首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultures of rabbit aortic smooth muscle (RSM) cells are a valuable model system for studying production and metabolism of connective tissue components. This report describes various assay procedures for lysyl oxidase, the enzyme responsible for deaminating lysine residues to give aldehyde cross-link precursors, in culture medium from these cells. Studies of the medium enzyme from second-passage RSM cells indicate that approximately 40% of the total enzyme activity in the flask of cells is in the medium. The medium enzyme levels are replenished quite rapidly following refeeding, and enzyme levels in the medium appear to be feedback controlled. The mechanism for this control is unknown at present. Multiple refeeding experiments in which the medium was changed every 2-4 h for up to 40 h indicate that these cells are cap]able of producing large amounts of enzyme and are capable of altering enzyme production and secretion quite rapidly in response to changes in their environment. Protein synthesis inhibitor studies with cycloheximide suggest that the major portion of the enzyme released into the medium following refeeding is newly synthesized although a pool of latent enzyme is also present. As in intact tissue, extraction of the enzyme from the cell layer requires strong denaturing reagents such as 4 M urea. These results suggest that the production of lysyl oxidase is closely regulated and is very responsive to changes in the external environment of the cells. This cell culture system appears to be an excellent one to study the production of lysyl oxidase and its role in connective tissue fibrillogenesis.  相似文献   

2.
LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increase their nuclear protein content when exposed to BAPN (β-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.  相似文献   

3.
4.
High-density lipoprotein (HDL) exerts antiatherogenic effects by various mechanisms. The protective effect of HDL is thought to involve the reverse transport of cholesterol from cells in the arterial wall to the liver for disposal. We previously identified human scavenger receptor BI (hSR-BI/CLA-1) as a receptor for human HDL, but did not examine the expression of hSR-BI/CLA-1 in smooth-muscle cells. In this present study, a human aortic intima smooth-muscle cell line immortalized with SV 40 DNA was established, and the expression of hSR-BI/CLA-1 in this cell line analyzed by Western blot and RT-PCR. HSR-BI/CLA-1 mRNA and protein were detected in both this cell line and primary human aortic smooth-muscle cells. A cytokine, interferon-gamma (IFN-gamma) inhibited the hSR-BI/CLA-1 protein expression, but not mRNA expression. This observation confirmed that selective cholesterol ester uptake from HDL was inhibited by IFN-gamma. These results indicated that hSR-BI/CLA-1 may be expressed in human smooth-muscle cells, and the expression may be modulated by IFN-gamma. HSR-BI/CLA-1 on smooth-muscle cells could play an important role in atherogenesis.  相似文献   

5.
6.
Type IX of the Ehlers-Danlos syndrome (E-D IX) and the Menkes syndrome are X-linked recessively inherited disorders characterized by abnormalities in copper metabolism. These abnormalities are associated with a severe reduction in the activity of lysyl oxidase, the extracellular copper enzyme that initiates crosslinking of collagens and elastin. No increase in this deficient enzyme activity was obtained when culture media from fibroblasts of patients with E-D IX or the Menkes syndrome were incubated with copper under various conditions in vitro. A distinct, although small, increase in lysyl oxidase activity was obtained, however, when copper-supplemented media were used during culturing of the fibroblasts, although even under these conditions, the enzyme activity in the media from the affected cells remained markedly below that of the controls. Immunoprecipitation, dot-blotting, and immunoperoxidase staining experiments with antisera to human lysyl oxidase indicated that fibroblasts from patients with E-D IX or the Menkes syndrome do not secrete into their medium, or contain inside the cell, any significant amounts of a copper-deficient, catalytically inactive lysyl oxidase protein. These findings appear to be consistent with the hypothesis that synthesis of the lysyl oxidase protein itself is impaired. The possibility is not excluded, however, that a copper-deficient enzyme protein may be synthesized in normal amounts but become degraded very rapidly inside the cell. The failure to obtain any large increase in the deficient lysyl oxidase activity upon various forms of copper administration suggests that it may not be possible to obtain any significant improvement in the connective tissue manifestations of these disorders by copper therapy.  相似文献   

7.
Rat aortic lysyl oxidase cDNA was expressed under a metallothionein promoter in Chinese hamster ovary cells using a dihydrofolate reductase selection marker. One methotrexate-resistant cell line, LOD-06, generated by transfecting with full-length cDNA, yielded lysyl oxidase proteins consistent with the 50 kDa proenzyme and a 29 kDa mature catalyst. A second cell line, LOD32–2, was generated by transfection with a truncated cDNA lacking sequences which code for the bulk of the propeptide region. Both cell lines secreted apparently identical, 29 kDa forms of mature lysyl oxidase each of which catalyzed the deamination of human recombinant tropoelastin and alkylamines, consistent with the known specificity of lysyl oxidase. The secreted enzyme forms were inhibited by chemical inhibitors of lysyl oxidase activity, including β-aminopropionitrile, phenylhydrazine, ethylenediamine, α,α′-dipyridyl, and diethyl-dithiocarbamate. Sensitivity to these agents is consistent with the presence of copper and carbonyl cofactors in the expressed enzymes, characteristic of lysyl oxidase purified from connective tissues. These results indicate the lack of essentiality of the deleted proprotein sequence for the proper folding, generation of catalytic function, and secretion of lysyl oxidase. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Lysyl oxidase is an extracellular enzyme critical for the normal biosynthesis of collagens and elastin. In addition, lysyl oxidase reverts ras-mediated transformation, and lysyl oxidase expression is down-regulated in human cancers. Since suramin inhibits growth factor signaling pathways and induces lysyl oxidase in ras-transformed NIH3T3 cells (RS485 cells), we sought to investigate the effects of suramin on the phenotype of transformed cells and the role of lysyl oxidase in mediating these effects. Suramin treatment resulted in a more normal phenotype as judged by growth rate, cell cycle parameters, and morphology. beta-aminopropionitrile, the selective inhibitor of lysyl oxidase enzyme activity, was remarkably unable to block suramin-induced reversion. By contrast, ectopic antisense lysyl oxidase demonstrated that lysyl oxidase gene expression mediated phenotypic reversion. Since lysyl oxidase is synthesized as a 50 kDa precursor and processed to a 30 kDa active enzyme and 18 kDa propeptide, the effects of these two products on the transformed phenotype of RS485 cells were then directly assessed in the absence of suramin. Here we report, for the first time, that the lysyl oxidase propeptide, and not the lysyl oxidase enzyme, inhibits ras-dependent transformation as determined by effects on cell proliferation assays, growth in soft agar, and Akt-dependent induction of NF-kappaB activity. Thus, the lysyl oxidase propeptide, which is released during extracellular proteolytic processing of pro-lysyl oxidase, functions to inhibit ras-dependent cell transformation.  相似文献   

9.
Soluble proteins released into the medium of aortic tissues in culture behave as substrates for the enzyme lysyl oxidase. The reaction shows an unusual dependence on the concentration of neutral salts in the assay medium. Practically no enzyme activity was observed in Tris-HCl, 0.005 m, pH 7.6 buffer. However, supplementing the buffer with high concentrations of KCl, KBr, NaCl, and (NH4)2SO4 (in decreasing order of effectiveness) accelerated velocities as much as 10-fold. CaCl2, KSCN, and KI at increasing concentrations became strongly inhibitory. β-Aminopropionitrile, a specific inhibitor of lysyl oxidase, effectively blocked the catalysis in low and high KCl. The salt-stimulated effects on lysyl oxidase activity were not as noticeable when insoluble proteins were used as substrates. Kinetic studies employing double reciprocal plots revealed that high KCl concentrations (2.0 m) raised the maximum velocity of the reaction but did not alter the apparent Km. Thus high salt concentrations did not affect the binding of the soluble substrate to the enzyme. In high salts, however, more radioactive substrate proteins appeared to bind to the enzyme, suggesting that the high salt environment increases the fraction of the total enzyme potentially capable of binding to and catalyzing a reaction with the substrate.  相似文献   

10.
Lysyl oxidase is an extracellular enzyme that initiates crosslink formation in the major connective tissue proteins, the collagens and elastin. This enzyme activity accumulated in a fresh medium of cultured human skin fibroblasts for at least 24 h, but the accumulation was distinctly non-linear after the first 12 h. Most of the total enzyme activity was present in the medium, the activity found in the cell layer representing about 30% of the total activity at 4 h, and about 10-15% at 24 h. The bulk of the cell-layer-associated activity appeared to be extracellular, as more than half was lost upon trypsinization. Culturing of the cells for 8 h in the presence of either monensin or nigericin, ionophores known to inhibit the secretion of many proteins at the level of the Golgi complex, markedly reduced the accumulation of lysyl oxidase activity in the medium. Monensin was particularly effective, as it produced a distinct inhibition even at a 10 nM concentration, reaching 50% at 30 nM. Both ionophores also reduced enzyme activity in the cell layer, whereas no definite decrease was seen in the activity of the trypsinized cells. The effect of monensin was evidently not due to any general toxicity on the part of the drug, since even a 500 nM concentration gave no inhibition of the incorporation of [3H]leucine into total protein. Tunicamycin also reduced lysyl oxidase activity in the medium and to a lesser extent in the cell layer, but the effective dose, 1-10 micrograms/ml, also inhibited the incorporation of [3H]leucine into total protein. The reduced enzyme activity may therefore not be due to a direct effect of tunicamycin on the glycosylation of the lysyl oxidase protein itself but may be mediated through other actions of the drug. Colchicine caused no inhibition in lysyl oxidase activity secretion even at a 10 microM concentration, although it has been reported to inhibit collagen secretion at doses more than one order of magnitude lower.  相似文献   

11.
Lysyl oxidase catalyzes the final enzymatic step required for collagen and elastin cross-linking in extracellular matrix biosynthesis. Pro-lysyl oxidase is processed by procollagen C-proteinase activity, which also removes the C-propeptides of procollagens I-III. The Bmp1 gene encodes two procollagen C-proteinases: bone morphogenetic protein 1 (BMP-1) and mammalian Tolloid (mTLD). Mammalian Tolloid-like (mTLL)-1 and -2 are two genetically distinct BMP-1-related proteinases, and mTLL-1 has been shown to have procollagen C-proteinase activity. The present study is the first to directly compare pro-lysyl oxidase processing by these four related proteinases. In vitro assays with purified recombinant enzymes show that all four proteinases productively cleave pro-lysyl oxidase at the correct physiological site but that BMP-1 is 3-, 15-, and 20-fold more efficient than mTLL-1, mTLL-2, and mTLD, respectively. To more directly assess the roles of BMP-1 and mTLL-1 in lysyl oxidase activation by connective tissue cells, fibroblasts cultured from Bmp1-null, Tll1-null, and Bmp1/Tll1 double null mouse embryos, thus lacking BMP-1/mTLD, mTLL-1, or all three enzymes, respectively, were assayed for lysyl oxidase enzyme activity and for accumulation of pro-lysyl oxidase and mature approximately 30-kDa lysyl oxidase. Wild type cells or cells singly null for Bmp1 or Tll1 all produced both pro-lysyl oxidase and processed lysyl oxidase at similar levels, indicating apparently normal levels of processing, consistent with enzyme activity data. In contrast, double null Bmp1/Tll1 cells produced predominantly unprocessed 50-kDa pro-lysyl oxidase and had lysyl oxidase enzyme activity diminished by 70% compared with wild type, Bmp1-null, and Tll1-null cells. Thus, the combination of BMP-1/mTLD and mTLL-1 is shown to be responsible for the majority of processing leading to activation of lysyl oxidase by murine embryonic fibroblasts, whereas in vitro studies identify pro-lysyl oxidase as the first known substrate for mTLL-2.  相似文献   

12.
13.
Immunological characterization of bovine lysyl oxidase   总被引:1,自引:0,他引:1  
Antibodies to homogeneously purified bovine aortic lysyl oxidase were prepared in chickens. The chicken anti-lysyl oxidase antiserum effectively inhibited bovine aortic lysyl oxidase activity. Non-immune antiserum from chickens, goats and humans was found to enhance bovine aortic lysyl oxidase activity, while non-immune rabbit serum inhibited enzyme activity. A competitive ELISA was developed to monitor immunoreactive lysyl oxidase during purification. Chromatography of bovine lysyl oxidase on Sephacryl S-200, the final step in purification, revealed two peaks of immunoreactive lysyl oxidase. The large molecular weight peak appears to contain inactive multimeric forms of the enzyme.  相似文献   

14.
 Lysyl oxidase is the extracellular enzyme that catalyzes oxidative deamination of peptidyl-lysine residues in elastin precursors, and lysine and hydroxylysine residues in collagen precursors to form peptidyl-aldehydes. These aldehydes then spontaneously condense to crosslink collagen and elastin and thereby allow the formation of a mature and functional extracellular matrix. In the present study, cryosections made from aseptic immune-induced periapical lesions experimentally generated in laboratory rats were examined by immunohistochemistry to investigate whether lysyl oxidase protein expression is altered in inflamed oral tissues. Periapical lesions are experimentally induced endodontic lesions of tooth roots. In addition, the effect of administration of a mixture of fibroblast growth factor (FGF)-2 and insulin-like growth factor (IGF)-1 into these lesions on lysyl oxidase expression was determined. Lysyl oxidase expression was found to be increased in non-mineralized connective tissue adjacent to inflamed lesions. Morphometric analyses indicated that maximum lysyl oxidase expression occurred at a discrete distance from the lesion not exceeding 350 μm from the inflammatory cells. Staining was associated with mesenchymal cells with a fibroblastic morphology. No lysyl oxidase staining was found near teeth where no lesion was induced. Application of a mixture of FGF-2 and IGF-1 resulted in a further twofold increase in lysyl oxidase expression. These results provide a new in vivo model to study lysyl oxidase regulation, and suggest that inflammatory cells may control lysyl oxidase expression in oral tissues, possibly by a mechanism involving secretion of cytokines and other factors, probably contributing to the regulation of extracellular matrix accumulation. Accepted: 19 December 1998  相似文献   

15.
The localization of lysyl oxidase was examined in calf and rat aortic connective tissue at the ultrastructural level using polyclonal chicken anti-lysyl oxidase and gold conjugated rabbit anti-chicken immunoglobulin G to identify immunoreactive sites. Electron microscopy of calf aortic specimens revealed discrete gold deposits at the interface between extracellular bundles of amorphous elastin and the microfibrils circumferentially surrounding these bundles. The antibody did not react with microfibrils which were distant from the interface with elastin. There was negligible deposition of gold within the bundles of amorphous elastin and those few deposits seen at these sites appeared to be associated with strands of microfibrils. Lysyl oxidase was similarly localized in newborn rat aorta at the interface between microfibrils and nascent elastin fibers. Gold deposits were not seen in association with extracellular collagen fibers even after collagen-associated proteoglycans had been degraded by chondroitinase ABC. However, the antibody did recognize collagen-bound lysyl oxidase in collagen fibers prepared from purified collagen to which the enzyme had been added in vitro. No reaction product was seen if the anti-lysyl oxidase was preadsorbed with purified lysyl oxidase illustrating the specificity of the antibody probe. The present results are consistent with a model of elastogenesis predicting the radial growth of the elastin fiber by the deposition and crosslinking of tropoelastin units at the fiber-microfibril interface.  相似文献   

16.
Isolated arterial smooth-muscle cells (SMCs) cultured in medium containing whole blood serum or plasma-derived serum undergo modulation from a contractile to a synthetic phenotype. This process includes the loss of myofilaments and cessation of the ability to contract. Instead, an extensive rough endoplasmic reticulum and a large Golgi complex are formed and, if properly stimulated, the cells start to proliferate actively and to produce extracellular-matrix components. In vivo, a similar change in the differentiated properties of SMCs appears to be an early key event in atherogenesis. The purpose of the present investigation was to try to identify plasma components that promote the modulation of the smooth-muscle phenotype. SMCs were enzymatically isolated from rat aorta and cultured in a defined, serum-free medium. The phenotypic state of the cells was determined by transmission electron microscopy, and their growth status was followed by 3H-thymidine autoradiography and cell counting. Under these conditions, Cohn fractions I (fibrinogen) and V (albumin) were found to partially support cell attachment and transition from the contractile to the synthetic phenotype, whereas fractions II-III and IV (globulins) were inactive in this respect. Analysis on adsorptive columns of gelatin Sepharose 4B indicated that Cohn fraction I, but not fraction V, contained fibronectin, an adhesive protein that is present in plasma and binds to fibrinogen. When seeded on a substrate of plasma fibronectin, the cells attached with high efficiency and modulated into the synthetic phenotype at a rate similar to that observed in serum-containing medium. In the absence of exogenous mitogens, the structural transformation of the cells was not accompanied by a proliferative response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Lysyl oxidase, an extracellular amine oxidase, controls the maturation of collagen and elastin. We examined the regulation of lysyl oxidase mRNA in cultured rabbit retinal pigment epithelium (RPE) cells in relation to the changes in subretinal fluid transport and phenotype of RPE cells. The level of the mRNA in cells grown on microporous membranes was markedly increased by application of hyperosmotic mannitol solution on the apical side (191% of control), implying that RPE cells express more lysyl oxidase in the condition which may cause the accumulation of subretinal fluid. Platelet-derived growth factor increased the mRNA level in subconfluent cells in culture (137% of control) and basic fibroblast growth factor decreased it (79% of control). In addition, exposure of cells to retinoic acid alone or in combination with dibutyryl cAMP for 22 days markedly decreased the level of lysyl oxidase mRNA (52 or 35% of control) while increasing the level of mRNA of N-acetylglucosaminidase (NAG), a marker enzyme for lysosomes (162 or 142% of control). Moreover, the level of lysyl oxidase mRNA in cells grown on microporous membranes was lower than that in cells grown on plastic dishes, while the level of NAG mRNA in the former cells was higher than that in the latter. Taken together, the expression of lysyl oxidase seemed to increase during proliferation of RPE cells and decrease toward differentiation. beta-Aminopropionitrile, an inhibitor of lysyl oxidase, significantly inhibited the contraction of collagen gels by fetal calf serum, suggesting that lysyl oxidase may be involved in pathogenesis caused by RPE cells.  相似文献   

18.
The effect of hydralazine on several parameters of collagen biosynthesis has been studied in cultured human skin fibroblasts. Cells treated with hydralazine synthesized procollagen which was severely deficient in hydroxyproline and hydroxylysine, indicating inhibition of prolyl and lysyl hydroxylase reactions in the cell. Assays of prolyl and lysyl hydroxylase activities, however, revealed markedly increased levels in hydralazine-treated cells. The stimulatory effect of hydralazine could not be simulated in cell extracts, demonstrating its requirement for intact cells. The effect occurred slowly over a period of 96 h and was dependent on hydralazine concentration between 10 and 100 microM. This phenomenon was also observed in lysyl hydroxylase-deficient mutants. In both normal and mutant cells the relative magnitude of the hydralazine effect could be modified by ascorbic acid in the culture medium. Ascorbic acid increased the response of prolyl hydroxylase to hydralazine from 1.5- to 2-fold to 3- to 7-fold, whereas it decreased the response of lysyl hydroxylase to hydralazine from 4- to 8-fold to 2- to 3-fold. Total collagen synthesis was substantially reduced in hydralazine-treated cells; the time course and the dose-response relationship were similar to those observed for the hydroxylases. alpha, alpha'-Dipyridyl, an iron chelator, mimicked these effects of hydralazine. The studies suggest the existence in cultured cells of a compensatory mechanism for overproduction of these crucial enzymes in collagen biosynthesis, a mechanism which remains functional in cells derived from patients afflicted with hydroxylysine-deficient collagen disease.  相似文献   

19.
Lysyl oxidase is the enzyme that is essential for collagen and elastin cross-linking. Previous investigations showed that lysyl oxidase is down-regulated in many human tumors and ras-transformed cells. Recently, we proved that antisense down-regulation of lysyl oxidase in NRK-49F cells induced phenotypic changes and oncogenic transformation, characterized by p21(ras) activation and beta-catenin/cyclin D1 up-regulation. In the present paper, we examined beta-catenin intracellular distribution and its association with E-cadherin. We observed an increased association between E-cadherin and beta-catenin in the lysyl-oxidase down-regulated cells during serum starvation. Moreover, we found that beta-catenin cytoplasmic and nuclear levels were increased, suggesting a failure of its down-regulation by the APC-GSK-3beta system, in particular the GSK-3beta phosphorylation of ser-33/37 and thr-41 of beta-catenin. Finally, we investigated the mechanisms leading to the observed cyclin D1 up-regulation. We showed that in the antisense lysyl oxidase cells the cyclin D1 promoter was activated through the LEF and the ATF/CRE sites in the proximal promoter. While the promoter activation through LEF is compatible with beta-catenin signaling, we investigated the possibility that the CRE-dependent activation might be linked to the down-regulation of lysyl oxidase. In fact, up-regulation of lysyl oxidase in a COS-7 cell model showed a significant diminution of the CREB protein binding to the cyclin D1 promoter, leading to a dramatic inhibition of its activity and a significant down-regulation of cyclin D1 protein level in vivo. Finally, our study describes some major anomalies occurring in lysyl oxidase down-regulated fibroblasts, related to beta-catenin signaling and cyclin D1 expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号