首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: Verify the presence and the molecular identity of phytoplasmas in Northern and Central Italy vineyards where yellows diseases are widespread. METHODS AND RESULTS: Phytoplasma presence and identity were determined by PCR/RFLP analyses on 16S ribosomal gene testing 1424 symptomatic samples. The 65% of samples resulted phytoplasma infected; in particular 256 samples were found positive to phytoplasmas belonging to group 16SrV (mainly Flavescence dorée associated), and the remaining 37% was infected by phytoplasmas belonging to ribosomal subgroup 16SrXII-A (Stolbur or Bois Noir associated). 16SrV ribosomal group representative strains were further typed for variability in SecY and rpS3 genes. The results showed the presence of phytoplasmas belonging to 16SrV-C, 16SrV-D and to a lesser extent, 16SrV-A subgroup. CONCLUSIONS: Possible relationships between genetic polymorphisms of phytoplasma strains belonging to subgroup 16SrV-C and their geographic distribution and/or epidemic situations were detected. SIGNIFICANCE AND IMPACT OF THE STUDY: Bois Noir and Flavescence dorée phytoplasmas are present in significant percentages in the areas under investigation. Molecular tools allowed to identify phytoplasma-infected plants and the genes employed as polymorphism markers resulted useful in distinguishing and monitoring the spreading of the diseases associated with diverse phytoplasmas belonging to 16SrV subgroup in vineyards.  相似文献   

2.
During a survey on grapevine yellows disease complex in vineyards of Lombardy region (northern Italy), phytoplasmas associated with Flavescence dorée disease were identified in symptomatic grapevines. Polymerase chain reaction and restriction fragment length polymorphism (RFLP) analyses of 16S rDNA revealed the prevalence of phytoplasmal subgroup 16SrV-D. Bioinformatic analyses of nucleotide sequences of rplV and rpsC genes, amplified from 16SrV-D phytoplasma infected grapevines and cloned, underscored the presence of five confirmed rpsC single nucleotide polymorphism (SNP) lineages, determined by different combination of SNPs at nucleotide positions 29, 365, 680, and 720 of rpsC gene. Virtual and actual RFLP analyses with the enzyme TaqI validated the presence of these SNPs. Co-infections by up to four distinct rpsC SNP lineages of 16SrV-D phytoplasma were found in grapevines. These results could open new perspectives for the study of the ecology and the epidemiology of Flavescence dorée.  相似文献   

3.
Three real-time PCR systems for direct detection of phytoplasmas associated to Flavescence dorée (FD), Bois noir (BN) and aster yellows (AY) diseases were developed. TaqMan probes and primers were designed on the 16S ribosomal RNA sequences of phytoplasma genome. A further TaqMan assay, targeting a grapevine gene encoding for the chloroplast chaperonin 21, was developed in order to check the DNA quality and to verify the absence of PCR inhibition. A comparison between real-time PCR and conventional nested-PCR methods for phytoplasma detection was carried out on several reference samples from grapevine, periwinkle, other host plants and insect species. Detection of FD, BN and AY phytoplasma DNA on infected specimens was rapid, specific and reproducible. Sensitivity was as high as nested-PCR assay. The two procedures were then used on about 450 samples collected from grapevines showing yellows symptoms. The results showed that real-time PCR approach for phytodiagnostic purposes was more advantageous than nested-PCR method with regard to rapidity of the assay and reduced risk of sample cross contamination. These new protocols represent an improvement of existing analytical methods and could be used as a reliable diagnostic procedure in certification and control programs.  相似文献   

4.
Aim: Evaluation of the genetic variability of stolbur phytoplasma infecting grapevines, bindweeds and vegetables, collected in different central and southern Italian regions. Materials and Results: Phytoplasma isolates belonging to stolbur subgroup 16SrXII‐A were subjected to molecular characterization by polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP), to investigate two different nonribosomal genes: tuf and vmp1. In grapevines, 32% of samples were infected by tuf‐a type and 68% by tuf‐b type, with different relative incidences in the regions surveyed. All herbaceous samples (bindweeds, tomato, tobacco, pepper, celery) were infected by tuf‐b. The gene vmp1 showed higher polymorphism in grapevines (nine profiles) than herbaceous plants (six) by RFLP analysis, in agreement with nucleotide sequences’ analysis and virtual digestions. Conclusions: The phylogenetic analysis of vmp1 gene sequences supports the RFLP data and demonstrates the accuracy of RFLP for preliminary assessments of genetic diversity of stolbur phytoplasmas and for screening different vmp types. Significance and Impact of the Study: Stolbur represents a serious phytosanitary problem in the areas under investigation, owing to heavy economic losses in infected grapevines and vegetables. Molecular information about the complex genotyping of the vmp1 gene provides useful data towards a better understanding of stolbur epidemiology. Moreover, this study clarifies some different vmp1 genotype classifications of stolbur, providing molecular data in comparison with previous investigations.  相似文献   

5.
A multidisciplinary approach, based on field surveys, molecular biology techniques, and spatial data analyses, was utilised to investigate the Bois noir (BN) epidemiology in north‐eastern Italian vineyards during the years 2010–12. Symptomatic grapevines, weeds and specimens of the insect vector Hyalesthes obsoletus were monitored and mapped. Leaf samples from symptomatic grapevines and weeds, and captured insect specimens were analyzed by real‐time PCR to identify BN phytoplasma (BNp; ‘Candidatus Phytoplasma solani’ species), the etiological agent of BN. Data spatial distribution was analyzed using SADIE (Spatial Analysis by Distance IndicEs). Bois noir phytoplasma strains identified in weed candidates for an epidemiological role were characterised by RFLP‐based analyses of tuf gene amplicons. Results highlighted that, in the examined areas, the host systems Convolvulus arvensis – H. obsoletus and Urtica dioica – H. obsoletus play the main role in BN diffusion. It was also evidenced that other weeds (i.e. Chenopodium album and Malva sylvestris) spatially associated with symptomatic grapevines and/or insect vectors and infected by the same tuf type identified in grapevines and insects, could play a role in BN diffusion. On the other hand, some weeds (i.e. Trifolium repens) were uninfected and not associated with symptomatic grapevines and/or insect vectors. The synergic application of our multidisciplinary approach improved the knowledge of BN epidemiology, and provided helpful indication for designing experimental plans to contain BN spreading in vineyards through weed management. The approach described in the present work could be used to investigate the complex epidemiology of other phytoplasma diseases.  相似文献   

6.
Three real‐time PCR–based assays for the specific diagnosis of flavescence dorée (FD), bois noir (BN) and apple proliferation (AP) phytoplasmas and a universal one for the detection of phytoplasmas belonging to groups 16Sr‐V, 16Sr‐X and 16Sr‐XII have been developed. Ribosomal‐based primers CYS2Fw/Rv and TaqMan probe CYS2 were used for universal diagnosis in real‐time PCR. For group‐specific detection of FD phytoplasma, ribosomal‐based primers fAY/rEY, specific for 16Sr‐V phytoplasmas, were chosen. For diagnosis of BN and AP phytoplasmas, specific primers were designed on non‐ribosomal and nitroreductase DNA sequences, respectively. SYBR® Green I detection coupled with melting curve analysis was used in each group‐specific protocol. Field‐collected grapevines infected with FD and BN phytoplasmas and apple trees infected with AP phytoplasma, together with Scaphoideus titanus, Hyalesthes obsoletus and Cacopsylla melanoneura adults, captured in the same vineyards and orchards, were used as templates in real‐time PCR assays. The diagnostic efficiency of each group‐specific protocol was compared with well‐established detection procedures, based on conventional nested PCR. Universal amplification was obtained in real‐time PCR from DNAs of European aster yellows (16Sr‐I), elm yellows (16Sr‐V), stolbur (16Sr‐XII) and AP phytoplasma reference isolates maintained in periwinkles. The same assay detected phytoplasma DNA in all test plants and test insect vectors infected with FD, BN and AP phytoplasmas. Our group‐specific assays detected FD, BN, and AP phytoplasmas with high efficiencies, similar to those obtained with nested PCR and did not amplify phytoplasma DNA of other taxonomic groups. Melting curve analysis was necessary for the correct identification of the specific amplicons generated in the presence of very low target concentrations. Our work shows that real‐time PCR methods can sensitively and rapidly detect phytoplasmas at the universal or group‐specific level. This should be useful in developing defence strategies and for quantitative studies of phytoplasma–plant–vector interactions.  相似文献   

7.
In October 2013, a new disease affecting purple woodnettle, Oreocnide pedunculata, plants was found in Miaoli County, Taiwan. Diseased plants exhibited leaf yellowing and witches'‐broom symptoms. Molecular diagnostic tools and electron microscopic cell observation were used to investigate the possible cause of the disease with a specific focus on phytoplasmas. The result of polymerase chain reaction with universal primer pairs indicated that phytoplasmas were strongly associated with the symptomatic purple woodnettles. The virtual restriction fragment length polymorphism (RFLP) patterns and phylogenetic analysis based on 16S rDNA and ribosomal protein, rplV‐rpsC region revealed that purple woodnettle witches'‐broom phytoplasma (PWWB) belongs to a new subgroup of 16SrI and rpI group and was designated as 16SrI‐AH and rpI‐Q, respectively, herein. RFLP analysis based on tuf gene region revealed that the PWWB belongs to tufI‐B, but phylogenetic analysis suggested that PWWB should be delineated to a new subgroup under the tufI group. Taken together, our analyses based on 16S rRNA and rplV‐rpsC region gave a finer differentiation while classifying the subgroup of aster yellows group phytoplasmas. To our knowledge, this is the first report of a Candidatus Phytoplasma asteris‐related strain in 16SrI‐AH, rpI‐Q and tufI‐B subgroup affecting purple woodnettle, and of an official documentation of purple woodnettle as being a new host of phytoplasmas.  相似文献   

8.
Between 2003 and 2005, a survey was conducted throughout the grape‐growing regions of Bulgaria to identify possible infection with grapevine yellows diseases, especially Flavescence dorée (FD). The samples were checked for phytoplasmas and viruses inducing similar symptoms in the Central Laboratory for Plant Quarantine. To confirm stolbur phytoplasma infection of grapevine, a multiplex nested‐PCR assay for direct detection of FD and stolbur phytoplasmas was used. Infection of grapevine with phytoplasma was detected. The disease is very common disease in Bulgaria on tomatoes, potatoes and other crops. Monitoring is being continued. This is the first report of phytoplasma‐infected grapevine in Bulgaria.  相似文献   

9.
Visual symptom assessment, polymerase chain reaction amplification and restriction fragment length polymorphism analyses were used to detect and identify phytoplasmas infecting grapevines in Croatia. Samples were collected from different viticultural areas in order to examine geographic distribution of phytoplasmas throughout the country. Only phytoplasmas belonging to Bois Noir (subgroup 16SrXII-A or stolbur) were found in vineyards of continental Croatia. The fact that no phytoplasmas were detected in Dalmatia and Istria was in accordance with the absence of grapevine yellows symptoms in these regions.  相似文献   

10.
Symptoms resembling those associated with phytoplasma presence were observed in pomegranate (Punica granatum L.) trees in June 2012 in the Aegean Region of Turkey (Ayd?n province). The trees exhibiting yellowing, reduced vigour, deformations and reddening of the leaves and die‐back symptoms were analysed to verify phytoplasma presence. Total nucleic acids were extracted from fresh leaf midribs and phloem tissue from young branches of ten symptomatic and five asymptomatic plants. Nested polymerase chain reaction assays using universal phytoplasma‐specific 16S rRNA and tuf gene primers were performed. Amplicons were digested with Tru1I, Tsp509I and HhaI restriction enzymes, according to the primer pair employed. The phytoplasma profiles were identical to each other and to aster yellows (16SrI‐B) strain when digestion was carried out on 16Sr(I)F1/R1 amplicons. However, one of the samples showed mixed profiles indicating that 16SrI‐B and 16SrXII‐A phytoplasmas were present when M1/M2 amplicons were digested, the reamplification of this sample with tuf cocktail primers allowed to verify the presence of a 16SrXII‐A profile. One pomegranate aster yellows strain AY‐PG from 16S rRNA gene and the 16SrXII‐A amplicon from tuf gene designed strain STOL‐PG were directly sequenced and deposited in GenBank under the Accession Numbers KJ818293 and KP161063, respectively. To our knowledge, this is the first report of 16SrI‐B and 16SrXII‐A phytoplasmas in pomegranate trees.  相似文献   

11.
Melia azedarach var. japonica trees with leaf yellowing, small leaves and witches' broom were observed for the first time in Korea. A phytoplasma from the symptomatic leaves was identified based on the 16Sr DNA sequence as a member of aster yellows group, ribosomal subgroup 16SrI‐B. Sequence analyses of more variable regions such as 16S–23S intergenic spacer region, secY gene, ribosomal protein (rp) operon and tuf gene showed 99.5?100% nucleotide identity to several GenBank sequences of group 16SrI phytoplasmas. Phylogenetic analysis confirmed that the Melia azedarach witches' broom phytoplasma belongs to aster yellows group.  相似文献   

12.
A search for phytoplasma-associated diseases was conducted for the first time in the main grapevine-growing localities of the Dukagjini plain in Kosovo. A total of 144 samples were collected from grapevine cultivars displaying leaf yellowing, reddening, discolouration and irregular wood ripening, and analysed using nested and quantitative PCR assays. These assays showed that 35.4% of samples belonging to eight cultivars were positive to the presence of phytoplasmas in the 16SrXII group. The 16S rDNA phytoplasma sequences obtained from 15 samples shared identity greater than 99.5% with ‘Candidatus Phytoplasma solani’. Sequence analysis of the tuf gene showed that the strains found in Kosovar grapevines are in the tuf-type b1 group, sharing 99.6% to 99.8% identity with ‘Ca. P. solani'-related strains associated with the “bois noir” grapevine disease in many European countries; the secY gene sequences, on the other hand, shared 100% identity with ‘Ca. P. solani' strains from Bosnia and Herzegovina, Serbia, Croatia and Turkey. This study constitutes the first report on the presence and molecular characterization of phytoplasmas in Kosovar vineyards. Based on these results, it is recommended that testing for phytoplasma be included in the certification program for grapevine in Kosovo.  相似文献   

13.
Bois noir (BN) is an insect-transmitted grapevine yellows disease caused by phytoplasmas belonging to the stolbur subgroup 16SrXII-A. In Italy, increasing prevalence of stolbur phytoplasma strains in vineyards suggests progressive spread of the disease and potential for heavy impacts on the wine industry. In this study, we investigated the genetic diversity of stolbur phytoplasma strains in BN phytoplasma populations. Nucleotide sequences of 16S rRNA genes from stolbur phytoplasma strains affecting vineyards in the Lombardy region of Italy and stolbur phytoplasma 16S rDNA sequences retrieved from GenBank were subjected to virtual restriction fragment length polymorphism analysis. Calculation of virtual restriction similarity coefficients revealed the presence of new subgroups in group 16SrXII (stolbur phytoplasma group). Representative strains of confirmed new subgroups 16SrXII-F (XII-F) and XII-G and tentative new subgroups XII-A1 through XII-A19, XII-H, XII-I, and XII-J as well as known subgroup XII-A were from grapevines; strains representing three additional tentative new subgroups (XII-K, XII-L and XII-M) were from other plant hosts. Nucleotide sequence alignments identified no less than nine genetically distinct 16S rDNA single nucleotide polymorphism lineages from grapevine, indicating a high degree of genetic heterogeneity within BN phytoplasma populations. The findings open new opportunities for in-depth studies of the distribution of grapevine-associated 16SrXII phytoplasma strains in weeds, insect vector populations and grapevines from vineyards located in different geographic areas.  相似文献   

14.
Asparagus officinalis plants with severe fasciation of some spears were observed in southern Bohemia between 1998 and 2007. Nucleic acids extracted from these and asymptomatic plants were assayed with nested polymerase chain reaction (PCR) using the phytoplasma‐specific universal ribosomal primers P1/P7 and R16F2n/R2. The restriction profiles obtained from digestion of the PCR products with five endonucleases (AluI, HhaI, KpnI, MseI and RsaI) were identical in all phytoplasmas infecting asparagus in the Czech Republic and indistinguishable from those of phytoplasmas in the aster yellows group (subgroup 16SrI‐B). Sequence analysis of 1754 bp of the ribosomal operon indicated that the closest related phytoplasmas were those associated with epilobium phyllody and onion yellows. This is the first report of the natural occurrence of ‘Candidatus Phytoplasma asteris’ in A. officinalis.  相似文献   

15.
Aster yellows (AY) phytoplasmas (Candidatus Phytoplasma asteris) are associated with a number of plant diseases throughout the world. Several insect vectors are responsible for spreading AY diseases resulting in wide distribution and low host specificity. Because the role of sucking insects as vectors of phytoplasmas is widely documented, and the citrus flatid planthopper Metcalfa pruinosa is a phloem feeder, it has been incriminated as a possible vector of phytoplasmas. However, its ability to transfer phytoplasma has not been confirmed. The present work shows that M. pruinosa (Hemiptera: Flatidae), a polyphagous planthopper, is able to vector Ca. P. asteris to French marigold (Tagetes patula). Transmission experiments were conducted in 2017 and 2018 in central Hungary by two approaches: (a) AY-infected M. pruinosa were collected from an area with severe incidence of the disease on T. patula and caged on test plants for an inoculation-access period of 2 weeks, and (b) presumably phytoplasma-free insects were collected from apparently healthy grapevines (Vitis vinifera L.) and fed on AY-infected T. patula plants for 2 weeks prior to being caged on test plants. AY disease symptoms developed on 4 out of 10 and 10 out of 15 test plants, respectively. All phytoplasma-positive marigold and M. pruinosa samples showed identical RFLP patterns and shared 100% 16S rDNA sequence identity with each other and with the aster yellows phytoplasma strain AJ33 (GenBank accession number MK992774). These results indicated that the phytoplasma belonged to the phytoplasma subgroup 16SrI-B Ca. P. asteris. Therefore, the work presented here provides experimental evidence that M. pruinosa is a vector of a 16SrI-B subgroup phytoplasma to T. patula.  相似文献   

16.
A disease with symptoms similar to palm lethal yellowing was noticed in the early 2013 in Khuzestan Province (Iran) in date palm (Phoenix dactylifera). Infected trees displaying symptoms of streak yellows and varied in the incidence and severity of yellowing. A study was initiated to determine whether phytoplasma was the causal agent. Polymerase chain reaction–restriction fragment length polymorphism (PCR‐RFLP) methods using universal phytoplasma primers pairs R16mF1/mR1 and M1/M2 were employed to detect putative phytoplasma(s) associated with date palm trees. Nested PCR using universal primers revealed that 40 out of 53 trees were positive for phytoplasma while asymptomatic date palms from another location (controls) tested negative. RFLP analyses and DNA sequencing of 16S rDNA indicated that the presence of two different phytoplasmas most closely related to clover proliferation (CP) phytoplasma (group 16SrVI) and ash yellows (AY) phytoplasma (group 16SrVII). Sequence analysis confirmed that palm streak yellows phytoplasmas in each group were uniform and to be phylogenetically closest to “CandidatusP. fraxini” (MF374755) and “Ca. P. trifolii” isolate Rus‐CP361Fc1 (KX773529). Result of RFLP analysis of secA gene of positive samples using TruI and TaqI endonuclease is in agreement with rDNA analysis. On this basis, both strains were classified as members of subgroups 16SrVI‐A and 16SrVII‐A. This is the first report of a phytoplasma related to CP and AY phytoplasma causing date palm yellows disease symptoms.  相似文献   

17.
The incidence and transmissibility of Flavescence dorée phytoplasma (FDP) in populations of the vector Scaphoideus titanus Ball (Homoptera: Cicadellidae) were investigated by periodically collecting nymphs and adults of the leafhopper species in four vineyards with high incidence of Flavescence dorée (FD)‐diseased grapevines. Insects were tested individually for FDP with an ELISA procedure, after transmission assays to broadbean seedlings and further transmission to grapevine cuttings. No transmission occurred when early or middle instar nymphs were used to inoculate broadbeans, although a limited number of fifth‐instar nymphs and young adults transmitted the pathogen to broadbean seedlings. However, the same batches of insects transmitted FDP more efficiently to grapevine cuttings during prolonged inoculation periods, confirming the existence of a latent period before infected insects become infective. The proportions of ELISA‐positive individuals in the three categories of insects used for transmission assays reflected the rate of FDP transmission to grapevine cuttings. According to the data obtained by ELISA and from field sampling of first‐instar nymphs, we adapted the proportions of nymph hatching, of infected leafhoppers, and of infective leafhoppers (assuming a conservative latent period in the vector of 30 days) to logistic models as a function of degree‐days. We then discussed the possible use of the model developed for improving vector control decisions in FD‐infected vineyards.  相似文献   

18.
Yellowing symptoms similar to coconut yellow decline phytoplasma disease were observed on lipstick palms (Cyrtostachys renda) in Selangor state, Malaysia. Typical symptoms were yellowing, light green fronds, gradual collapse of older fronds and decline in growth. Polymerase chain reaction assay was employed to detect phytoplasma in symptomatic lipstick palms. Extracted DNA was amplified from symptomatic lipstick palms by PCR using phytoplasma‐universal primer pair P1/P7 followed by R16F2n/R16R2. Phytoplasma presence was confirmed, and the 1250 bp products were cloned and sequenced. Sequence analysis indicated that the phytoplasmas associated with lipstick yellow frond disease were isolates of ‘Candidatus Phytoplasma asteris’ belonging to the 16SrI group. Virtual RFLP analysis of the resulting profiles revealed that these palm‐infecting phytoplasmas belong to subgroup 16SrI‐B and a possibly new 16SrI‐subgroup. This is the first report of lipstick palm as a new host of aster yellows phytoplasma (16SrI) in Malaysia and worldwide.  相似文献   

19.
Lilium spp. with symptoms of severe fasciation were observed in Southern and central Bohemia during the period 1999-2003. Nucleic acids extracted from symptomatic and asymptomatic plants were used in nested-PCR assays with primers amplifying 16S-23S rRNA sequences specific for phytoplasmas. The subsequent nested-PCR with phytoplasma group-specific primers followed by RFLP analyses and the 16S ribosomal gene sequencing, allowed classification of the detected phytoplasmas in the aster yellows group, subgroups 16SrI-B and 16SrI-C alone, and in mixed infection. Samples infected by 16SrI-C phytoplasmas showed different overlapping RFLP profiles after TruI digestion of R16F2/R2 amplicons. Two of these amplicons were sequenced, one of them directly and the other after cloning; sequence analyses and blast alignment confirmed the presence of two different overlapping patterns in samples studied. The sequences obtained were closely related, respectively, to operon A and operon B ribosomal sequences of the clover phyllody phytoplasma. Direct PCR followed by RFLP analyses of the tuf gene with two restriction enzymes showed no differences from reference strain of subgroup 16SrI-C. Infection with aster yellows phytoplasmas of 16SrI-B subgroup in asymptomatic lilies cv. Sunray was also detected.  相似文献   

20.
Plants of alfalfa (Medicago sativa) exhibiting general stunting, proliferation and phyllody associated with leaf yellowing and reddening were observed in three localities of Central Serbia. Phytoplasma strains belonging to 16SrIII‐B and 16SrXII‐A groups were detected and identified by RFLP and sequence analysis of 16S rDNA. Stolbur phytoplasma tuf gene RFLP analysis showed the presence of the TufAY‐b‐type phytoplasma subgroup in 80% of symptomatic samples. This is the first report of 16SrIII‐B and 16SrXII‐A phytoplasma groups affecting alfalfa in Serbia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号