首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of temperature on the activation energies of mitochondrial enzymes of the yeast Saccharomyces cerevisiae was examined. Non-linear Arrhenius plots with discontinuities in the temperature range 14-19 degrees C and 19-22 degrees C were observed for the respiratory enzymes and mitochondrial ATPase (adenosine triphosphatase) respectively. A straight-line Arrhenius plot was observed for the matrix enzyme, malate dehydrogenase. The activation energies of the enzymes associated with succinate oxidation, namely, succinate oxidase, succinate dehydrogenase and succinate-cytochrome c oxidoreductase, were in the range 60-85kJ/mol above the transition temperature and 90-160kJ/mol below the transition temperature. In contrast, the corresponding enzymes associated with NADH oxidation showed significantly lower activation energies, 20-35kJ/mol above and 40-85kJ/mol below the transition temperature. The discontinuities in the Arrhenius plots were still observed after sonication, treatment with non-ionic detergents or freezing and thawing of the mitochondrial membranes. Discontinuities for cytochrome c oxidase activity were only observed in freshly isolated mitochondria, and no distinct breaks were observed after storage at -20 degrees C. Mitochondrial ATPase activity still showed discontinuities after sonication and freezing and thawing, but a linear plot was observed after treatment with non-ionic detergents. The results indicate that the various enzymes of the respiratory chain are located in a similar lipid macroenvironment within the mitochondrial membrane.  相似文献   

2.
An exposure of cultured hippocampal neurons expressing mitochondrially targeted enhanced yellow fluorescent protein to excitotoxic glutamate resulted in reversible mitochondrial remodeling that in many instances could be interpreted as swelling. Remodeling was not evident if glutamate receptors were blocked with MK801, if Ca(2+) was omitted or substituted for Sr(2+) in the bath solution, if neurons were treated with carbonylcyanide p-trifluoromethoxyphenylhydrazone to depolarize mitochondria, or if neurons were pretreated with cyclosporin A or N-methyl-4-isoleucine-cyclosporin (NIM811) to inhibit the mitochondrial permeability transition. In the experiments with isolated brain synaptic or nonsynaptic mitochondria, Ca(2+) triggered transient, spontaneously reversible cyclosporin A-sensitive swelling closely resembling remodeling of organelles in cultured neurons. The swelling was accompanied by the release of cytochrome c, Smac/DIABLO, Omi/HtrA2, and AIF but not endonuclease G. Depolarization with carbonylcyanide p-trifluoromethoxyphenylhydrazone or inhibition of the Ca(2+) uniporter with Ru360 prevented rapid onset of the swelling. Sr(2+) depolarized mitochondria but failed to induce swelling. Neither inhibitors of the large conductance Ca(2+)-activated K(+) channel (charybdotoxin, iberiotoxin, quinine, and Ba(2+)) nor inhibitors of the mitochondrial ATP-sensitive K(+) channel (5-hydroxydecanoate and glibenclamide) suppressed swelling. Quinine, dicyclohexylcarbodiimide, and Mg(2+), inhibitors of the mitochondrial K(+)/H(+) exchanger, as well as external alkalization inhibited a recovery phase of the reversible swelling. In contrast to brain mitochondria, liver and heart mitochondria challenged with Ca(2+) experienced sustained swelling without spontaneous recovery. The proposed model suggests an involvement of the Ca(2+)-dependent transient K(+) influx into the matrix causing mitochondrial swelling followed by activation of the K(+)/H(+) exchanger leading to spontaneous mitochondrial contraction both in situ and in vitro.  相似文献   

3.
Mg-ATPase of rat brain synaptic vesicles (SV) is considerably (by 85%) inhibited by dicyclohexyl carbodiimide (200 microM), a blocker of proton pumps, whereas orthovanadate (100 microM) does not produce any influence on the enzyme. Oligomycin (5 micrograms/ml) does not alter Mg-ATPase activity of the SV, whereas N-ethylmaleimide (300 microM) reduces it to a moderate degree, namely by 35%. This indicates that Mg-ATPase of the SV differs from mitochondrial ATPase. The protonophore p-trichloromethoxycarbonyl cyanide phenylhydrazone (20 microM) and bicarbonate anions (20 mM) stimulate slightly (by 12 to 25%) Mg-ATPase of the SV. Bicarbonate (20 mM) raises 1.8-2.1-fold Mg-ATPase activity of the mitochondria isolated from rat brain. It is assumed that the membrane of brain SV contains proton ATPase (H+-ATPase) differing from mitochondrial H+-ATPase in some of the properties.  相似文献   

4.
Hepatic mitochondria isolated in 0.3 M-sucrose or 0.3 M-mannitol from rats treated for 3h with dexamethasone displayed stimulated rates of pyruvate carboxylation and decarboxylation and citrulline synthesis when compared with organelles from control animals. Mitochondria isolated in mannitol also displayed elevated rates of pyruvate carboxylation and decarboxylation when compared with those isolated in sucrose, and this stimulation was shown to be independent of the lengthy isolation procedure. Citrulline synthesis proceeded at similar rates in mitochondria isolated in either sugar. The concentration of exchangeable adenine nucleotides was identical in mitochondria isolated in sucrose or mannitol, suggesting that those prepared in the former sugar are not more permeable to metabolites than those prepared in the latter. The matrix volume of mitochondria isolated in mannitol was greater than that of mitochondria isolated in sucrose, and the effect of mannitol on pyruvate metabolism was mimicked by swelling the organelles in hypo-osmotic sucrose. Measurements of the extra-matrix volume by using [14C]sucrose or [14C]mannitol suggest that mannitol can permeate mitochondria to a greater extent than can sucrose. The possibility that mannitol elicits its effect by entering the mitochondrial matrix and so initiating swelling is discussed.  相似文献   

5.
Isolated mitochondria may undergo uncoupling, and in presence of Ca(2+) at different conditions, a mitochondrial permeability transition (MPT) linked to protein thiol oxidation, and demonstrated by CsA-sensitive mitochondrial swelling; these processes may cause cell death either by necrosis or by apoptosis. Isocoumarins isolated from the Brazilian plant Paepalanthus bromelioides (Eriocaulaceae) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin were assayed at 1-50 microM on isolated rat liver mitochondria, for respiration, MPT, protein thiol oxidation, and interaction with the mitochondrial membrane using 1,6-diphenyl-1,3,5-hexatriene (DPH). The isocoumarins did not significantly affect state 3 respiration of succinate-energized mitochondria; they did however, stimulate 4 respiration, indicating mitochondrial uncoupling. Induction of MPT and protein thiol oxidation were assessed in succinate-energized mitochondria exposed to 10 microM Ca(2+); inhibition of these processes was assessed in non-energized organelles in the presence of 300 microM t-butyl hydroperoxide plus 500 microM Ca(2+). Only paepalantine was an effective MPT/protein thiol oxidation inducer, also releasing cytochrome c from mitochondria; the protein thiol oxidation, unlike mitochondrial swelling, was neither inhibited by CsA nor dependent on the presence of Ca(2+). Vioxanthin was an effective inhibitor of MPT/protein thiol oxidation. All isocoumarins inserted deeply into the mitochondrial membrane, but only paepalantine dimer and vioxantin decreased the membrane's fluidity. A direct reaction with mitochondrial membrane protein thiols, involving an oxidation of these groups, is proposed to account for MPT induction by paepalantine, while a restriction of oxidation of these same thiol groups imposed by the decrease of membrane fluidity, is proposed to account for MPT inhibition by vioxanthin.  相似文献   

6.
Partially purified rat liver mitochondrial glutaminase shows a sigmoidal dependence on glutamine concentration, and an absolute requirement for inorganic phosphate as activator. Reconstitution with a mitochondrial membrane fraction changes the kinetic properties of the enzyme making the glutamine dependence more hyperbolic and reducing the concentration of phosphate required for half-maximum activation. Glutaminase activity in isolated mitochondria is known to be increased as a result of mitochondrial swelling. In mitochondria suspended in isotonic medium, the properties of glutaminase resemble of the isolated enzyme while in swollen mitochondria the kinetic properties revert to those exhibited by the enzyme in association with the mitochondrial membrane. It is postulated that mitochondrial glutaminase is regulated in situ by reversible association with the inner mitochondrial membrane which is mediated by mitochondrial swelling. This mechanism may explain the short-term hormonally induced activation of the enzyme observed in isolated hepatocytes.  相似文献   

7.
The influence of respiration and Ca++ transport in the liver mitochondria on the activation of DNAase I, associated with these organelles, was studied. It was shown that 96% of the total activity of this enzyme in mitochondria is in the latent state. Aeration of the mitochondrial suspension leads to a sharp increase in the enzyme activity. The activation of DNAase I is inhibited by EGTA addition (optimal pH 8.0), and stimulated in mitochondria, releasing Ca++. It is concluded that the activation of DNAase I is dependent on the state of cellular energetics. Participation of mitochondrial phospholypase A, activated by the Ca++ release from mitochondria during DNAase I activation is suggested.  相似文献   

8.
The effect of the most hydrophobic bile acid–lithocholic–as an inducer of two different Ca2+-dependent inner membrane permeability systems was studied on isolated rat liver mitochondria. It is shown that the addition of lithocholic acid at a concentration of 20 μM to the Ca2+-loaded mitochondria leads to swelling of the organelles, rapid release of Ca2+ from the matrix and almost complete collapse of Δψ. Mitochondrial pore blocker cyclosporin A (CsA) eliminates mitochondrial swelling but has no effect on the process of Ca2+ release and Δψ collapse. In the absence of Ca2+ lithocholic acid causes only a transient decrease of Δψ with subsequent complete recovery. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, which blocks Ca2+ influx into the matrix, prevents mitochondrial swelling induced by lithocholic acid. At the same time, ruthenium red, which is added before lithocholic acid to the Ca2+-preloaded mitochondria, does not affect the swelling of the organelles but reduces the CsA-insensitive drop in Δψ. It is concluded that lithocholic acid is able to induce two Ca2+-dependent energy dissipation systems in the inner membrane of liver mitochondria: CsA-sensitive mitochondrial pore and CsA-insensitive permeability, which exhibits sensitivity to ruthenium red. It is found that the effect of this bile acid as an inductor of CsA-sensitive mitochondrial pore is not associated with the modulation of Pi effects. It is assumed that CsA-insensitive action of lithocholic acid is associated with the induction of Ca2+ efflux from the matrix in exchange for protons. In this case, the energy-dependent Ca2+ transport in the opposite direction with the participation of mitochondrial calcium uniporter sensitive to ruthenium red leads to the formation of calcium cycle and thereby to energy dissipation.  相似文献   

9.
Degradation of mitochondrial translation products in Saccharomyces cerevisiae mitochondria was studied by selectively labelling these entities in vivo in the presence of cycloheximide and following their fate in isolated mitochondria. One-third to one-half of the mitochondrial translation products are shown to be degraded, depending on the culture growth phase, with an approximate half-life of 35 min. This process is shown to be ATP-dependent, enhanced in the presence of puromycin and inhibited by chloramphenicol. Further, the proteolysis is suppressed by detergents and is insensitive to antisera against yeast proteinases A and B when measured in mitochondria or 'inside-out' submitochondrial particles. It is concluded that the breakdown of mitochondrial translation products is most probably due to the action of endogenous proteinase(s) associated with the mitochondrial inner membrane. This proteinase is inhibited by phenylmethanesulphonyl fluoride, leupeptin, antipain and chymostatin.  相似文献   

10.
Two-cell bovine embryos become arrested in development when exposed to a physiologically relevant heat shock. One of the major ultrastructural modifications caused by heat shock is translocation of organelles toward the center of the blastomere. The objective of the present study was to determine if heat- shock-induced movement of organelles is a result of cytoskeletal rearrangement. Two-cell bovine embryos were cultured at 38.5 degrees C (homeothermic temperature of the cow), 41.0 degrees C (physiologically relevant heat shock), or 43.0 degrees C (severe heat shock) for 6 h in the presence of either vehicle, latrunculin B (a microfilament depolymerizer), rhizoxin (a microtubule depolymerizer), or paclitaxel (a microtubule stabilizer). Heat shock caused a rearrangement of actin-containing filaments as detected by staining with phalloidin. Moreover, latrunculin B reduced the heat-shock-induced movement of organelles at 41.0 degrees C but not at 43.0 degrees C. In contrast, movement of organelles caused by heat shock was inhibited by rhizoxin at both temperatures. Furthermore, rhizoxin, but not latrunculin B, reduced the swelling of mitochondria caused by heat shock. Paclitaxel, while causing major changes in ultrastructure, did not prevent the movement of organelles or mitochondrial swelling. It is concluded that heat shock disrupts microtubule and microfilaments in the two-cell bovine embryo and that these changes are responsible for movement of organelles away from the periphery. In addition, intact microtubules are a requirement for heat-shock-induced swelling of mitochondria. Differences in response to rhizoxin and paclitaxel are interpreted to mean that deformation of microtubules can occur through a mechanism independent of microtubule depolymerization.  相似文献   

11.
Organelle transport in neuronal processes is central to the organization, developmental fate, and functions of neurons. Organelles must be transported through the slender, highly branched neuronal processes, making the axonal transport vulnerable to any perturbation. However, some intracellular structures like mitochondria are able to considerably modify their volume. We therefore hypothesized that swollen mitochondria could impair the traffic of other organelles in neurite shafts. To test this hypothesis, we have investigated the effects of mitochondrial swellers on the organelle traffic. Our data demonstrate that treatment of neurons with potassium ionophore valinomycin led to the fast time-dependent inhibition of organelle movement in cerebellar granule neurons. Similar inhibition was observed in neurons treated with the inhibitors of the mitochondrial respiratory chain, sodium azide and antimycin, which also induced swelling. No decrease in the motility of organelles was observed in cultures treated with inhibitors of ATP production or transport, oligomycin or bongkrekic acid, suggesting that inhibition of the ATP-generating activity itself without swelling does not affect the motility of organelles. The effect of swellers on the traffic was more important in thin processes, thus indicating the role of steric hindrance of swollen mitochondria. We propose that the size and morphology of the transported cargo is also relevant for seamless axonal transport and speculate that mitochondrial swelling could be one of the reasons for impaired organelle transport in neuronal processes.  相似文献   

12.
THE PENETRATION OF THE MEMBRANE OF BRAIN MITOCHONDRIA BY ANIONS   总被引:1,自引:0,他引:1  
The permeability of the membrane of rat brain non-synaptosomal mitochondria, towards inorganic and substrate anions, was assessed by measuring the rate of swelling that occurred when mitochondria were suspended in an iso-osmotic solution of a permeant anion, in the presence of a permeant cation such as NH+4 or K+ in the presence or absence of valinomycin. In NH+4-phosphate swelling was higher than it was in KCI or K+-phosphate, which showed the prevalence of the mechanism of phosphate transport previously demonstrated in liver mitochondria. The entry of succinate and L-malate seemed to require the presence in the inner mitochondrial membrane of specific carriers. as previously postulated for liver mitochondria, but the rate of swelling of brain mitochondria was lower than that of liver organelles. In K+-succinate, in the presence of antimycin, added ATP induced swelling and this was attributable to the simultaneous permeation both of the anion and the cation. Fumarate did not penetrate into brain mitochondria. Practically no swelling was recorded in NH+4 or K+-citrate, which indicated that this anion penetrated poorly into the isolated brain mitochondria even in the presence of malate. Swelling occurred in NH+4-L-glutamate in the presence of rotenone, and the entry of this anion seemed to follow a gradient of concentration although the presence of a specific translocator in the inner mitochondrial membrane might be concerned. The entry of glutamate was independent of that of phosphate and N-ethylmaleimide appeared to be a specific inhibitor of this entry. Swelling in K+-L-glutamate, in the presence of rotenone, was enhanced by the addition of valinomycin or ATP but in the latter case when osmotic equilibrium was reached swelling was not reversed by oligomycin. In conclusion, the lesser extent of swelling of isolated brain mitochondria compared with liver mitochondria could be attributed to the heterogeneity of the populations of these organelles, each population possessing its own characteristics of membrane permeability. Observations of electron micrographs of brain mitochondria incubated in iso-osmotic substrate anions confirmed the heterogeneous rate of swelling of these particles.  相似文献   

13.
Ultrastructural changes were followed in the isolated mechanoreceptor neurons of the crayfish during post-excitational short-term trace processes (i.e. acceleration of the adaptional state), after repeated adaquate excitations. Fibrillar rearrangements of the mitochondrial cristae in the axonal mitochondria took place at the moderate excitation, no visible changes being seen in the somatic mitochondria and other organelles. However, the swelling of periaxonal areas and the rupture between strands of microtubules and electrogenic membrane occurred at the end of the fatique stimulation. In addition, the swelling of somatic mitochondria in the perinuclear zone and of the reticulum was noticed. Besides, the survival time of the excited isolated neurons strongly depended on the functional state of the surrounding glial cells. It is suggested that energetic processes are strongly involved in the postexcitational short-term traces.  相似文献   

14.
To elucidate the molecular mechanisms of the protective action of stigmatellin (an inhibitor of complex III of mitochondrial electron transport chain, mtETC) against the heavy metal-induced cytotoxicity, we tested its effectiveness against mitochondrial membrane permeabilization produced by heavy metal ions Cd2(+), Hg2(+), Cu2(+) and Zn2(+), as well as by Ca2(+) (in the presence of P(i)) or Se (in form of Na?SeO?) using isolated rat liver mitochondria. It was shown that stigmatellin modulated mitochondrial swelling produced by these metals/metalloids in the isotonic sucrose medium in the presence of ascorbate plus tetramethyl-p-phenylenediamine (complex IV substrates added for energization of the mitochondria). It was found that stigmatellin and other mtETC inhibitors enhanced the mitochondrial swelling induced by selenite. However, in the same medium, all the mtETC inhibitors tested as well as cyclosporin A and bongkrekic acid did not significantly affect Cu2(+)-induced swelling. In contrast, the high-amplitude swelling produced by Cd2(+), Hg2(+), Zn2(+), or Ca2(+) plus P(i) was significantly depressed by these inhibitors. Significant differences in the action of these metals/metalloids on the redox status of pyridine nucleotides, transmembrane potential and mitochondrial respiration were also observed. In the light of these results as well as the data from the recent literature, our hypothesis on a possible involvement of the respiratory supercomplex, formed by complex I (P-site) and complex III (S-site) in the mitochondrial permeabilization mediated by the mitochondrial transition pore, is updated.  相似文献   

15.
The endocannabinoid anandamide alters mitochondria-dependent signal transduction, thus controlling key cellular events like energy homeostasis and induction of apoptosis. Here, the ability of anandamide to directly affect the integrity of mitochondria was investigated on isolated organelles. We found that anandamide dose-dependently increases mitochondrial swelling, and reduces cytochrome c release induced by calcium ions. The effects of anandamide were independent of its target receptors (e.g., cannabinoid or vanilloid receptors), and were paralleled by decreased membrane potential and increased membrane fluidity. Overall, our data suggest that anandamide can impact mitochondrial physiology, by reducing calcium sensitivity and perturbing membrane properties of these organelles.  相似文献   

16.
The effect of the lipophilic penetrating cation dequalinium on rat liver mitochondria was studied. It was found that dequalinium dose-dependently inhibits the respiration rate of rat liver mitochondria in ADP-stimulated (V3) and DNP-stimulated (uncoupled) states. This can be due to the fact that dequalinium is a potent inhibitor of complex III of the mitochondrial respiratory chain. It was shown that dequalinium induces a high-amplitude swelling of rat liver mitochondria. The dequalinium-induced swelling of the organelles depends on the presence of inorganic phosphate in the incubation medium: in the absence of phosphate or in the presence of the phosphate carrier inhibitor mersalyl in the phosphate-containing medium, no swelling of the mitochondria was observed. At low concentrations of dequalinium (≤10 μM), this swelling is inhibited by cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. At the same time, at high concentrations of dequalinium (>10 μM), cyclosporin A becomes ineffective. It was found that in the presence of dequalinium the rate of the H2O2 production increased in rat liver mitochondria. Possible mechanisms of toxic effect of dequalinium chloride are discussed.  相似文献   

17.
Angularly resolved light scattering measurements were performed on suspensions of EMT6 cells and on mitochondria isolated from rabbit liver. Mie theory analysis of the scattering from intact cells indicated that mitochondrial-sized organelles dominated scattering in the range 5-90 degrees . This interpretation was supported by the analysis of scattering from isolated mitochondria. Intact cells were subjected to oxidative stress by photodynamic insult. After 3 h of incubation in the heme precursor aminolevulinic acid hexylester, EMT6 cells accumulated abundant protoporphyrin IX, an endogenous photosensitizer formed in mitochondria. Irradiation of aminolevulinic acid/protoporphyrin IX-sensitized cells with 10 J cm(-2) of 514 nm light led to pronounced changes in angularly resolved light scattering consistent with mitochondrial swelling. Electron microscopy of similarly treated EMT6 cell monolayers showed significant changes in mitochondrial morphology, which included distension of the outer unit membrane and bloating of the internal mitochondrial compartment. Informed by these electron microscopy results, we implemented a coated sphere model to interpret the scattering from intact cells subjected to oxidative stress. The coated sphere interpretation was compatible with the scattering measurements from these cells, whereas simpler Mie theory models based on homogenous swelling were dramatically unsuccessful. Thus, in this system, angularly resolved light scattering reports oxidative-stress-induced changes in mitochondrial morphology.  相似文献   

18.
Treatment of patients diagnosed as schizophrenic with antipsychotic drugs (neuroleptics) is known to cause occasional unexplained depletion of white blood cells, especially neutrophil granulocytes. It has been known for many years that neuroleptics can interfere with the mitochondrial respiratory chain in vitro. Because there has been a growing interest recently in mitochondrial targeting of drugs, and since a quantitative structure-activity relationship (QSAR) model that predicts mitochondrial accumulation of neuroleptics has been published, we investigated the effects of neuroleptics on white blood cell mitochondria. Venous blood samples were collected from both patients undergoing treatment with neuroleptics and healthy volunteers. The samples were processed for transmission electron microscopy. The resulting images of white blood cells were analyzed using stereology to compare quantitatively mitochondrial morphology in the patient and control groups. We found that in patients, but not in controls, there was swelling of mitochondria and fragmentation of the mitochondrial cristae. There also were fewer mitochondria in patients than in controls, although due to the swelling of the organelles, the volume density of mitochondria in the two groups was not significantly different. Such changes are typical of a toxic insult. Consequently, it seems plausible that, since schizophrenia is not a disease considered to affect white blood cells per se, these changes probably are due to the medication.  相似文献   

19.
Treatment of patients diagnosed as schizophrenic with antipsychotic drugs (neuroleptics) is known to cause occasional unexplained depletion of white blood cells, especially neutrophil granulocytes. It has been known for many years that neuroleptics can interfere with the mitochondrial respiratory chain in vitro. Because there has been a growing interest recently in mitochondrial targeting of drugs, and since a quantitative structure-activity relationship (QSAR) model that predicts mitochondrial accumulation of neuroleptics has been published, we investigated the effects of neuroleptics on white blood cell mitochondria. Venous blood samples were collected from both patients undergoing treatment with neuroleptics and healthy volunteers. The samples were processed for transmission electron microscopy. The resulting images of white blood cells were analyzed using stereology to compare quantitatively mitochondrial morphology in the patient and control groups. We found that in patients, but not in controls, there was swelling of mitochondria and fragmentation of the mitochondrial cristae. There also were fewer mitochondria in patients than in controls, although due to the swelling of the organelles, the volume density of mitochondria in the two groups was not significantly different. Such changes are typical of a toxic insult. Consequently, it seems plausible that, since schizophrenia is not a disease considered to affect white blood cells per se, these changes probably are due to the medication.  相似文献   

20.
In Jurkat cells Bid was cleaved upon activation of the Fas receptor with an anti-Fas antibody. The caspase-8 inhibitor benzyloxycarbonyl-Ile-Glu(OMe)-Thr-Asp(OMe)-CH(2)F (IETD) prevented the cleavage of Bid and the loss of viability. The nuclear enzyme poly(ADP-ribose)polymerase (PARP) was also cleaved upon the activation of caspases, and IETD similarly prevented PARP cleavage. The PARP inhibitor 3-aminobenzamide (3-AB) restored the cell killing in the presence of IETD, an effect that occurred without restoration of the cleavage of Bid or PARP. In the presence of 3-AB and IETD, translocation occurred of full-length Bid to the mitochondria. The induction of the mitochondrial permeability transition (MPT) was documented by the cyclosporin A (CyA) sensitivity of the release of cytochrome c, the release of malate dehydrogenase from the mitochondrial matrix, the loss of the mitochondrial membrane potential, and the pronounced swelling of these organelles, as assessed by electron microscopy. In addition to preventing all evidence of the MPT, CyA prevented the loss of cell viability, without effect on the cleavage of either Bid or PARP. The prevention of PARP cleavage by inhibition of caspase-3 resulted in a 10-fold activation of the enzyme and a resultant depletion of NAD and ATP. The PARP inhibitor 3-AB prevented the loss of NAD and ATP. Depletion of ATP by metabolic inhibitors similarly prevented the cell killing. It is concluded that the cleaving of PARP in Fas-mediated apoptosis allowed expression of an energy-dependent cell death program that included the translocation of full-length Bid to the mitochondria with induction of the MPT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号