首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Using the yeast two hybrid system we have identified a novel protein termed somatostatin receptor interacting protein (SSTRIP) from human brain which interacts with the rat somatostatin receptor subtype 2. Interaction with the receptor C-terminus is mediated by a PSD-95/discs large/ZO-1 (PDZ) domain which exhibits high similarity to the PDZ domain of cortactin binding protein 1 (CortBP1). SSTRIP and CortBP1 define a novel family of multidomain proteins containing ankyrin repeats, SH3- and SH3 binding regions and a sterile alpha motif (SAM domain) in addition to the PDZ domain. Both SSTRIP and CortBP1 can be co-immunoprecipitated with the somatostatin receptor when co-expressed in HEK cells. Interestingly, co-localization of SSTR2 and CortBP1 at the plasma membrane is increased when SSTR2 is stimulated by agonists.  相似文献   

2.
Interaction between the C terminus of a G-protein-coupled receptor and intracellular constituents may represent a crucial step in regulating signal transduction. To identify potential interacting candidates the C terminus of the somatostatin receptor subtype 1 was used as bait in a yeast two hybrid screen of a human brain cDNA library. We identified the human Skb1 sequence (Skb1Hs) as interacting protein, which is homologous to the yeast protein known Skb1 to down-regulate mitosis in Schizosaccharomyces pombe via binding to the Shk1 protein kinase; the latter is a homolog to the mammalian p21(cdc42/Rac)-activated protein kinases. Interaction required almost the entire C terminus of the somatostatin receptor subtype 1 including the conserved NPXXY motif of transmembrane region seven; in the case of the Skb1Hs most of the N terminus and an S-adenosylmethionine binding domain were mandatory, whereas the C terminus was not essential. Interaction was verified by coexpression experiments in human embryonic kidney cells. As revealed by immunocytochemical analysis Skb1Hs expressed alone aggregates in large cytosolic clusters. When coexpressed, receptor subtype 1 and Skb1Hs were colocalized at the cell surface; these cells showed a strong increase in somatostatin binding compared with cells expressing the receptor only. This may suggest that Skb1Hs acts like a chaperone by correctly targeting the receptor to the cell surface.  相似文献   

3.
A novel adenosine receptor subtype has been cloned from a rat brain cDNA library using a probe generated by the polymerase chain reaction. The cDNA, designated RFL9, encodes a protein of 332 amino acids. The structure of RFL9 is most similar to that of the recently cloned rat A2-adenosine receptor, with a sequence identity of 73% within the presumed seven transmembrane domains. Expression of RFL9 in COS-6M cells resulted in ligand binding and functional activity characteristics of an adenosine receptor that is coupled positively to adenylyl cyclase. Examination of the tissue distribution of RFL9 mRNA by Northern blot analysis showed a restricted distribution with highest levels expressed in large intestine, cecum, and urinary bladder; this pattern was distinct from that of either the A1- or A2-adenosine receptor mRNAs. In situ hybridization studies of RFL9 mRNA showed no specific hybridization pattern in brain, but a hybridization signal was readily observed in the hypophyseal pars tuberalis. Thus, RFL9 encodes a novel A2-adenosine receptor subtype.  相似文献   

4.
Here, we assessed the effects of acute experimental autoimmune encephalomyelitis (EAE) on the rat hippocampal somatostatinergic system and whether administration of an ethanolamine phosphate salt could prevent the appearance of the clinical signs and the impairment of the somatostatinergic system in this pathological condition. Female Lewis rats were injected in both hindlimb footpads with myelin basic protein from guinea pig brain and complete Freund's adjuvant and were sacrificed when limp tail (grade 1 EAE) or severe hindlimb paralysis (grade 3 EAE) were observed. One group was injected daily with ethanolamine phosphate, starting two days prior to immunization and for 15 days thereafter. The animals were sacrificed 15 days post-immunization. Acute EAE in grade 3 increased anti-myelin basic protein antibodies in rat serum as well as tumor necrosis factor-α and interferon-γ levels in hippocampal extracts. In addition, it decreased the somatostatin receptor density, somatostatin receptor subtype 2 mRNA and protein content, and the inhibitory effect of somatostatin on adenylyl cyclase activity in the hippocampus. The protein levels of the inhibitory G protein subunits αi(1-3), the G protein-coupled receptor kinase isoforms 2, 5 and 6, the phosphorylated cyclic AMP-binding protein and the somatostatin-like immunoreactivity content were unaltered in this brain area. Acute EAE in grade 1 did not modify any of these parameters. Ethanolamine phosphate administration prevented the clinical expression of acute EAE as well as the decrease in the somatostatin receptor density, somatostatin receptor subtype 2 expression and the capacity of somatostatin to inhibit adenylyl cyclase activity at the time-period studied. Furthermore, it blunted the rise in serum anti-myelin basic protein antibodies and hippocampal interferon-γ and tumor necrosis factor-α levels. Altogether, these data suggest that ethanolamine phosphate might provide protection against acute EAE.  相似文献   

5.
6.
7.
We report here an interaction between the C terminus of the rat somatostatin receptor subtype 2 (SSTR2) and a protein that has recently been identified as cortactin-binding protein 1 (CortBP1). Interaction is mediated by the PDZ (PSD-95/discs large/ZO-1) domain of CortBP1. As shown by in situ hybridization, SSTR2 and cortactin-binding protein are coexpressed in the rat brain. The association between SSTR2 and the PDZ-domain of CortBP1 was verified by overlay assays and by coprecipitation after transfection in human embryonic kidney (HEK) cells. Analysis by confocal microscopy indicates that CortBP1 is distributed diffusely throughout the cytosol in transfected cells and that it becomes concentrated at the plasma membrane when SSTR2 is present. This process is largely increased when the receptor is stimulated by somatostatin; as CortBP1 interacts with the C terminus of SSTR2, our data suggest that the binding of agonist to the receptor increase the accessibility of the receptor C terminus to the PDZ domain of CortBP1. Our data for the first time establish a link between a G-protein coupled receptor and constituents of the cytoskeleton.  相似文献   

8.
9.
The postsynaptic density is the ultrastructural entity containing the neurotransmitter reception apparatus of excitatory synapses in the brain. A recently identified family of multidomain proteins termed Src homology 3 domain and ankyrin repeat-containing (Shank), also known as proline-rich synapse-associated protein/somatostatin receptor-interacting protein, plays a central role in organizing the subsynaptic scaffold by interacting with several synaptic proteins including the glutamate receptors. We used the N-terminal ankyrin repeats of Shank1 and -3 to search for interacting proteins by yeast two-hybrid screening and by affinity chromatography. By cDNA sequencing and mass spectrometry the cytoskeletal protein alpha-fodrin was identified as an interacting molecule. The interaction was verified by pull-down assays and by coimmunoprecipitation experiments from transfected cells and brain extracts. Mapping of the interacting domains of alpha-fodrin revealed that the highly conserved spectrin repeat 21 is sufficient to bind to the ankyrin repeats. Both interacting partners are coexpressed widely in the rat brain and are colocalized in synapses of hippocampal cultures. Our data indicate that the Shank1 and -3 family members provide multiple independent connections between synaptic glutamate receptor complexes and the cytoskeleton.  相似文献   

10.
11.
Cloned human dopamine D2 receptor cDNA was isolated from a pituitary cDNA library and found to encode an additional 29 amino acid residues in the predicted intracellular domain between transmembrane regions 5 and 6 relative to a previously described rat brain D2 receptor. Results from polymerase chain reactions as well as in situ hybridization revealed that mRNA encoding both receptor forms is present in pituitary and brain of both rat and man. The larger form was predominant in these tissues and, as shown in the rat, expressed by dopaminergic and dopaminoceptive neurons. Analysis of the human gene showed that the additional peptide sequence is encoded by a separate exon. Hence, the two receptor forms are generated by differential splicing possibly to permit coupling to different G proteins. Both receptors expressed in cultured mammalian cells bind [3H]spiperone with high affinity and inhibit adenylyl cyclase, as expected of the D2 receptor subtype.  相似文献   

12.
In this study, cDNA for a somatostatin receptor variant (somatostatin receptor subtype 2, SSTR 2) was isolated, cloned, and sequenced from rainbow trout. A 1821-nt cDNA was isolated and found to contain a single initiation site 387-nt from the most 5' end, an open reading frame of 1116-nt, and a single putative polyadenylation site 189-nt from the most 3' end. The encoded protein contains 372 amino acids and contains seven membrane-spanning domains. Based on structural analysis, the protein was identified as a subtype 2 SSTR. These data support the emergence of a multigenic SSTR family early in the course of vertebrate evolution, concomitant with or perhaps prior to the divergence of boney fish. The distribution of SSTR 2 mRNA in tissues was determined by quantitative real time-PCR (QRT-PCR). SSTR 2 was most abundant in the brain (where it was detected in the telencephalon, optic tectum, and hypothalamus), skeletal muscle, and liver, but it also was present in the endocrine pancreas (Brockmann body) and various regions of the gastrointestinal tract (esophagus, stomach, intestine). SSTR 2 mRNA was most abundant in the brain, muscle, and liver. In vitro the Brockmann body and liver with increasing concentrations of glucose (1, 4, 10mM) resulted in increased expression of SSTR 2 mRNA. These findings contribute to the understanding of the evolution of the SSTR family and provide insight into the roles of SSTR 2 in fish.  相似文献   

13.
The C-terminus domain of G protein-coupled receptors confers a functional cytoplasmic interface involved in protein association. By screening a rat brain cDNA library using the yeast two-hybrid system with the C-terminus domain of the dopamine D(3) receptor (D(3)R) as bait, we characterized a new interaction with the PDZ domain-containing protein, GIPC (GAIP interacting protein, C terminus). This interaction was specific for the dopamine D(2) receptor (D(2)R) and D(3)R, but not for the dopamine D(4) receptor (D(4)R) subtype. Pull-down and affinity chromatography assays confirmed this interaction with recombinant and endogenous proteins. Both GIPC mRNA and protein are widely expressed in rat brain and together with the D(3)R in neurons of the islands of Calleja at plasma membranes and in vesicles. GIPC reduced D(3)R signaling, cointernalized with D(2)R and D(3)R, and sequestered receptors in sorting vesicles to prevent their lysosomal degradation. Through its dimerization, GIPC acts as a selective scaffold protein to assist receptor functions. Our results suggest a novel function for GIPC in the maintenance, trafficking, and signaling of GPCRs.  相似文献   

14.
15.
The cloning of five members of the somatostatin receptor family, sst1-sst5, as well as two isoforms of the somatostatin receptor 2, sst2A and sst2B, enabled us to generate specific anti-peptide antisera against unique sequences in the carboxyl-terminal tail of each somatostatin receptor subtype. We used these antibodies in multicolor immunofluorescent studies aimed to examine the regional and subcellular distribution of somatostatin receptors in adult rat brain. Several findings are notable: The cloned sst1 receptor is primarily localized to axons, and therefore most likely functions in a presynaptic manner. The cloned sst2 receptor isoforms exhibit strikingly different distributions, however, both sst2A and sst2B are confined to the plasma membrane of neuronal somata and dendrites, and therefore most likely function in a postsynaptic manner. The cloned sst3 receptor appears to be excluded from 'classical' pre- or postsynaptic sites but is selectively targeted to neuronal cilia. The cloned sst4 receptor is preferentially distributed to distal dendrites, and therefore most likely functions postsynaptically. The cloned sst5 receptor was not detectable in the adult rat brain, however, prominent sst5 expression was found in the pituitary. Furthermore, sst1-containing axons either co-contained somatostatin or were closely apposed by somatostatin-positive terminals in a regional-specific manner. Neuronal somata and dendrites containing either sst2A, sst2B or sst4 were found to exist in close proximity, although not necessarily synaptically linked, to somatostatin-positive terminals. Together, in the central nervous system the effects of somatostatin are mediated by several different receptor proteins which are distributed with considerable regional overlap. However, there appears to be a high degree of specialization among somatostatin receptor subtypes with regard to their subcellular targeting. This subtype-selective targeting may be the underlying principal of organization that allows somatostatinergic modulation of neuronal activity via both pre- and postsynaptic mechanisms.  相似文献   

16.
The neuropeptide somatostatin has been suggested to play an important role during neuronal development in addition to its established modulatory impact on neuroendocrine, motor and cognitive functions in adults. Although six somatostatin G protein-coupled receptors have been discovered, little is known about their distribution and function in the developing mammalian brain. In this study, we have first characterized the developmental expression of the somatostatin receptor sst2A, the subtype found most prominently in the adult rat and human nervous system. In the rat, the sst2A receptor expression appears as early as E12 and is restricted to post-mitotic neuronal populations leaving the ventricular zone. From E12 on, migrating neuronal populations immunopositive for the receptor were observed in numerous developing regions including the cerebral cortex, hippocampus and ganglionic eminences. Intense but transient immunoreactive signals were detected in the deep part of the external granular layer of the cerebellum, the rostral migratory stream and in tyrosine hydroxylase- and serotonin- positive neurons and axons. Activation of the sst2A receptor in vitro in rat cerebellar microexplants and primary hippocampal neurons revealed stimulatory effects on neuronal migration and axonal growth, respectively. In the human cortex, receptor immunoreactivity was located in the preplate at early development stages (8 gestational weeks) and was enriched to the outer part of the germinal zone at later stages. In the cerebellum, the deep part of the external granular layer was strongly immunoreactive at 19 gestational weeks, similar to the finding in rodents. In addition, migrating granule cells in the internal granular layer were also receptor-positive. Together, theses results strongly suggest that the somatostatin sst2A receptor participates in the development and maturation of specific neuronal populations during rat and human brain ontogenesis.  相似文献   

17.
In the presence of somatostatin-14 or some of its receptorial agonists, the uptake of large neutral amino acids by isolated brain microvessels was found to be inhibited up to 50%, no other transport system being affected. Although the luminal and abluminal sides of brain endothelial cells are both capable of taking up large neutral amino acids, only uptake from the abluminal side appears to be inhibited by somatostatin. The involvement of a type-2 somatostatin receptor was suggested by assays with a series of receptor-specific somatostatin agonists, and was confirmed by the release of inhibition caused by a specific type-2 receptor antagonist. A type-2-specific mRNA was indeed shown to be present in both bovine brain microvessels ex vivo and primary cultures of endothelial cells from rat brain microvessels.  相似文献   

18.
19.
Our laboratory is interested in characterizing the neurotransmitter and hormonal phenotype of neurons in the rat hypothalamus expressing novel neuropeptide receptors of the neuropeptide Y and galanin families. In this review, we describe a technique combining nonradioactive in situ hybridization to detect mRNA and fluorescence immunohistochemistry to detect protein antigens. We examined paraffin sections of rat hypothalamus using confocal microscopy to determine whether mRNA for the galanin receptor, GALR2, was colocalized at the cellular level of resolution with somatostatin or tyrosine hydroxylase immunoreactivity. We found that many neurons in the hypothalamus expressed both GALR2 mRNA and either somatostatin or tyrosine hydroxylase immunoreactivity. The simultaneous detection of mRNA and protein immunoreactivity in individual neurons using the confocal microscope for visualization is an excellent tool for the analysis of newly characterized genes in the central nervous system.  相似文献   

20.
Somatostatin mediates its multiple biological effects via specific plasma membrane receptors belonging to the family of G-protein coupled receptors with seven putative membrane-spanning domains. Five somatostatin receptor subtypes (sst1-sst5) have been cloned in human, mouse, and rat. We have raised specific antibodies against the five human somatostatin receptors by using the fusion protein technique. DNA sequences encoding C-terminal parts of the somatostatin receptors were inserted into a pGEX-2T plasmid vector. E. coli bacteria were transformed with the recombinant plasmid and fusion proteins were expressed and purified using the glutathione S-transferase Gene Fusion System. The fusion proteins were emulsified with Freund's complete adjuvant and polyclonal antibodies were raised in rabbits. The antisera were tested for specificity in Western blot analysis of membrane preparations from cell lines expressing the receptors and in membrane preparations of brain tissues. The receptors were visualized at the light microscopical level in paraformaldehyde fixed tissue sections by use of biotin labelled secondary antibodies as well as by amplification with biotinylated tyramide. The final step in the immunohistochemical visualization of the receptors was done by both peroxidase labelled streptavidin/biotin and different fluorophores. At the electron microscopical level, some of the receptors could be visualized in tissues fixed with a combination of paraformaldehyde and low concentrations of glutaraldehyde. In the hamster brain, sst2 receptors labelling was observed in both neuronal processes and perikarya. The staining was present in neo-, and allocortical areas of the forebrain, the hypothalamus, brain stem, and spinal cord. In the rat and human, sst1 receptor was shown to be an auto receptor on somatostatinergic neurons located in the hypothalamus. In the retina both sst1 and sst2 receptors were present. sst1 receptors were confined to amacrine cells, few ganglionic cells, and Müller cell-end feet. sst2 receptors were more widespread than the sst1 receptors. sst2-immunoreactivity was present in dopaminergic amacrine cells, the Müller cell-end feet, and in the inner segments of the cone photoreceptors. Thus, the availability of subtype specific antibodies against the five somatostatin receptors makes it possible to identify the receptors involved in the multiple somatostatinergic system in the body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号