首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domestic buffaloes are divided into two group based on cytogenetic characteristics and habitats: the “river buffaloes” with 2n = 50 and the “swamp buffaloes”, 2n = 48. Nevertheless, their hybrids are viable, fertile and identified by a 2n = 49. In order to have a better characterization of these different cytotypes of buffaloes, and considering that NOR-bearing chromosomes are involved in the rearrangements responsible for the karyotypic differences, we applied silver staining (Ag-NOR) and performed fluorescent in situ hybridization (FISH) experiments using 18S rDNA as probe. Metaphases were obtained through blood lymphocyte culture of 21 individuals, including river, swamp and hybrid cytotypes. Ag-NOR staining revealed active NORs on six chromosome pairs (3p, 4p, 6, 21, 23, 24) in the river buffaloes, whereas the swamp buffaloes presented only five NOR-bearing pairs (4p, 6, 20, 22, 23). The F1 cross-breed had 11 chromosomes with active NORs, indicating expression of both parental chromosomes. FISH analysis confirmed the numerical divergence identified with Ag-NOR. This result is explained by the loss of the NOR located on chromosome 4p in the river buffalo, which is involved in the tandem fusion with chromosome 9 in this subspecies. A comparison with the ancestral cattle karyotype suggests that the NOR found on the 3p of the river buffalo may have originated from a duplication of ribosomal genes, resulting in the formation of new NOR sites in this subspecies.  相似文献   

2.
The karyotype of the tamaraw (Bubalus mindorensis, 2n = 46) was investigated by RBG-banding technique and compared with those of the river and the swamp cytotypes of domestic water buffalo (B. bubalis). The tamaraw karyotype consisted of 6 submetacentric and 16 acrocentric autosome pairs (NAA = 56), and X and Y chromosomes. The RBG-banded karyotype of the three taxa had a high degree of homology, and the tamaraw karyotype could be explained by a Robertsonian translocation between chromosomes 7 and 15 and by a telomere-centromere tandem fusion between chromosomes 4p and 12 of the standardized river buffalo cytotype (2n = 50, NAA = 58). The buffalo satellite I and II DNAs were localized to the centromeric regions of all the tamaraw chromosomes. The biarmed chromosome 2 of the tamaraw resulting from the fusion between chromosomes 7 and 15 of the standard contained much larger amounts of the satellite I DNA than the other biarmed chromosomes, suggesting that this chromosome was formed by a relatively recent Robertsonian fusion. The (TTAGGG)n telomeric sequence was specifically localized to the telomeric region of all the buffalo chromosomes. The 18S + 28S rDNA was localized to the telomeric regions of the chromosomes 5p, 7, 19, 21, and 22 of the tamaraw and of their homologous chromosomes in the river and swamp buffalo cytotypes.  相似文献   

3.
To clarify the genetic relationship between Swamp and River buffaloes, the restriction fragment length polymorphisms (RFLPs) of nuclear genomic ribosomal DNA (rDNA) and cytoplasmic mitochondrial DNA (mtDNA) were analysed. Blood or liver samples from 73 Swamp and three River buffaloes were collected in East and South-east Asian countries. DNA samples from cattle, goats and sheep were used for comparisons. The analysis of rDNA allowed water buffaloes, cattle, goats and sheep to be characterized by four distinct repeat-types. However, swamp and river buffaloes showed the same repeat-type. Divergence of water buffalo and cattle is considered to have occurred approximately four to six million years ago. The RFLPs for mtDNA divided water buffaloes into three haplotypes, swamp-1, swamp-2 and river types. Swamp-1 accounted for 91% of all swamp buffaloes while swamp-2 was observed only in water buffaloes from Thailand (9%). All river buffaloes were of the same haplotype. No differences were observed between swamp and river buffaloes at the rDNA level. In contrast, a few distinct differences between them were found at the mtDNA level. Therefore, mtDNA polymorphisms provide an adequate means for classifying water buffaloes into either swamp or river buffaloes.  相似文献   

4.
In this study, mitochondrial D-loop sequence data on riverine, swamp and hybrid buffaloes from India have been generated and compared with other reported Indian riverine, Chinese and Bangladeshi swamp buffalo populations. Sequence analysis revealed the presence of 132 haplotypes, with a haplotype diversity of 0.9611 ± 0.0045 and a nucleotide diversity of 0.04801 ± 0.00126. For the first time, the existence of riverine–swamp hybrids among the Indian Chilika buffalo population has been recorded, having 49 chromosomes, which was also confirmed by mitochondrial haplotype sharing between Chilika and Indian swamp as well as Chinese swamp buffalo populations in the network analysis. Phylogenetic analysis documents the sharing of reported pre-domestication haplogroups ‘SA1’, ‘SA2’, ‘SA3’ and ‘SB1’ between the Chilika and swamp buffalo populations of India, China and Bangladesh, an indication of the migration of swamp buffaloes towards Bangladesh and adjoining lower parts of India and north towards Chinese domestication sites. The results have also been supplemented by multidimension scaling, grouping Indian and Chinese swamp buffaloes more closely together with Bangladeshi buffaloes, but into a separate quadrant, whereas Chilika grouped away from other riverine as well as swamp buffaloes. These findings thus confirm the previous reports that the northeast region of India, close to the Indo-China border, is the point of evolution of swamp buffaloes with multiple sites of domestication.  相似文献   

5.
There are two major groups of domestic water buffaloes in East and Southeast Asia: swamp buffaloes and river buffaloes. Genetic diversity among swamp and river buffaloes was studied by DNA sequence analysis of the mitochondrial gene for cytochrome b. The results showed that each of the two groups has mitochondrial DNA (mtDNA) with a specific cytochrome b haplotype. The pairwise nucleotide sequence divergence was calculated to be 2·67% between swamp and river buffaloes, suggesting that they might have diverged from the ancestral populations of Asiatic domestic water buffaloes, approximately 1 million years ago. In addition, the sequences of the same gene from three subspecies of anoa (lowland, mountain and quarles anoa) were determined and compared with that of a domestic water buffalo. The sequence divergence was 1·2% for mountain anoa vs quarles anoa, 3·6% for mountain anoa vs lowland anoa and 3·3% for quarles anoa vs lowland anoa. Moreover, the sequence divergence between water buffaloes and anoas was found to be approximately 3·33%. Our results provide molecular evidence to support the taxonomic classification, namely, that Asiatic buffaloes may be classified into four lineages, swamp buffalo, river buffalo, lowland anoa and mountain plus quarles anoa. However, the sequence divergence values among these four groups were lower than the sequence divergence values found in the genus and subgenus levels within the subfamily Bovinae. In particular, in contrast to some proposed taxonomic classifications, our results indicated that mtDNA in the water buffaloes and anoas did not diverge at the genus level.  相似文献   

6.
Meiotic peculiarities in hybrid buffalo   总被引:1,自引:0,他引:1  
The two varieties of the Water buffalo (Bubalis bubalis var. bubalis and Bubalis bubalis var. carabao) have 2n = 50 and 2n = 48 karyotypes, respectively. The F1 hybrids are thought to exhibit a karyotype of 2n = 49 and are known to be fertile. Meiosis was studied in 10 hybrid water buffalo bulls. Karyotypes of the bulls were prepared from leukocyte cultures and testicular biopsy samples in a routine manner and examined. Phenotypically the bulls showed characteristics of the hybrid buffalo. Five of the bulls carried 2n = 50 and 5 had 2n = 49. Multivalent chromosomes were found in diakinesis (metaphase I) cells of bulls with 2n = 49 karyotypes. Synapses were found in bulls of both karyotypes.  相似文献   

7.
The phylogeny of water buffaloes (Bubalus bubalis) is still a matter of discussion, especially if the two types of domestic water buffalo (swamp and river) derived from different domestication events or if they are products of human selection. To obtain more insight, we analyzed the entire mitochondrial D-loop region of 80 water buffaloes of four different breeds, i.e., 19 swamp buffaloes (Carabao) and 61 river buffaloes (Murrah, Jafarabadi, and Mediterranean), sampled in Brazil and Italy. We detected 36 mitochondrial haplotypes with 128 polymorphic sites. Pooled with published data of South-East Asian and Australian water buffaloes and based on comprehensive median-joining network and population demography analyses we show evidence that both river and swamp buffaloes decent from one domestication event, probably in the Indian subcontinent. However, the today swamp buffaloes have an unravelled mitochondrial history, which can be explained by introgression of wild water buffalo mtDNA into domestic stocks. We are also discussing indications for an independent domestication of buffaloes in China.  相似文献   

8.
Cleavage patterns of mitochondrial DNAs (mtDNAs) by 15 restriction endonucleases were analyzed for 10 swamp and 13 river types of domestic water buffaloes. Digestions with nine enzymes exhibited polymorphisms giving two or three kinds of cleavage patterns. Five mtDNA types were identified, three types in the swamp buffaloes of the Philippines, Vietnam, and Indonesia (S-types) and two types in the river buffaloes of Bangladesh and Pakistan (R-types). Nucleotide diversities ranged from 0.2 to 0.6% within the S- and R-types and from 1.9 to 2.4% between the R-types and the S-types. These values indicated that R-type and S-type mtDNAs differentiated at thesubspecific level of other mammalianspecies reported. The possibility of polyphyletic domestication in different places is discussed for the origin of two distinct types of domestic water buffaloes.  相似文献   

9.
通过2n=50和2n=49两种核型三品种杂交水牛繁殖记录分析和其中2n=49三品种杂交水牛联会复合体及其精子染色体研究,结果表明,后者虽然公母都是可育的,由于它产生两种正常配子(n=24,n=25)和两种异常配子(n=24+1,n=25-1),自群繁殖导致其子代染色体多态性(2n=50,2n=49和2n=48);其异常配子,与正常配子结合,则产生非整倍性,致其繁殖力降低,表现为情期配种受胎率降低12.3%;年受胎率降低6.4%;产仔间隔长97.6天;终生(11岁)产仔数减少1.33~1.54头。 Abstract:After analysis of reproduction records of two types of karyotypes (2n=50 & 2n=49) of triple crossbreed buffaloes (TCB) and studies of synaptinemal complex and sperm chromosome of 2n=49 TCB,the results showed that 2 sorts of normal gametes (n=24 and n=25) and 2 sorts of abnormal gametes (n=24+1 and n=25-1) were produced in 2n=49 TCB.Thus,both male and female of 2n=49 TCB are reproducible,and chromosomal polymorphyism (2n=50,2n=49 & 2n=48) occurred in the progenies after intermating.But its fertility decreased because of aneuploidy combined between normal and abnormal gametes.Compared with 2n=50 TCB,the conception rates for individual inseminations and for whole year reduced 12.3% and 6.4%,calving interval were prolonged by 97.6 days,and calf numbers in its lifetime (up to 11-year old) were lower by approximate 1.5 calves,respectively.  相似文献   

10.
Investigations on a 3-yr-old river buffalo heifer presenting anestrus revealed a chromosome make-up of 2n=49 in the lymphocyte cultures, compared with the 2n=50 characteristic of riverine buffalo. The missing chromosome was identified as one of the Xs by karyotypic analysis, and monosomy X was confirmed by C and G-banding techniques. Both ovaries of the heifer were underdeveloped, although the other components of the internal genitalia were normal. The phenotypic and karyotypic features confirmed this to be a case of ovarian dysgenesis with 49,XO karyotype similar to that of the Turner's syndrome in man and other mammals.  相似文献   

11.
Y‐chromosomal variation in the water buffalo was analysed by sequencing of DBY, ZFY and SRY gene segments. A clear separation of the paternal lineages of the river and swamp types parallels the differences between their maternal lineages and nuclear DNA. Sequence divergence was found to be comparable to the divergence of taurine cattle and zebu, and this divergence predated domestication, confirming that river and swamp buffalo originated from different wild populations. Within a sample of 23 Thai swamp buffaloes, we identified four haplotypes with different geographical distributions, two of which were shared by Thai wild buffaloes.  相似文献   

12.
Data from three published studies of genetic variation at 18 microsatellite loci in water buffalo populations in China (18 swamp type, two river type), Nepal (one wild, one domestic river, one hybrid) and south-east Asia (eight swamp, three river) were combined so as to gain a broader understanding of genetic relationships among the populations and their demographic history. Mean numbers of alleles and expected heterozygosities were significantly different among populations. Estimates of θ (a measure of population differentiation) were significant among the swamp populations for all loci and among the river populations for most loci. Differentiation among the Chinese swamp populations (which was due primarily to just one population) was much less than among the south-east Asian. The Nepal wild animals, phenotypically swamp type but genetically like river type, are significantly different from all the domestic river populations and presumably represent the ancestral Bubalus arnee (possibly with some river-type introgression). Relationships among the swamp populations (D(A) genetic distances, principal component analysis and structure analyses) show the south-east Asian populations separated into two groups by the Chinese populations. Given these relationships and the patterns of genetic variability, we postulate that the swamp buffalo was domesticated in the region of the far south of China, northern Thailand and Indochina. Following domestication, it spread south through peninsular Malaysia to Sumatra, Java and Sulawesi, and north through China, and then to Taiwan, the Philippines and Borneo.  相似文献   

13.
Water buffalo (Bubalus bubalis) is broadly classified into river and swamp categories, but it remains disputed whether these two types were independently domesticated, or if they are the result of a single domestication event. In this study, we sequenced the mitochondrial D-loop region and cytochrome b gene of 217 and 80 buffalo respectively from eight breeds/locations in northern, north-western, central and southern India and compared our results with published Mediterranean and swamp buffalo sequences. Using these data, river and swamp buffalo were distinguished into two distinct clades. Based upon the existing knowledge of cytogenetic, ecological and phenotypic parameters, molecular data and present-day distribution of the river and swamp buffalo, we suggest that these two types were domesticated independently, and that classification of the river and swamp buffalo as two related subspecies is more appropriate.  相似文献   

14.
为了研究水牛Y染色体的遗传多样性, 文章以滇东南水牛3个地方群体- 红河(HH)、西双版纳(BN)和普洱(PR)共31头公牛为研究对象, 选取14个家牛Y染色体特异性微卫星标记, 以检测这些标记在水牛Y染色体遗传多样性研究中的可行性。结果表明, 3个标记(INRA008、UMN0103和UMN0504)只有1个等位基因, 表现为单态; 3个标记(UMN1113、UMN0304和BC1.2)均为3个等位基因, 但呈单态; 3个标记(UMN0920、UMN0307和UMN3008)呈现无规律的梯状条带, 所以这9个标记都不适用于水牛的Y染色体遗传多样性研究; 只有5个标记(INRA124、INRA189、BM861、PBR1F1和UMN2001)具有多态性, 表明适用于水牛的Y染色体遗传多样性研究。这5个多态性Y染色体特异微卫星标记在滇东南水牛群体中的平均等位基因数(NA)为2.8000, 平均期望杂合度(He)为0.3998, 基因多样性(GD)为0.4144, 多态信息含量(PIC)为0.3245, Shannon信息熵(SI)为0.5849, 表明滇东南水牛群体的Y染色体具有中等遗传多态性。  相似文献   

15.
Offspring from natural hybrids between octoploid Fragaria chiloensis (2n = 56) and diploid F. vesca (2n = 14) backcrossed under natural conditions to F. chiloensis were studied. The natural F1 hybrids themselves were of three kinds: (1) The expected pentaploids which resulted from the union of normally reduced gametes of diploid F. vesca and octoploid F. chiloensis; (2) A hexaploid F1 hybrid which resulted from the union of an unreduced gamete from diploid F. vesca with a normally reduced gamete from octoploid F. chiloensis; and (3) A 9-ploid F1 hybrid which probably arose from the union of an unreduced gamete of the octoploid F. chiloensis with a normally reduced gamete of diploid F. vesca. The progenies that resulted from the natural backcrossing of each of the three sorts of F1 hybrids to F. chiloensis were as follows: The pentaploid F1 hybrids (2n = 35) yielded mostly 9-ploid offspring from unreduced 5X gametes; a relatively high percentage of 14-ploid plants arising from doubled-unreduced 10 X gametes and a few 2N = ±46 aneuploids from reduced gametes. The hexaploid F1 hybrid (2n = 42) on backcrossing yielded over 50% 10-ploid offspring with the rest 2n = ±50 aneuploids from reduced gametes. The 9-ploid F1 hybrid (2n = 63) on backcrossing yielded mostly aneuploids normally distributed about a modal 2n = 59 chromosome class resulting from a 31 chromosome gamete, with a few 2n = 56 and 2n = 63 euploids. The 9-ploids may facilitate diploid Å octoploid introgression. Screening of the open-pollinated offspring from F. chiloensis revealed almost 2% 12-ploid (2n = 84) offspring from the union of the reduced and unreduced F. chiloensis gametes. The probable genomic constitution of the observed novel ploidy levels and those that theoretically may be generated from the known hybrids are presented. The origin of the existing polyploids from diploids through simple unreduction is postulated.  相似文献   

16.
Swamp and river buffalo mitochondrial DNA (mtDNA) was sequenced for 303 bp of the cytochrome b gene for 54 animals from 14 populations, and for 158 bp of the D-loop region for 80 animals from 11 populations. Only one cytochrome b haplotype was found in river buffalo. Of the four haplotypes identified in swamp buffalo, one found in all populations is apparently ancestral both to the other swamp haplotypes and to the river haplotype. The phylogenetic relationships among the 33 D-loop haplotypes, with a cluster of 11 found in swamp buffalo only, also support the evolution of domesticated swamp and river buffalo from an ancestral swamp-like animal, most likely represented today by the wild Asian buffalo ( Bubalus arnee ). The time of divergence of the swamp and river types, estimated from the D-loop data, is 28 000 to 87 000 years ago. We hypothesise that the species originated in mainland south-east Asia, and that it spread north to China and west to the Indian subcontinent, where the rive type evolved and was domesticated. Following domestication in China, the domesticated swamp buffalo spread through two separate routes, through Taiwan and the Philippines to the eastern islands of Borneo and Sulawesi, and south through mainland southeast Asia and then to the western islands of Indonesia.  相似文献   

17.
Satellite DNA sequences were isolated from the water buffalo (Bubalus bubalis) after digestion with two restriction endonucleases, BamHI and StuI. These satellite DNAs of the water buffalo were classified into two types by sequence analysis: one had an approximately 1,400 bp tandem repeat unit with 79% similarity to the bovine satellite I DNA; the other had an approximately 700 bp tandem repeat unit with 81% similarity to the bovine satellite II DNA. The chromosomal distribution of the satellite DNAs were examined in the river-type and the swamp-type buffaloes with direct R-banding fluorescence in situ hybridization. Both the buffalo satellite DNAs were localized to the centromeric regions of all chromosomes in the two types of buffaloes. The hybridization signals with the buffalo satellite I DNA on the acrocentric autosomes and X chromosome were much stronger than that on the biarmed autosomes and Y chromosome, which corresponded to the distribution of C-band-positive centromeric heterochromatin. This centromere-specific satellite DNA also existed in the interstitial region of the long arm of chromosome 1 of the swamp-type buffalo, which was the junction of the telomere-centromere tandem fusion that divided the karyotype in the two types of buffaloes. The intensity of the hybridization signals with buffalo satellite II DNA was almost the same over all the chromosomes, including the Y chromosome, and no additional hybridization signal was found in noncentromeric sites.  相似文献   

18.
To further probe into whether swamp buffaloes were domesticated once or multiple times in China, this survey examined the mitochondrial DNA (mtDNA) Control Region (D-loop) diversity of 471 individuals representing 22 populations of 455 Chinese swamp buffaloes and 16 river buffaloes. Phylogenetic analysis revealed that Chinese swamp buffaloes could be divided into two distinct lineages, A and B, which were defined previously. Of the two lineages, lineage A was predominant across all populations. For predominant lineage A, Southwestern buffalo populations possess the highest genetic diversity among the three hypothesized domestication centers (Southeastern, Central, and Southwestern China), suggesting Southwestern China as the most likely location for the domestication of lineage A. However, a complex pattern of diversity is detected for the lineage B, preventing the unambiguous pinpointing of the exact place of domestication center and suggesting the presence of a long-term, strong gene flow among swamp buffalo populations caused by extensive migrations of buffaloes and frequent human movements along the Yangtze River throughout history. Our current study suggests that Southwestern China is the most likely domestication center for lineage A, and may have been a primary center of swamp buffalo domestication. More archaeological and genetic evidence is needed to show the process of domestication.  相似文献   

19.
The cytochromeb genes of all living species ofBubalus, including the river type and the swamp type of domestic buffaloes (Bubalus bubalis), were sequenced to clarify their phylogenetic relationships. These sequences were compared together with the African buffalo (Syncerus caffer) and banteng (Bos javanicus) sequences as an outgroup. Phylogenetic trees ofBubalus species based on the DNA sequences of the cytochromeb gene demonstrated that the tamaraw (Bubalus mindorensis), endemic to the Philippines, could be classified into the subgenusBubalus, not the subgenusAnoa. The divergence time between the lowland anoa (B. depressicornis) and the mountain anoa (B. quarlesi) was estimated at approximately 2.0 million years (Myr), which is almost the same as the coalescence time for theBubalus sequences. This large genetic distance supports the idea that the lowland anoa and the mountain anoa are different species. An unexpectedly large genetic distance between the river and the swamp type of domestic buffaloes suggests a divergence time of about 1.7 Myr, while the swamp type was noticed to have the closest relationship with the tamaraw (1.5 Myr). This result implies that the two types of domestic buffaloes have differentiated at the full species level.  相似文献   

20.
Hybridization of DNA from three panels of karyotypically distinct owl monkey x rodent somatic cell hybrids with human DNA probes resulted in the syntenic assignments of INSR-LDLR-TGFB1-APOE-D19S8 to owl monkey chromosome 25 of karyotype VI (2n = 49/50), INSR-LDLR-TGFB1-D19S8 to chromosome 2 of karyotype II (2n = 54), and INSR-APOE to chromosome 2 of karyotype V (2n = 46). The APOE and D19S8 loci are on adjacent regions proximal to the centromere of chromosomes 25q (K-VI) and 2p (K-II), as determined by in situ chromosomal hybridization analysis. These findings support our previous proposals on (1) the homology of these chromosomes of three owl monkey karyotypes, (2) the evolutionary derivation of chromosome 2 of karyotypes II and V as the result of two separate centric fusion events, and (3) the likelihood that owl monkey chromosome 25 (K-VI) (and its homologs) is a conserved genetic homoeolog of human chromosome 19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号