihydroorotase, and aspartate carbamoyltransferase. The presence of the three-gene fusion recently found in the Cyanidioschyzon merolae (Rhodophyta) genome sequence data supported our analyses against the Stechmann and Cavalier-Smith-rooting in 2003. 相似文献
4.
The leaf-mining flies (Diptera: Agromyzidae) are a diverse group whose larvae feed internally in leaves, stems, flowers, seeds, and roots of a wide variety of plant hosts. The systematics of agromyzids has remained poorly known due to their small size and morphological homogeneity. We investigated the phylogenetic relationships among genera within the Agromyzidae using parsimony and Bayesian analyses of 2965 bp of DNA sequence data from the mitochondrial COI gene, the nuclear ribosomal 28S gene, and the single copy nuclear CAD gene. We included 86 species in 21 genera, including all but a few small genera, and spanning the diversity within the family. The results from parsimony and Bayesian analyses were largely similar, with major groupings of genera in common. Specifically, both analyses recovered a monophyletic Phytomyzinae and a monophyletic Agromyzinae. Within the subfamilies, genera found to be monophyletic given our sampling include Agromyza, Amauromyza, Calycomyza, Cerodontha, Liriomyza, Melanagromyza, Metopomyza, Nemorimyza, Phytobia, and Pseudonapomyza. Several genera were found to be polyphyletic or paraphyletic including Aulagromyza, Chromatomyia, Phytoliriomyza, Phytomyza, and Ophiomyia. We evaluate our findings and discuss host-use evolution in light of current agromyzid taxonomy and two recent hypotheses of relationships based on morphological data. 相似文献
5.
A phylogenetic analysis of the Poales was conducted to assess relationships among Poaceae and allied families. The analysis included 40 taxa, representing all families of the Poales as circumscribed by the Angiosperm Phylogeny Group (APG), plus five of the six unplaced Commelinid families in the APG system. The data matrix included 98 informative characters representing variation in morphology and chloroplast genome structure (including three inversions in the chloroplast genome), and 563 informative characters derived from rbcL and atpA nucleotide sequences. Ecdeiocolea has the 6-kilobase (kb) chloroplast genome inversion previously reported in Joinvillea and Poaceae, and like Joinvillea it lacks the trnT inversion that occurs in grasses. Analysis of the morphological data places Poaceae in an unresolved relationship relative to several other taxa, including Joinvillea and Ecdeiocolea, while analysis of the molecular and combined data resolves Ecdeiocolea as sister of Poaceae, with Joinvillea the sister of this group. Although the 6-kb and trnT inversions are non-homoplasious in the phylogenies obtained in this study, the 28-kb inversion is optimized as having originated twice (once in Restionaceae and another time in the most recent common ancestor of Ecdeiocolea, Joinvillea, and the grasses); an alternative interpretation is that it arose once and was later lost in Anarthria. Ecdeiocolea shares with Poaceae the presence of operculate, annulate pollen that lacks scrobiculi, and a dry, indehiscent fruit. 相似文献
6.
Chelicerates are a diverse group of arthropods, with around 65,000 described species occupying a wide range of habitats. Many phylogenies describing the relationships between the various chelicerate orders have been proposed. While some relationships are widely accepted, others remain contentious. To increase the taxonomic sampling of species available for phylogenetic study based on mitochondrial genomes we produced the nearly complete sequence of the mitochondrial genome of the scorpion Mesobuthus gibbosus. Mitochondrial gene order in M. gibbosus largely mirrors that in Limulus polyphemus but tRNA secondary structures are truncated. A recent analysis argued that independent reversal of mitochondrial genome strand-bias in several groups of arthropods, including spiders and scorpions, could compromise phylogenetic reconstruction and proposed an evolutionary model that excludes mutational events caused by strand-bias (Neutral Transitions Excluded, NTE). An arthropod dataset of six mitochondrial genes, when analyzed under NTE, yields strong support for scorpions as sister taxon to the rest of Chelicerata. We investigated the robustness of this result by exploring the effect of adding additional chelicerate genes and taxa and comparing the phylogenies obtained under different models. We find evidence that (1) placement of scorpions arising at the base of the Chelicerata is an artifact of model mis-specification and scorpions are strongly supported as basal arachnids and (2) an expanded chelicerate dataset finds support for several proposed interordinal relationships (ticks plus mites [Acari] and spiders plus whip spiders plus whip scorpions [Araneae+Pedipalpi]). Mitochondrial sequence data are subject to systematic bias that is positively misleading for evolutionary inference and thus extreme methodological care must be taken when using them to infer phylogenies. 相似文献
7.
Effects of taxonomic sampling and conflicting signal on the inference of seed plant trees supported in previous molecular analyses were explored using 13 single-locus data sets. Changing the number of taxa in single-locus analyses had limited effects on log likelihood differences between the gnepine (Gnetales plus Pinaceae) and gnetifer (Gnetales plus conifers) trees. Distinguishing among these trees also was little affected by the use of different substitution parameters. The 13-locus combined data set was partitioned into nine classes based on substitution rates. Sites evolving at intermediate rates had the best likelihood and parsimony scores on gnepine trees, and those evolving at the fastest rates had the best parsimony scores on Gnetales-sister trees (Gnetales plus other seed plants). When the fastest evolving sites were excluded from parsimony analyses, well-supported gnepine trees were inferred from the combined data and from each genomic partition. When all sites were included, Gnetales-sister trees were inferred from the combined data, whereas a different tree was inferred from each genomic partition. Maximum likelihood trees from the combined data and from each genomic partition were well-supported gnepine trees. A preliminary stratigraphic test highlights the poor fit of Gnetales-sister trees to the fossil data. 相似文献
8.
The molecular phylogeny of the genus Odontobuthus Vachon, 1950 (Scorpiones: Buthidae) in Iran was evaluated using two mitochondrial DNA genes, cytochrome c oxidase, subunit I (COI) and 16S ribosomal RNA (16S rRNA). The molecular phylogenetic analyses were performed using Maximum Parsimony, Maximum Likelihood and Bayesian inference methods. The resulting topologies supported two main clades: the clade comprising Odontobuthus doriae, O. bidentatus, and O. tavighiae, and another one which is the O. tirgari clade. The results clearly presented additional support for the taxonomic validity of the recently described species, O. tirgari and O. tavighiae. In addition, the monophyly of two previously described species O. doriae and O. bidentatus was confirmed. According to the data presented here, three taxonomically valid species belonging to the genus Odontobuthus occur in Iran. 相似文献
9.
10.
Background and Aims
The classification and phylogeny of Eurasian (EA) Aster (Asterinae, Astereae, Asteraceae) remain poorly resolved. Some taxonomists adopt a broad definition of EA Aster, whereas others favour a narrow generic concept. The present study aims to delimit EA Aster sensu stricto (s.s.), elucidate the phylogenetic relationships of EA Aster s.s. and segregate genera.Methods
The internal and external transcribed spacers of nuclear ribosomal DNA and the plastid DNA trnL-F region were used to reconstruct the phylogeny of EA Aster through maximum parsimony and Bayesian analyses.Key Results
The analyses strongly support an Aster clade including the genera Sheareria, Rhynchospermum, Kalimeris (excluding Kalimeris longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron. Many well-recognized species of Chinese Aster s.s. lie outside of the Aster clade.Conclusions
The results reveal that EA Aster s.s. is both paraphyletic and polyphyletic. Sheareria, Rhynchospermum, Kalimeris (excluding K. longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron should be included in Aster, whereas many species of Chinese Aster s.s. should be excluded. The recircumscribed Aster should be divided into two subgenera and nine sections. Kalimeris longipetiolata, Aster batangensis, A. ser. Albescentes, A. series Hersileoides, a two-species group composed of A. senecioides and A. fuscescens, and a six-species group including A. asteroides, should be elevated to generic level. With the Aster clade, they belong to the Australasian lineages. The generic status of Callistephus should be maintained. Whether Galatella (including Crinitina) and Tripolium should remain as genera or be merged into a single genus remains to be determined. In addition, the taxonomic status of A. auriculatus and the A. pycnophyllus–A. panduratus clade remains unresolved, and the systematic position of some segregates of EA Aster requires further study. 相似文献11.
Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data,and the branching order in hominoidea 总被引:57,自引:0,他引:57
Summary A maximum likelihood method for inferring evolutionary trees from DNA sequence data was developed by Felsenstein (1981). In evaluating the extent to which the maximum likelihood tree is a significantly better representation of the true tree, it is important to estimate the variance of the difference between log likelihood of different tree topologies. Bootstrap resampling can be used for this purpose (Hasegawa et al. 1988; Hasegawa and Kishino 1989), but it imposes a great computation burden. To overcome this difficulty, we developed a new method for estimating the variance by expressing it explicitly.The method was applied to DNA sequence data from primates in order to evaluate the maximum likelihood branching order among Hominoidea. It was shown that, although the orangutan is convincingly placed as an outgroup of a human and African apes clade, the branching order among human, chimpanzee, and gorilla cannot be determined confidently from the DNA sequence data presently available when the evolutionary rate constancy is not assumed. 相似文献
12.
Charadrii (shorebirds, gulls, and alcids) have exceptional diversity in ecological, behavioral, and life-history traits. A phylogenetic framework is necessary to fully understand the relationships among these traits. Despite several attempts to resolve the phylogeny of the Charadrii, none have comprehensively utilized molecular sequence data. Complete and partial cytochrome-b gene sequences for 86 Charadrii and five Falconides species (as outgroup taxa) were obtained from GenBank and aligned. We analyzed the resulting matrices using parsimony, Bayesian inference, minimum evolution, and quartet puzzling methods. Posterior probabilities, decay indices, and bootstrapping provide strong support for four major lineages consisting of gulls, alcids, plovers, and sandpipers, respectively. The broad structure of the trees differ significantly from all previous hypotheses of Charadrii phylogeny in placing the plovers at the base of the tree below the sandpipers in a pectinate sequence towards a large clade of gulls and alcids. The parsimony, Bayesian, and minimum evolution models provide strong evidence for this phylogenetic hypothesis. This is further corroborated by non-tree based measures of support and conflict (Lento plots). The quartet puzzling trees are poorly resolved and inconclusive. 相似文献
13.
Phylogenetic analyses, based upon nuclear small-subunit ribosomal RNA gene sequences, of four ‘chlorosarcinoid’ species referred to Planophila Gerneck show that the genus is polyphyletic. The type species, P. laetevirens Gerneck, is closely related to species in the Ulotrichales, Ulvophyceae. The monotypic sarcinoid genus Pseudendocloniopsis is the closest relative of Planophila; the two genera represent the addition of a new morphological type to the Ulotrichales. Planophila microcystis (Dangeard) Kornmann & Sahling forms a clade at the base of the Ulvophyceae with Oltmannsiellopsis, and thus belongs to the Oltmannsiellopsidales. This result is also supported by the Oltmannsiellopsis-like ultrastructure of P. microcystis zoospores. Planophila sp. B from Antarctica, which has Trebouxia-like pyrenoid structure, is a trebouxiophyte closely related to Chlorella-like unicellular coccoids, Stichococcus bacillaris and Prasiola species. This is the first robustly supported molecular phylogenetic analysis that places Prasiola in the Trebouxiophyceae. As shown previously, P. terrestris Groover & Hofstetter belongs to the Chaetopeltidales, Chlorophyceae. Dangemannia gen. nov. (type species : D. microcystis (Dangeard) comb. nov.), Floydiella gen. nov. (type species : F. terrestris (Groover & Hofstetter) comb. nov.) and Pabia gen. nov. (type: P. signiensis sp. nov.) are proposed. 相似文献
14.
Chilton NB Huby-Chilton F Beveridge I Smales LR Gasser RB Andrews RH 《Parasitology international》2011,60(4):381-387
Parasitic nematodes of the tribe Labiostrongylinea (Family Cloacinidae) occur in the stomachs of a wide variety of potoroid and macropodid marsupials in Australia, Papua Indonesia and Papua New Guinea. The aim of the present study was to infer the evolutionary relationships of the five genera of labiostrongyline nematodes that occur in Australian potoroids and macropodids using sequence data of the nuclear first and second internal transcribed spacers of ribosomal DNA. The phylogenetic analyses resulted in the separation of the Labiostrongylinea into two major groups reflecting coevolution between hosts and parasites. Two nematode species belonging to the genus Potorostrongylus formed a sister group to the remaining species of the Labiostrongylinea. This genus occurs exclusively in potoroid marsupials, which are considered to be basal to the macropodid marsupials. The second major group included species of Labiostrongylus, Labiosimplex, Labiomultiplex and Parazoniolaimus, all of which occur in macropodids. These species formed two distinct clades, one predominating in the host genera Thylogale and Onychogalea, and the second in the genus Macropus, which includes the more recent macropodids. However, there is also evidence of colonisation by both nematode clades of relatively unrelated hosts. In addition, genetic differences among individuals of Lm. eugenii from geographically isolated populations of M. eugenii, and among Ls. longispicularis from different subspecies of M. robustus suggest the existence of sibling species that may have arisen by allopatric speciation. The broad coevolutionary relationship between the labiostrongyline nematodes and their marsupial hosts therefore represents a mixture of potential cospeciation and colonisation events. 相似文献
15.
Single copy nuclear polymorphic (scnp) DNA is potentially a powerful molecular marker for evolutionary studies of populations. However, a practical obstacle to its employment is the general problem of haplotype determination due to the common occurrence of heterozygosity in diploid organisms. We explore here a 'consensus vote' (CV) approach to this question, combining statistical haplotype reconstruction and experimental verification using as an example an indel-free scnp DNA marker from the flanking region of a microsatellite locus of the migratory locust. The raw data comprise 251-bp sequences from 526 locust individuals (1052 chromosomes), with 71 (28.3%) polymorphic nucleotide sites (including seven triallelic sites) and 141 distinct genotypes (with frequencies ranging from 0.2 to 25.5%). Six representative statistical haplotype reconstruction algorithms are employed in our CV approach, including one parsimony method, two expectation-maximization (EM) methods and three Bayesian methods. The phases of 116 ambiguous individuals inferred by this approach are verified by molecular cloning experiments. We demonstrate the effectiveness of the CV approach compared to inferences based on individual statistical algorithms. First, it has the unique power to partition the inferrals into a reliable group and an uncertain group, thereby allowing the identification of the inferrals with greater uncertainty (12.7% of the total sample in this case). This considerably reduces subsequent efforts of experimental verification. Second, this approach is capable of handling genotype data pooled from many geographical populations, thus tolerating heterogeneity of genetic diversity among populations. Third, the performance of the CV approach is not influenced by the number of heterozygous sites in the ambiguous genotypes. Therefore, the CV approach is potentially a reliable strategy for effective haplotype determination of nuclear DNA markers. Our results also show that rare variations and rare inferrals tend to be more vulnerable to inference error, and hence deserve extra surveillance. 相似文献
16.
Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology. 总被引:8,自引:0,他引:8
Partial 18S rRNA sequence of the nemertine Cerebratulus lacteus was obtained and compared with those of coelomate metazoans and acoelomate platyhelminths to test whether nemertines share a most recent common ancestor with the platyhelminths, as traditionally has been implied, or whether nemertines lie within a protostome coelomate clade, as suggested by more recent morphological analyses. Maximum-parsimony analysis supports the inclusion of the nemertine within a protostome-coelomate clade that falls within a more inclusive coelomate clade. Bootstrap analysis indicates strong support for a monophyletic Coelomata composed of a deuterostome and protostome-coelomate clade. Support for a monophyletic protostome Coelomata is weak. Inference by distance analysis is consistent with that of maximum parsimony. Analysis of down-weighted paired sites by maximum parsimony reveals variation in topology only within the protostome-coelomate clade. The relationships among the protostome coelomates cannot be reliably inferred from the partial sequences, suggesting that coelomate protostomes diversified rapidly. Results with evolutionary parsimony are consistent with the inclusion of the nemertine in a coelomate clade. The molecular inference corroborates recent morphological character analyses that reveal no synapomorphies of nemertines and flatworms but instead suggest that the circulatory system and rhynchocoel of nemertines are homologous to coelomic cavities of protostome coelomates, thus supporting the corresponding hypothesis that nemertines belong within a protostome-coelomate clade. The sequence data provide an independent test of morphological character homology. 相似文献
17.
18.
Allergens are proteins or glycoproteins that are recognized by IgE produced by the immune system of allergic individuals. Until now around 1,500 allergenic structures have been identified and this number seems not have reached a plateau after 3-4 decades of research and the advent of molecular biology. Several allergen databases are available on Internet. Different aims and philosophies lead to different products. Here we report about main feature of web sites dedicated to allergens and we describe in more details our current work on the Allergome platform. The web server Allergome (www.allergome.org) represent a free independent open resource whose goal is to provide an exhaustive repository of data related to all the IgE-binding compounds. The main purpose of Allergome is to collect a list of allergenic sources and molecules by using the widest selection criteria and sources. A further development of the Allergome platform has been represented by the Real Time Monitoring of IgE sensitization module (ReTiME) that allows uploading of raw data from both in vivo and in vitro testing, thus representing the first attempt to have IT applied to allergy data mining. More recently, a new module (RefArray) representing a tool for literature mining has been released. 相似文献
19.
20.
An investigation of the "Ancyloplanorbidae" (Gastropoda, Pulmonata, Hygrophila): preliminary evidence from DNA sequence data 总被引:1,自引:0,他引:1
The Planorbidae is the largest family of freshwater pulmonate snails, yet an understanding of their intrafamily phylogenetic relationships is lacking and existing inferences are tentative. Moreover, it has been suggested that the Ancylidae, limpet-like freshwater pulmonates, should be merged with Planorbidae according to analysis of internal organ morphology. The present study explicitly tests this hypothesis by phylogenetic inference from partial DNA sequences of three molecular markers, nuclear ribosomal small subunit 18S and the mitochondrial cytochrome oxidase, and large subunit 16S. A molecular phylogeny was inferred based upon 22 taxa representing 12 ancylid and planorbid genera; additional taxa were included from the authors' database and from available sequences from GenBank, to further explore this basic data set. Taxa from Acroloxidae, Lymnaeidae, and Physidae were used as outgroups. Ancylidae and Planorbidae were found to be paraphyletic, with Planorbidae including some members of Ancylidae. "Ancyloplanorbidae" was also found to be paraphyletic because Acroloxus (Acroloxidae) surprisingly was included. Burnupia was found to be ancestral to "Ancyloplanorbidae" (including Acroloxus). The following clades of Planorbidae were supported: Bulininae and Planorbinae, Biomphalarini (including Helisoma and Planorbarius), and Planorbini and Segmentini. 相似文献