首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloroplasts were originally established in eukaryotes by the endosymbiosis of a cyanobacterium; they then spread through diversification of the eukaryotic hosts and subsequent engulfment of eukaryotic algae by previously nonphotosynthetic eukaryotes. The continuity of chloroplasts is maintained by division of preexisting chloroplasts. Like their ancestors, chloroplasts use a bacterial division system based on the FtsZ ring and some associated factors, all of which are now encoded in the host nuclear genome. The majority of bacterial division factors are absent from chloroplasts and several new factors have been added by the eukaryotic host. For example, the ftsZ gene has been duplicated and modified, plastid-dividing (PD) rings were most likely added by the eukaryotic host, and a member of the dynamin family of proteins evolved to regulate chloroplast division. The identification of several additional proteins involved in the division process, along with data from diverse lineages of organisms, our current knowledge of mitochondrial division, and the mining of genomic sequence data have enabled us to begin to understand the universality and evolution of the division system. The principal features of the chloroplast division system thus far identified are conserved across several lineages, including those with secondary chloroplasts, and may reflect primeval features of mitochondrial division. Shin-ya Miyagishima is the recipient of the Botanical Society Award for Young Scientists, 2004.  相似文献   

2.
The division of plastids is an important part of plastid differentiation and development and in distinct cell types, such as leaf mesophyll cells, results in large populations of chloroplasts. The morphology and population dynamics of plastid division have been well documented, but the molecular controls underlying plastid division are largely unknown. With the isolation of Arabidopsis mutants in which specific aspects of plastid and proplastid division have been disrupted, the potential exists for a detailed knowledge of how plastids divide and what factors control the rate of division in different cell types. It is likely that knowledge of plant homologues of bacterial cell division genes will be essential for understanding this process in full. The processes of plastid division and expansion appear to be mutually independent processes, which are compensatory when either division or expansion are disrupted genetically. The rate of cell expansion appears to be an important factor in initiating plastid division and several systems involving rapid cell expansion show high levels of plastid division activity. In addition, observation of plastids in different cell types in higher plants shows that cell-specific signals are also important in the overall process in determining not only the differentiation pathway of plastids but also the extent of plastid division. It appears likely that with the exploitation of molecular techniques and mutants, a detailed understanding of the molecular basis of plastid division may soon be a reality.  相似文献   

3.
4.
Miyagishima S  Kuroiwa H  Kuroiwa T 《Planta》2001,212(4):517-528
The timing and manner of disassembly of the apparatuses for chloroplast division (the plastid-dividing ring; PD ring) and mitochondrial division (the mitochondrion-dividing ring; MD ring) were investigated in the red alga Cyanidioschyzon merolae De Luca, Taddei and Varano. To do this, we synchronized cells both at the final stage of and just after chloroplast and mitochondrial division, and observed the rings in three dimensions by transmission electron microscopy. The inner (beneath the stromal face of the inner envelope) and middle (in the inter-membrane space) PD rings disassembled completely, and disappeared just before completion of chloroplast division. In contrast, the outer PD and MD rings (on the cytoplasmic face of the outer envelope) remained in the cytosol between daughter organelles after chloroplast and mitochondrial division. The outer rings started to disassemble and disappear from their surface just after organelle division, initially clinging to the outer envelopes at both edges before detaching. The results suggest that the two rings inside the chloroplast disappear just before division, and that this does not interfere with completion of division, while the outer PD and MD rings function throughout and complete chloroplast and mitochondrial division. These results, together with previous studies of C. merolae, disclose the entire cycle of change of the PD and MD rings. Received: 19 May 2000 / Accepted: 3 August 2000  相似文献   

5.
H. Hashimoto 《Protoplasma》1992,167(1-2):88-96
Summary Studies have been made of whether actin filaments and microtubules are involved in the chloroplast division ofClosterium ehrenbergii (Conjugatae). Fluorostaining with rhodamine-phalloidin showed 5 types of localization of F-actin: (1) cables of actin filaments running in the cortical cytoplasm along the cell's long axis, (2) condensed actin filaments at the septum, (3) perinuclear distribution of actin filaments, (4) F-actins in a marking pin-like configuration adjacent to the nucleus of semicells just before completion of chloroplast kinesis, and (5) actin filaments girdling the isthmus of the constricted and dividing chloroplasts. Cytochalasin D (CD) at a concentration of 6 to 25 M caused significant disruption of actin filaments and the arrest of chloroplast kinesis, nuclear division, septum formation and cytoplasmic streaming within 3 to 6h. Chloroplast kinesis and cytoplasmic streaming recovered when cells were transferred to the medium without CD after CD treatment, or were subjected to prolonged contact with CD for more than 9h. In these cells there was a coincidental reappearance of actin filaments. A tubulin inhibitor, amiprophos-methyl at 330 M, did not inhibit chloroplast kinesis but did inhibit division and positioning of the nucleus. These results suggest that actin filaments do play a role in the mechanism of chloroplast kinesis but that microtubules do not appear to be involved in the process.Abbreviations APM amiprophos-methyl - CD cytochalasin D - DAPI 4,6-diamidino-2-phenylindole - DIC Nomarski differential interference contrast - DMSO dimethyl sulfoxide - Rh-Ph rhodamine-phalloidin  相似文献   

6.
Seedlings of Citrus volkameriana (L.) were grown hydroponically for 43 days in order to study the effect of Mn concentration (0, 2, 14, 98 and 686 microM) in the nutrient solution on leaf anatomy and mesophyll chloroplast ultrastructure. Increasing Mn concentration stimulated leaf lamina thickness. The size of mesophyll chloroplasts decreased and increased under 0 and 686 microM Mn, respectively, compared to the intermediate Mn concentrations, similar with regard to the number of chloroplasts per mesophyll cell area. Thylakoid membranes of plants grown under 0 microM Mn were somewhat swelled, while those in other Mn treatments did not present any visible malformation. The relative volume of starch grains per chloroplast was significantly smaller under 0-98 microM Mn (12.8-16.0%) than in the treatment with 686 microM Mn (67.6%). Further, under 686 microM Mn, dark deposits were found in vacuoles. The existence of a cell adaptation mechanism to excessive Mn availability (686 microM Mn) by increasing the size of chloroplasts as well as their number per cellular area, is discussed.  相似文献   

7.
Summary An X-ray induced mutant (PC22) of the moss,Physcomitrella patens was analysed with respect to its morphology, physiology and suitability for microculture techniques. The mutant protonemata are defective in bud formation and in chloroplast division. As a consequence of the latter, giant chloroplasts are formed which disturb the development of the phragmoplast, the formation of regular cross walls, and cell division. Abnormal cross walls are rich in callose. The actin cytoskeleton was found to be less regularly developed in the mutant than in the wild type. Three-dimensional analysis of the microtubular arrangement with confocal laser scan microscopy demonstrates a close association between spindle- or phragmoplast- and interphase-microtubules. The deficiencies in chloroplast division and in bud formation can partly be compensated for by exogeneously applied cytokinin. The suitability of this particular developmental mutant for further studies was shown by regeneration of protoplasts in microculture and microinjection of the fluorochrome Lucifer yellow into the chloroplast.Abbreviations CLSM confocal laser scan microscope - DAPI diamidinophenyl indole - DiOC 3,3-dihexyloxacarbocyanine iodide - EGTA ethylene glycol-bis-(-amino-ethylether-N,N,N,N-tetraacetic acid - i6Ade N6-(2-isopentenyladenine) - PIPES piperazine-N, N-bis-2-ethanesulfonic acid - ptDNA chloroplast DNA Devoted to the memory of Prof. Dr. O. Kiermayer, our colleague and friend.  相似文献   

8.
Summary A 3.4-kbp nuclear (n) DNA sequence has greater than 99% sequence homology to three segments of the chloroplast (cp) genes rps2, psbD/C, and psaA respectively. Each of these cpDNA segments is less than 3 kbp in length and appears to be integrated, at least in part, into several (>5) different sites flanked by unique sequences in the nuclear genome. Some of these sites contain longer homologies to the particular genes, while others are only homologous to smaller parts of the cp genes. Both the cpDNA fragments found in the nuclear genome and their flanking nDNA sequences are invested with short repeated A-T rich sequences but, apart from a hexanucleotide sequence and a palindromic sequence identified near each recombination point, there is no obvious structure that can suggest a mechanism of DNA transfer from the chloroplast to the nucleus in spinach.  相似文献   

9.
This catalogue collates observations on meiotic division in a large number of plant forms with abnormal meiosis, including mutants, wide hybrids, haploids, polyploids, aneuploids, and alloplasmics. The process of division spindle formation remains relatively unexplored in the "centrosomeless" world of higher plant cells. Thus, analysis of abnormal spindles, each of which is a result of an aberration of a distinct prometaphase stage, is informative. A catalogue of spindle abnormalities is also useful for analysing the morphological phenotype of the corresponding mutations, especially insertional ones. It is particularly worthwhile for those organisms that are less than ideal for cytological analysis, e.g. Arabidopsis. In the catalogue, abnormal spindles are listed in relation to the time of the manifestation of aberrations that caused them.  相似文献   

10.
Chloroplasts are photosynthetic organelles derived from endosymbiotic cyanobacteria during evolution.Dramatic changes occurred during the process of the formation and evolution of chloroplasts,including the large-scale gene transfer from chloroplast to nucleus.However,there are still many essential characters remaining.For the chloroplast division machinery,FtsZ proteins,Ftn2,SulA and part of the division site positioning system- MinD and MinE are still conserved.New or at least partially new proteins,such as FtsZ family proteins FtsZl and ARC3,ARC6H,ARC5,PDV1,PDV2 and MCD1,were introduced for the division of chloroplasts during evolution.Some bacterial cell division proteins,such as FtsA,MreB,Ftn6,FtsW and Ftsl,probably lost their function or were gradually lost.Thus,the chloroplast division machinery is a dynamically evolving structure with both conservation and innovation.  相似文献   

11.
Summary Each wild-typeChlamydomonas reinhardtii cell has one large chloroplast containing several nuclei (nucleoids). We used DNA insertional mutagenesis to isolate Chlamydomonas mutants which contain a single, large chloroplast (cp) nucleus and which we namedmoc (monokaryotic chloroplast). DAPI-fluorescence microscopy and microphotometry observations revealed thatmoc mutant cells only contain one cp-nucleus throughout the cell division cycle, and that unequal segregation of cpDNA occurred during cell division in themoc mutant. One cell with a large amount of cpDNA and another with a small amount of cpDNA were produced after the first cell division. Unequal segregation also occurred in the second cell division, producing one cell with a large amount (about 70 copies) of cpDNA and three other cells with a small amount (only 2–8 copies) of cpDNA. However, most individualmoc cells contained several dozen cpDNA copies 12 h after the completion of cell division, suggesting that cpDNA synthesis was activated immediately after chloroplast division. In contrast to the cpDNA, the mitochondrial (mt) DNA of themoc mutants was observed as tiny granules scattered throughout the entire cell. These segregated to each daughter cell equally during cell division. Electron-microscopic observation of the ultrastructure ofmoc mutants showed that a low-electron-density area, which was identified as the cp-nucleus by immunoelectron microscopy with anti-DNA antibody, existed near the pyrenoid. However, there were no other structural differences between the chloroplasts of wild-type cells andmoc mutants. The thylakoid membranes and pyrenoid were identical. Therefore, we propose that the novelmoc mutants are only defective in the dispersion and segregation of cpDNA. This strain should be useful to elucidate the mechanism for the segregation of cpDNA.Abbreviations DAPI 4,6-diamidino-2-phenylindole - VIMPCS video-intensified microscope photon-counting system  相似文献   

12.
M. Melkonian  H. Robenek  M. Steup 《Protoplasma》1981,109(3-4):349-358
Summary The occurrence and planar distribution of 3--hydroxysterols in chloroplast envelope membranes of different algae and higher plants has been studied with the freeze-fracture technique using the polyene antibiotic filipin as cytochemical marker. The inner chloroplast envelope membrane in all organisms studied is devoid of filipin-sterol complexes. The outer chloroplast envelope membranes of isolated higher plant chloroplasts (spinach, pea) and of chloroplasts of the mossPolytrichum piliferum are lacking filipin-sterol complexes, thus indicating a very low concentration of 3--hydroxysterols in chloroplast envelope membranes of higher plants. In contrast filipin-sterol complexes are abundant in the outer chloroplast envelope membrane of the flagellatesChlamydomonas reinhardii, Cryptomonas erosa, andEuglena gracilis. The chloroplast-ER surrounding the plastid ofCryptomonas erosa also exhibits filipin-sterol complexes. Functional and phylogenetic aspects of these observations are discussed.Medizinische Cytobiologie, Westfälische Wilhelms-Universität, Westring 3, D-4400 Münster, Federal Republic of Germany.  相似文献   

13.
14.
Higher plant chloroplast division involves some of the same types of proteins that are required in prokaryotic cell division. These include two of the three Min proteins, MinD and MinE, encoded by the min operon in bacteria. Noticeably absent from annotated sequences from higher plants is a MinC homologue. A higher plant functional MinC homologue that would interfere with FtsZ polymerization, has yet to be identified. We sought to determine whether expression of the bacterial MinC in higher plants could affect chloroplast division. The Escherichia coli minC (EcMinC) gene was isolated and inserted behind the Arabidopsis thaliana RbcS transit peptide sequence for chloroplast targeting. This TP-EcMinC gene driven by the CaMV 35S2 constitutive promoter was then transformed into tobacco (Nicotiana tabacum L.). Abnormally large chloroplasts were observed in the transgenic plants suggesting that overexpression of the E. coli MinC perturbed higher plant chloroplast division.  相似文献   

15.
V. Zachleder  S. Kawano  T. Kuroiwa 《Protoplasma》1996,192(3-4):228-234
Summary FdUrd (5-fluorodeoxyuridine), a specific inhibitor of thymidylate synthase, was used to study the relationship between reproductive processes in chloroplast and nucleocytoplasmic compartments of the chlorococcal algaScenedesmus quadricauda. The courses of DNA replication and nuclear division in both the compartments were followed in populations synchronised by the alternation of light and dark periods. DAPI-staining of DNA-containing structures was used for their visualisation and quantification. In contrast with cellular reproductive events, those in chloroplasts were not substantially affected by the presence of FdUrd (25 g/ml). It was shown that FdUrd specifically blocked nucDNA replication but not ptDNA replication. Thus, cells which had attained commitment to ptDNA replication, fission of pt-nuclei and chloroplast kinesis triggered and terminated these processes while the corresponding cellular processes were blocked. The courses of reproductive processes in chloroplasts were also substantially unaffected in cells grown in the presence of FdUrd for the whole cell cycle. This provided evidence that attainment of commitment to and termination of the entire sequence of reproductive events, including chloroplast fission, were controlled by different mechanisms than the reproductive processes in the nucleocytoplasmic compartment.Abbreviations DAPI 4,6-diamidino-2-phenylindole - ptDNA DNA of chloroplast nuclei - nucDNA DNA in cell nuclei - FdUrd 5-fluorodeoxyuridine  相似文献   

16.
The biogenesis of chloroplasts is genetically complex, involving hundreds of genes distributed between the nucleus and organelle. In higher plants, developmental parameters confer an added layer of complexity upon the genetic control of chloroplast biogenesis: the properties of plastids differ dramatically between different cell types. While the biochemistry and structure of different plastid types have been described in detail, factors that determine the timing and localization of chloroplast development and that mediate chloroplast assembly have remained elusive. To identify nuclear genes that play novel roles in chloroplast biogenesis, we are exploiting nuclear mutations that block the accumulation of subsets of chloroplast proteins. Detailed study of the mutant phenotypes provides clues concerning the primary defect in each mutant. Mutants with defects in chloroplast translation and mRNA metabolism have been identified. Other mutants defective in the accumulation of multiple thylakoid complexes show no apparent defect in the synthesis of the missing proteins. These may identify factors involved in the integration of proteins into the thylakoid membrane and their assembly into functional complexes.  相似文献   

17.
U Zutshi  B L Kaul 《Cytobios》1975,12(45):61-67
Seeds of barley and secondary roots of Vicia faba were exposed to treatments with 23 of the most commonly used fungicides with a view to discovering the effect of these fungicides on the germination, seedling injury and chromosome abnormalities in the former, and the spectrum and frequency of chromosomal aberrations in the latter. Sixteen fungicides reduced the percentage of seed germination, induced seedling injury and produced cytological anomalies of varying degrees in barley. More potent fungicides were further tested in the secondary roots of Vicia faba which were found to produce a significant amount of chromosomal aberrations in the form of chromatid and isolocus breaks and exchanges of chromatid type. Based on theseo bservations, fungicides Dexon, Benlaté, Cerasan, Copperson, Lonocol, Morestan, Hexasan and Karathane could be classified as strong radioimimetic agents. Their role as environmental mutagens in enhancing the spontaneous mutation rate has been discussed and it has been concluded that these constitute genetic and environmental hazards of great magnitude to the eco-system where they are released.  相似文献   

18.
Short comments were made to the present situation of DNA systematics in higher plants, particularily on intraspecific variations in chloroplast DNA. Comments were also extended to DNA plant geography.  相似文献   

19.
Sato M  Nishikawa T  Kajitani H  Kawano S 《Planta》2007,227(1):177-187
Cyanelles of the biflagellate protist Cyanophora paradoxa have retained the peptidoglycan layer, which is critical for division, as indicated by the inhibitory effects of β-lactam antibiotics. An FtsZ ring is formed at the division site during cyanelle division. We used immunofluorescence microscopy to observe the process of FtsZ ring formation, which is expected to lead cyanelle division, and demonstrated that an FtsZ arc and a split FtsZ ring emerge during the early and late stages of cyanelle division, respectively. We used an anti-FtsZ antibody to observe cyanelle FtsZ rings. We observed bright, ring-shaped fluorescence of FtsZ in cyanelles. Cyanelles were kidney-shaped shortly after division. Fluorescence indicated that FtsZ did not surround the division plane at an early stage of division, but rather formed an FtsZ arc localized at the constriction site. The constriction spread around the cyanelle, which gradually became dumbbell shaped. After the envelope’s invagination, the ring split parallel to the cyanelle division plane without disappearing. Treatment of C. paradoxa cells with ampicillin, a β-lactam antibiotic, resulted in spherical cyanelles with an FtsZ arc or ring on the division plane. Transmission electron microscopy of the ampicillin-treated cyanelle envelope membrane revealed that the surface was not smooth. Thus, the inhibition of peptidoglycan synthesis by ampicillin causes the inhibition of septum formation and a marked delay in constriction development. The formation of the FtsZ arc and FtsZ ring is the earliest sign of cyanelle division, followed by constriction and septum formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号