首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The HIV-1 maturation inhibitor, 3-O-(3′,3′-dimethylsuccinyl) betulinic acid (bevirimat, PA-457) is a promising drug candidate with 10 nM in vitro antiviral activity against multiple wild-type (WT) and drug-resistant HIV-1 isolates. Bevirimat has a novel mechanism of action, specifically inhibiting cleavage of spacer peptide 1 (SP1) from the C-terminus of capsid which results in defective core condensation.

Methods and Findings

Oral administration of bevirimat to HIV-1-infected SCID-hu Thy/Liv mice reduced viral RNA by >2 log10 and protected immature and mature T cells from virus-mediated depletion. This activity was observed at plasma concentrations that are achievable in humans after oral dosing, and bevirimat was active up to 3 days after inoculation with both WT HIV-1 and an AZT-resistant HIV-1 clinical isolate. Consistent with its mechanism of action, bevirimat caused a dose-dependent inhibition of capsid-SP1 cleavage in HIV-1-infected human thymocytes obtained from these mice. HIV-1 NL4-3 with an alanine-to-valine substitution at the N-terminus of SP1 (SP1/A1V), which is resistant to bevirimat in vitro, was also resistant to bevirimat treatment in the mice, and SP1/AIV had replication and thymocyte kinetics similar to that of WT NL4-3 with no evidence of fitness impairment in in vivo competition assays. Interestingly, protease inhibitor-resistant HIV-1 with impaired capsid-SP1 cleavage was hypersensitive to bevirimat in vitro with a 50% inhibitory concentration 140 times lower than for WT HIV-1.

Conclusions

These results support further clinical development of this first-in-class maturation inhibitor and confirm the usefulness of the SCID-hu Thy/Liv model for evaluation of in vivo antiretroviral efficacy, drug resistance, and viral fitness.  相似文献   

2.
IL-7 is a critical component of thymopoiesis in animals and has recently been shown to play an important role in T cell homeostasis. Although there is increasing interest in the use of IL-7 for the treatment of lymphopenia caused by the HIV type 1, evidence that IL-7 may accelerate HIV replication has raised concerns regarding its use in this setting. We sought to identify the effects of IL-7 on human thymocyte survival and to determine the impact of IL-7 administration on in vivo HIV infection of the human thymus. Using in vitro analysis, we show that IL-7 provides potent anti-apoptotic and proliferative signals to early thymocyte progenitors. Analysis of CD34(+) subpopulations demonstrates that surface IL-7 receptor is expressed on most CD34(high)CD5(+)CD1a(-) thymocytes and that this subpopulation appears to be one of the earliest maturation stages responsive to the effects of IL-7. Thus, IL-7 provides survival signals to human thymocytes before surface expression of CD1a. CD4(+)CD8(+) thymocytes are relatively unresponsive to IL-7, although IL-7 protects these cells from dexamethasone-induced apoptosis. IL-7 has a predominantly proliferative effect on mature CD4(+)CD3(+)CD8(-) and CD8(+)CD3(+)CD4(-) thymocytes. In contrast to the in vitro findings, we observe that in vivo administration of IL-7 to SCID-hu Thy/Liv mice does not appear to enhance thymocyte survival nor does it appear to accelerate HIV infection. Given the growing interest in the use of IL-7 for the treatment of human immunodeficiency, these findings support additional investigation into its in vivo effects on thymopoiesis and HIV infection.  相似文献   

3.
We studied the replication and cytopathicity in SCID-hu mice of R5 human immunodeficiency virus type 1 (HIV-1) biological clones from early and late stages of infection of three patients who never developed MT-2 cell syncytium-inducing (SI; R5X4 or X4) viruses. Several of the late-stage non-MT-2 cell syncytium-inducing (NSI; R5) viruses from these patients depleted human CD4(+) thymocytes from SCID-hu mice. Earlier clones from the same patients did not deplete CD4(+) thymocytes from SCID-hu mice as well as later clones. We studied three R5 HIV-1 clones from patient ACH142 in greater detail. Two of these clones were obtained prior to the onset of AIDS; the third was obtained following the AIDS diagnosis. In GHOST cell infection assays, all three ACH142 R5 HIV-1 clones could infect GHOST cells expressing CCR5 but not GHOST cells expressing any of nine other HIV coreceptors tested. Furthermore, these patient clones efficiently infected stimulated peripheral blood mononuclear cells from a normal donor but not those from a homozygous CCR5Delta32 individual. Statistical analyses of data obtained from infection of SCID-hu mice with patient ACH142 R5 clones revealed that only the AIDS-associated clone significantly depleted CD4(+) thymocytes from SCID-hu mice. This clone also replicated to higher levels in SCID-hu mice than the two earlier clones, and a significant correlation between viral replication and CD4(+) thymocyte depletion was observed. Our results indicate that an intrinsic property of AIDS-associated R5 patient clones causes their increased replication and cytopathic effects in SCID-hu mice and likely contributes to the development of AIDS in patients who harbor only R5 quasispecies of HIV-1.  相似文献   

4.
5.
The functional roles of the human immunodeficiency virus type 1 (HIV-1) accessory genes (nef, vpr, vpu, and vif) are as yet unclear. Using the SCID-hu model system, we have examined the infectivity, replicative capacity, and pathogenicity of strains of the molecular clone HIV-1NL4-3 that contain deletion mutations in these individual accessory genes. We determined that deletion of these genes had differential effects on both infectivity and pathogenicity. Deletion of vpr had little or no effect on viral infectivity, replication, and pathogenicity; however, deletion of vpu or vif had a significant effect on infectivity and moderate effects on pathogenicity. nef-minus strains were the most attenuated in this system, demonstrating significantly lower levels of infectivity and pathogenicity. However, deletion of these individual genes attenuated but did not abrogate the pathogenic properties of HIV-1. Mutant viruses still retained the ability to induce thymocyte depletion to various degrees if implants were infected with higher doses of virus or observed for longer periods of time. The relative contributions of these genes to in vivo pathogenic potential should be taken into consideration when one is contemplating a live attenuated vaccine for HIV-1.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) patient isolates and molecular clones were used to analyze the determinants responsible for human CD4(+) thymocyte depletion in SCID-hu mice. Non-syncytium-inducing, R5 or R3R5 HIV-1 isolates from asymptomatic infected people showed little or no human CD4(+) thymocyte depletion in SCID-hu mice, while syncytium-inducing (SI), R5X4 or R3R5X4 HIV-1 isolates from the same individuals, isolated just prior to the onset of AIDS, rapidly and efficiently eliminated CD4-bearing human thymocytes. We have mapped the ability of one SI HIV-1 isolate to eliminate CD4(+) human cells in SCID-hu mice to a region of the env gene including the three most amino-terminal variable regions (V1 to V3). We find that for all of the HIV-1 isolates that we studied, a nonlinear relationship exists between viral replication and the depletion of CD4(+) cells. This relationship can best be described mathematically with a Hill-type plot indicating that a threshold level of viral replication, at which cytopathic effects begin to be seen, exists for HIV-1 infection of thymus/liver grafts in SCID-hu mice. This threshold level is 1 copy of viral DNA for every 11 cells (95% confidence interval = 1 copy of HIV-1 per 67 cells to 1 copy per 4 cells). Furthermore, while SI viruses more frequently achieve this level of replication, replication above this threshold level correlates best with cytopathic effects in this model system. We used GHOST cells to map the coreceptor specificity and relative entry efficiency of these early- and late-stage patient isolates of HIV-1. Our studies show that coreceptor specificity and entry efficiency are critical determinants of HIV-1 pathogenesis in vivo.  相似文献   

7.
The SCID-hu Thy/Liv mouse and human fetal thymic organ culture (HF-TOC) models have been used to explore the pathophysiologic mechanisms of HIV-1 infection in the thymus. We report here that HIV-1 infection of the SCID-hu Thy/Liv mouse leads to the induction of MHC class I (MHCI) expression on CD4+CD8+ (DP) thymocytes, which normally express low levels of MHCI. Induction of MHCI on DP thymocytes in HIV-1-infected Thy/Liv organs precedes their depletion and correlates with the pathogenic activity of the HIV-1 isolates. Both MHCI protein and mRNA are induced in thymocytes from HIV-1-infected Thy/Liv organs, indicating induction of MHCI gene expression. Indirect mechanisms are involved, because only a fraction (<10%) of the DP thymocytes were directly infected by HIV-1, although the majority of DP thymocytes are induced to express high levels of MHCI. We further demonstrate that IL-10 is induced in HIV-1-infected thymus organs. Similar HIV-1-mediated induction of MHCI expression was observed in HF-TOC assays. Exogenous IL-10 in HF-TOC induces MHCI expression on DP thymocytes. Therefore, HIV-1 infection of the thymus organ leads to induction of MHCI expression on immature thymocytes via indirect mechanisms involving IL-10. Overexpression of MHCI on DP thymocytes can interfere with thymocyte maturation and may contribute to HIV-1-induced thymocyte depletion.  相似文献   

8.
9.
Human herpesvirus 8 (HHV8) is the primary viral etiologic agent in Kaposi's sarcoma (KS). However, individuals dually infected with both HHV8 and human immunodeficiency virus type 1 (HIV-1) show an enhanced prevalence of KS when compared with those singularly infected with HHV8. Host immune suppression conferred by HIV infection cannot wholly explain this increased presentation of KS. To better understand how HHV8 and HIV-1 might interact directly in the pathogenesis of KS, we queried for potential regulatory interactions between the two viruses. Here, we report that HHV8 and HIV-1 reciprocally up-regulate the gene expression of each other. We found that the KIE2 immediate-early gene product of HHV8 interacted synergistically with Tat in activating expression from the HIV-1 long terminal repeat. On the other hand, HIV-1 encoded Tat and Vpr proteins increased intracellular HHV8-specific expression. These results provide molecular insights correlating coinfection with HHV8 and HIV-1 with an unusually high incidence of KS.  相似文献   

10.
Entry inhibitors of human immunodeficiency virus, type 1 (HIV-1) have been the focus of much recent research. C34, a potent fusion inhibitor derived from the HR2 region of gp41, was engineered into a 1:1 human serum albumin conjugate through stable covalent attachment of a maleimido-C34 analog onto cysteine 34 of albumin. This bioconjugate, PC-1505, was designed to require less frequent dosing and less peptide than T-20 and was assessed for its antifusogenic activity both in vitro and in vivo in the SCID-hu Thy/Liv mouse model. PC-1505 was essentially equipotent to the original C34 peptide and to T-20 in vitro. In HIV-1-infected SCID-hu Thy/Liv mice, T-20 lost activity with infrequent dosing, whereas the antiviral potency of PC-1505 was sustained, and PC-1505 was active against T-20-resistant ("DIV") virus with a G36D substitution in gp41. The in vivo results are the direct result of a significantly improved pharmacokinetic profile for the C34 peptide following albumin conjugation. Contrary to previous reports that the gp41 NHR trimer is poorly accessible to C34 fused to protein cargoes of increasing size (Hamburger, A. E., Kim, S., Welch, B. D., and Kay, M. S. (2005) J. Biol. Chem. 280, 12567-12572), these results are the first demonstration of the capacity for a large, endogenous serum protein to gain unobstructed access to the transient gp41 intermediates that exist during the HIV fusion process, and it supports further development of albumin conjugation as a promising approach to inhibit HIV-1 entry.  相似文献   

11.
12.
Human herpesvirus 6 (HHV-6) has been implicated as a cofactor in the progressive loss of CD4(+) T cells observed in AIDS patients. Because dendritic cells (DC) play an important role in the immunopathogenesis of human immunodeficiency virus (HIV) disease, we studied the infection of DC by HHV-6 and coinfection of DC by HHV-6 and HIV. Purified immature DC (derived from adherent peripheral blood mononuclear cells in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4) could be infected with HHV-6, as determined by PCR analyses, intracellular monoclonal antibody staining, and presence of virus in culture supernatants. However, HHV-6-infected DC demonstrated neither cytopathic changes nor functional defects. Interestingly, HHV-6 markedly suppressed HIV replication and syncytium formation in coinfected DC cultures. This HHV-6-mediated anti-HIV effect was DC specific, occurred when HHV-6 was added either before or after HIV, and was not due to decreased surface expression or function of CD4, CXCR4, or CCR5. Conversely, HIV had no demonstrable effect on HHV-6 replication. These findings suggest that HHV-6 may protect DC from HIV-induced cytopathicity in AIDS patients. We also demonstrate that interactions between HIV and herpesviruses are complex and that the observable outcome of dual infection is dependent on the target cell type.  相似文献   

13.
Patients with acquired immunodeficiency syndrome (AIDS) are often infected with a number of other heterologous viruses in addition to the initial human immunodeficiency virus (HIV) infection, and these agents could act as potential reactivating agents of latent HIV. A new antigenically distinct herpesvirus, designated human herpesvirus 6 (HHV-6), has recently been isolated from patients with AIDS and has been shown to infect a number of different human cells, specifically human T cells, B cells, and glial cells. Since these are some of the same cells that harbor the AIDS virus, it is quite important to determine any interaction between this new herpesvirus and HIV. In this report, we demonstrate that HHV-6 can trans-activate the HIV promoter in human T-cell lines as measured by the expression of the bacterial gene chloramphenicol acetyltransferase. This indicates that stimulation of HIV gene expression by HHV-6 could play a role in HIV pathogenesis.  相似文献   

14.
Human herpesvirus 6 (HHV-6) is a lymphotropic herpesvirus, and in vitro, HHV-6 can productively infect many of the same cell types as can human immunodeficiency virus (HIV). Coinfection by both viruses in vitro can lead to both activation of the HIV promoter and acceleration of cytopathic effects. We have previously demonstrated that a large, 22.25-kb cloned HHV-6 fragment, pZVB70, can trans activate HIV promoter expression in vitro. In this study, we show that the pZVB70 fragment can trans activate the HIV promoter in human T-cell lines as well as in the monkey kidney cell line CV-1. The pZVB70 insert was digested with various restriction enzymes, and individual fragments were transfected into cells to test for their ability to trans activate the HIV promoter. By this method, we have identified a 1.8-kb subfragment, B701, that is involved in trans activation. Sequence analyses show that B701 potentially encodes a 143-amino-acid protein. This protein shares no homology with other herpesvirus proteins, such as ICP0 and ICP4, that have been shown to trans activate the HIV promoter. However, it shows weak sequence homology with the gene products encoded by the cytomegalovirus early US22 gene family, suggesting that the putative B701 protein may be an HHV-6 early regulatory protein. The 143-amino-acid coding sequence of B701 was cloned by polymerase chain reaction, and transfection of this construct into cells activated HIV promoter expression. The target site on the HIV promoter for the putative B701 protein is mapped to the NF-kappa B binding site. Our results suggest that the putative B701 protein may function by directly binding to the NF-kappa B site or may involve cellular factors, such as NF-kappa B, either directly or indirectly.  相似文献   

15.
Efficient human immunodeficiency virus (HIV)-1 infection depends on multiple interactions between the viral gp41/gp120 envelope (Env) proteins and cell surface receptors. However, cytoskeleton-associated proteins that modify membrane dynamics may also regulate the formation of the HIV-mediated fusion pore and hence viral infection. Because the effects of HDAC6-tubulin deacetylase on cortical alpha-tubulin regulate cell migration and immune synapse organization, we explored the possible role of HDAC6 in HIV-1-envelope-mediated cell fusion and infection. The binding of the gp120 protein to CD4+-permissive cells increased the level of acetylated alpha-tubulin in a CD4-dependent manner. Furthermore, overexpression of active HDAC6 inhibited the acetylation of alpha-tubulin, and remarkably, prevented HIV-1 envelope-dependent cell fusion and infection without affecting the expression and codistribution of HIV-1 receptors. In contrast, knockdown of HDAC6 expression or inhibition of its tubulin deacetylase activity strongly enhanced HIV-1 infection and syncytia formation. These results demonstrate that HDAC6 plays a significant role in regulating HIV-1 infection and Env-mediated syncytia formation.  相似文献   

16.
Human herpesvirus 8 (HHV-8), also called Kaposi's sarcoma (KS) herpesvirus, can cause KS but is inefficient. Untreated human immunodeficiency virus type 1 (HIV-1) coinfection is a powerful risk factor. The HHV-8 chemokine receptor, vGPCR (ORF74), activates NF-kappaB and NF-AT, and their levels of activation are synergistically increased by HIV-1 Tat. Transgenic vGPCR mice develop KS-like tumors. A cell line derived from one such tumor expresses vGPCR and forms tumors in nude mice. Here we show that transfection of DNA encoding HIV-1 tat (but not a transactivation-defective mutant) into these tumor cells increases NF-kappaB and NF-AT activation levels and accelerates tumor formation. Tumorigenesis was also accelerated when Tat DNA was transfected into normal cells and the transfected cells were mixed with the tumor cells and injected into a single site. Tumorigenesis was also increased when the two cell types were injected at separate sites, suggesting that tumorigenesis is accelerated by Tat through soluble factors.  相似文献   

17.
Dendritic cells (DCs) efficiently bind and transmit human immunodeficiency virus (HIV) to cocultured T cells and so may play an important role in HIV transmission. DC-SIGN, a novel C-type lectin that is expressed in DCs, has recently been shown to bind R5 HIV type 1 (HIV-1) strains and a laboratory-adapted X4 strain. To characterize the interaction of DC-SIGN with primate lentiviruses, we investigated the structural determinants of DC-SIGN required for virus binding and transmission to permissive cells. We constructed a panel of DC-SIGN mutants and established conditions which allowed comparable cell surface expression of all mutants. We found that R5, X4, and R5X4 HIV-1 isolates as well as simian immunodeficiency and HIV-2 strains bound to DC-SIGN and could be transmitted to CD4/coreceptor-positive cell types. DC-SIGN contains a single N-linked carbohydrate chain that is important for efficient cell surface expression but is not required for DC-SIGN-mediated virus binding and transmission. In contrast, C-terminal deletions removing either the lectin binding domain or the repeat region abrogated DC-SIGN function. Trypsin-EDTA treatment inhibited DC-SIGN mediated infection, indicating that virus was maintained at the surface of the DC-SIGN-expressing cells used in this study. Finally, quantitative fluorescence-activated cell sorting analysis of AU1-tagged DC-SIGN revealed that the efficiency of virus transmission was strongly affected by variations in DC-SIGN expression levels. Thus, variations in DC-SIGN expression levels on DCs could greatly affect the susceptibility of human individuals to HIV infection.  相似文献   

18.
Four HHV-6 strains were initially isolated during attempts to observe HIV-1 replication in cultured primary lymphocytes from 48 patients with AIDS. HHV-6 DNA from each strain was extracted from primary cell cultures and amplified using specific primers in a nested polymerase chain reaction (PCR) assay. All HHV-6 strains were classified as B variants by submitting the PCR products to the digestion of two restriction enzymes (Hind III and Bgl II). Since in primary cultures, the appearance of HHV-6 cytopathic effect was followed by a progressive reduction of HIV-1 replication, we tried to reproduce the observed inhibition in vitro. Two HHV-6 strains, used throughout the experiments, showed their ability to suppress HIV-1 replication when the viruses co-infected CD4+T lymphocyte cultures. While the intrinsic mechanism of this finding still remains unclear, the inhibition of HIV-1 replication was observed only when a high multiplicity of infection (m.o.i.) of HHV-6 and a low m.o.i. of HIV-1 were used in dually infected cell cultures. By using a semiquantitative determination of HIV-1 cDNA by PCR, it appears that the inhibition begins in infected cell cultures and, once established, does not allow any further HIV-1 replication.  相似文献   

19.
Clinical deterioration in human immunodeficiency virus type 1 (HIV-1) disease is associated with an increased viral burden in the peripheral blood and a loss of circulating CD4+ T cells. HIV-1 isolates obtained prior to this stage of disease often have a "slow-low," non-syncytium-inducing (NSI) phenotype, whereas those obtained afterwards are often characterized as "rapid-high" and syncytium inducing (SI). Paired NSI and SI isolates from two different patients were inoculated into the human thymus implants of SCID-hu mice. The two slow-low, NSI isolates replicated to minimal levels in the grafts and did not induce thymocyte depletion. In contrast, the two SI isolates from the same patients showed high levels of viral replication and induced a marked degree of thymocyte depletion, accompanied by evidence of programmed cell death. These observations reveal a correlation between the replicative and cytopathic patterns of HIV-1 isolates in vitro and in the SCID-hu mouse in vivo and provide direct evidence that the biological phenotype of HIV-1 switch may be a causal and not a derivative correlate of HIV-1 disease progression.  相似文献   

20.
The p6 domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein mediates virion budding from infected cells via protein-protein contacts with the class E vacuolar protein sorting factors, Tsg101 and AIP1/ALIX. Interaction with Tsg101 is strengthened by covalent attachment of monovalent ubiquitin to HIV-1 p6. To identify additional host factors that bind to HIV-1 p6, a human cDNA library was screened in the yeast two-hybrid system. HIV-1 p6 was found to interact with small ubiquitin-like modifier 1 (SUMO-1) as well as the E2 SUMO-1 transfer enzyme, Ubc9. Interaction with p6 was also detected with Daxx, a cellular protein to which SUMO-1 is sometimes covalently attached. SUMO-1 was incorporated into HIV-1 virions where it was protected within the virion membrane from digestion by exogenous protease. Of the two lysine residues in p6, lysine 27 uniquely served as a site of covalent SUMO-1 attachment. As previously reported, though, HIV-1 bearing the p6-K27R mutation replicated just like the wild type. Overproduction of SUMO-1 in HIV-1 producer cells had no apparent effect on virion release or on virion protein or RNA content. Infectivity of the resulting virions, though, was decreased, with the defect occurring after membrane fusion, at the time of viral cDNA synthesis. HIV-1 bearing the p6-K27R mutation was insensitive to SUMO-1 overexpression, suggesting that covalent attachment of SUMO-1 to p6 is detrimental to HIV-1 replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号