首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultivars of glandular-haired alfalfa, Medicago sativa L., such as '54H69', are currently available and marketed as being resistant to potato leafhopper, Empoasca fabae (Harris). Between 2000 and 2002, studies were conducted to compare the effects of '54H69' and a standard, nonglandular-haired alfalfa cultivar, 'Choice', on alfalfa weevil, Hypera postica (Gyllenhal), and potato leafhopper populations at Campbell and Montgomery counties, Virginia. '54H69' had no effect on alfalfa weevil populations. At each location, densities of alfalfa weevil in '54H69' and 'Choice' were similar, but pest pressure was higher at Campbell Co. than at Montgomery Co. and always exceeded the economic threshold before insecticide was applied. Densities of potato leafhopper also did not differ between '54H69' and 'Choice' in any year at the two locations. Insecticide treatment effectively reduced potato leafhopper densities in the two cultivars, although populations were below the economic threshold at both locations when the insecticides were applied. Overall, postinsecticide treatment comparisons showed that the densities of alfalfa weevil and potato leafhoppers were similar or higher in untreated '54H69' compared with insecticide-treated 'Choice'. In addition, there were no differences in seasonal dry yields between '54H69' and 'Choice' in any year at either location. Our results indicate that the glandular-haired alfalfa '54H69' does not provide acceptable resistance to potato leafhopper and also does not offer a yield advantage to growers in Virginia.  相似文献   

2.
Experiments were performed to elucidate resistance of glandular-haired alfalfa, Medicago sativa L., to the potato leafhopper, Empoasca fabae (Harris). The primary objective was to examine the potential role of the glandular trichomes and stem lignification for imparting resistance to this pest. During free-choice foliar discoloration experiments, the resistant alfalfa clone FGplh13 expressed lower levels of injury than the susceptible P5373 after 13 d. No-choice tests performed using nymphal potato leafhoppers showed higher levels of mortality associated with the resistant glandular-haired clone FGplh13, and no nymphs survived after 48 h. Additional no-choice experiments using FGplh13 and P5373 alfalfa with the glandular and nonglandular trichomes intact or removed show that mortality of nymphs and adults decreased after removal of the glandular trichomes from FGplh13. Nymphal and adult mortality and nymphal development time did not differ on FGplh13 with the trichomes removed and P5373 with the trichomes intact or removed. Firstinstar, and possibly second-instar, potato leafhoppers were entrapped by an exudate produced by the glandular trichomes on the FGplh13 alfalfa. Stem lignification and the number of vascular bundles did not differ between FGplh13 and P5373 alfalfas. The glandular trichomes on FGplh13 alfalfa appeared to provide the major host resistance factor, with resistance to adults being chemically based and resistance to nymphs being chemically and mechanically based. To maintain levels of potato leafhopper resistance, breeders would appear to benefit by continuing to select for the expression of the glandular trichome phenotype.  相似文献   

3.
Eight proprietary genotypes of glandular-haired alfalfa, Medicago sativa L., supplied by two different companies, were compared for the degree and types of resistance to the potato leafhopper, Ernpoasca fabae (Harris), and hopperburn. A tube cage no-choice bioassay was developed to test leafhopper mortality, feeding, settling preferences, severity of hopperburn symptoms (in this case, defined as both yellowing and stem growth reduction), and trichome density and type on feeding sites. Leafhopper mortality was both strongly and significantly associated with feeding and leaf trichome density; decreased hopperburn symptom severity was weakly, although significantly, associated with increased mortality. To quantify hopperburn in terms of both yellowing and stem growth reduction, we developed a ranking system that reduces overall hopperburn expression to a single number that considers the varying responses to both types of symptoms. Great variability in leafhopper settling, leafhopper mortality, and stem glandular trichome density was detected among alfalfa genotypes, suggesting that genotypic differences may be based on the concentration and/or chemical constituency of the trichome exudates. We postulate that, among variably resistant genotypes of glandular-haired alfalfa, differences among leafhopper responses and hopperburn severity are linked to forced movement from the stems to the leaves as refuge feeding sites. Principal component analysis was performed to reduce the 10 variables down to five biologically significant factors. Scores for these factors were then used to develop resistance indices for potato leafhopper resistance, hopperburn resistance, and an overall glandular-haired alfalfa resistance index.  相似文献   

4.
Cultivars of glandular-haired alfalfa, Medicago sativa L., such as '54H69', are currently available and marketed as being resistant to potato leafhopper, Empoasca fabae (Harris) (Hemiptera: Cicadellidae). 54H69 and a standard, nonglandular-haired alfalfa 'Choice' were evaluated at two locations in Virginia over a 3-yr period. Dry matter yields and concentrations of crude protein and acid detergent fiber were compared at the first, second, and third harvests. Overall, the two cultivars produced similar dry matter yields of comparable forage quality in the absence of insecticides at both locations in each year. Untreated 54H69 did not produce greater dry matter yields than untreated Choice under either light or heavier potato leafhopper pest pressure. Concentrations of crude protein did not vary between the two cultivars at any harvest. Some differences in concentrations of acid detergent fiber were detected between cultivars, but these differences were not consistent among years, harvests, or between locations. Further comparisons between untreated 54H69 and treated Choice were made, but few significant differences were detected in dry matter yields or forage quality. An economic analysis for the study indicated that a grower planting 54H69 would realize less net revenue than a grower planting Choice, largely because of the seed premium for the glandular-haired cultivar and the evident need to treat 54H69 with insecticide for control of alfalfa weevil, Hypera postica (Gyllenhal) (Coleoptera: Curculionidae), and potato leafhopper.  相似文献   

5.
We examined the effects of potato leafhopper (Empoasca fabae) developmental stage and alfalfa (Medicago sativa) developmental stage on the physiological response of the plant to injury. We used radioactive carbon dioxide to label the photoassimilate stream and evaluate the phloem health of alfalfa. In one experiment, six first instar, four fourth instar, and three adult leafhoppers were caged by stage on single alfalfa stems for approximately one day. Only fourth instar nymphs significantly reduced the amount of label transported to injured tissues above the source of the labeled assimilate. First instar nymphs had no effect and adults reduced assimilate transport to stem tips, but this trend was not significant possibly because of confounding variables. However, injury by both first instar nymphs and adults resulted in greater concentration of labeled assimilate in portions of the stem below the feeding site. In another experiment, the developmental stage of alfalfa stems was central to the physiological response of alfalfa to leafhopper injury. A 20 h exposure to three adult leafhoppers significantly reduced the amount of label translocated to the tip and crown tissues of early vegetative plants, and to the crown tissue only of late vegetative plants. In reproductive plants, assimilate translocation was not affected by leafhopper injury. In a final experiment, we found no evidence of an effect on the photosynthesis of leaves of similar age and position to those used as source leaves in our translocation studies. Our findings contribute to our understanding of the physiological response of plants to injury by sap-feeding insects, and suggest the need for greater refinement of economic injury levels based on leafhopper and plant developmental stage.  相似文献   

6.
Understanding how changes in plant diversity affect agroecosystem functioning remains a key challenge. We examined how intercropping alfalfa, Medicago sativa, with orchardgrass, Dactylis glomerata, affects the potato leafhopper, Empoasca fabae, its host plant (alfalfa), and the efficiency of a leafhopper predator, Nabis americoferus. In a field experiment, intercropping reduced the reproductive efficiency of the leafhopper. Nabis was more effective at reducing leafhopper abundance, and protecting alfalfa from hopperburn, in the polyculture than in the monoculture of alfalfa. In a series of laboratory experiments, we investigated mechanisms by which intercropping could enhance the efficiency of Nabis. Intercropping resulted in changes in vegetation structure and the spatial distribution of leafhoppers, but there was little evidence that these factors influenced the efficiency of Nabis. Instead, orchardgrass, a nonhost for leafhoppers, increased leafhopper movement, and Nabis captured leafhoppers more efficiently when the herbivores were more mobile. These results indicate that intercropping with nonhost plants promotes leafhopper movement and vulnerability to predation, and reveal a novel mechanism by which plant diversity can reduce herbivory.  相似文献   

7.
A homologous series of N-(3-methylbutyl)amides of normal saturated C14, C15, C16, C17 and C18 fatty acids were identified as major components of glandular trichome extracts from Medicago sativa G98A, an alfalfa genotype resistant to the potato leafhopper, Empoasca fabae. A second homologous series of N-(2-methylpropyl)amides of C14 through C18 normal fatty acids were minor components. Saturated free fatty acids C12, C13, C14, C15, C16, C17 and C18 were present in trace amounts, as was the N-(3-methylbutyl)amide of linoleic acid (C18:2). N-(3-methylbutyl)amides and N-(2-methylpropyl)amides of C14 through C18 fatty acids, along with the N-(3-methylbutyl)amide of linoleic acid, were synthesized and bioassayed for leafhopper deterrence by applying the compounds to the surface of a sachet containing an artificial diet. Leafhoppers were then offered a two-way choice between diet surfaces treated with the synthetic amides or an untreated control. N-(3-methylbutyl)amides and N-(2-methylpropyl)amides of C14 through C18 fatty acids did not deter leafhopper settling in a dose-dependent fashion. In contrast, when tested singly, N-(3-methylbutyl)amide of linoleic acid exhibited dose-dependent deterrence against leafhopper settling. Fatty acid amides localized in alfalfa glandular trichomes likely contribute to leafhopper resistance.  相似文献   

8.
Plant tolerance to herbivory is a key approach for managing pests. In alfalfa, Medicago sativa, the potato leafhopper, Empoasca fabae, is a major pest as a result of the cascade of plant responses to piercing-sucking injury. To identify tolerance to its injury based on alfalfa physiology, experiments were conducted in the field and greenhouse. In our comparison of the response of field-grown alfalfa cultivars to standardized leafhopper densities, net photosynthesis and transpiration rates of 'Geneva' leaves were reduced by 18 and 21%, respectively, by leafhopper presence compared with a rate change of <1% of resistant 'EverGreen' leaves. Under greenhouse conditions, alfalfa clones varied in their level of gas exchange (net photosynthesis and transpiration) and stem elongation responses to leafhopper injury. For example, in the comparison of seven clones, net photosynthesis declined an average of 40.7% with leafhopper injury, although individual clones varied from 26.6 to 74.3% reduction. Internode elongation after 2 d was 60.3% less on injured stems compared with healthy stems, but again, the individual clones varied from 17.3 to 91.9%. In a time-course study of selected clones, clones varied in their level of injury just after and 3 d after insect removal. Gas exchange responses of all clones recovered by 7 d after cessation of injury. In a choice test, leafhoppers spent similar amounts of time on the susceptible clone and the most tolerant clone; however, their precise feeding behaviors were not measured. Thus, the variable response of clones to injury may be either true physiological tolerance or antixenosis from a change in feeding behavior. This study showed putative tolerance to leafhopper injury among alfalfa genotypes, suggesting that tolerance could be the basis for crop protection in alfalfa from potato leafhopper injury.  相似文献   

9.
Although potato leafhopper, Empoasca fabae (Harris) (Hemiptera: Cicadellidae), is highly polyphagous, classic host studies do not recognize grapevines (Vitis spp.), as suitable hosts. Recently, injury has been reported and reproduction documented within grape vineyards, suggesting a host expansion for the leafhopper. To document this apparent expansion in host use, we determined whether grape plants were suitable hosts for potato leafhopper reproduction, measured the consequence of feeding injury on gas exchange rates of grape leaves, and compared the susceptibility to feeding injury among cultivars. We found that potato leafhopper adults survived equally well on grape (Vitis vinifera L.), alfalfa (Medicago sativa L.), and fava bean (Vicia faba L.). The total number of offspring was greater on fava bean but did not differ between alfalfa and grape. Injury to grapevines was assessed by measuring gas exchange responses of leaves in field cages and in greenhouse tests. We found marginally significant declines in photosynthesis and transpiration rates in the field (9.6 and 13.2%, respectively), and much stronger effects in greenhouse tests (ranging between 22 and 52%). Our results verify that Vitis is a suitable host, and that potato leafhopper is capable of injuring its gas exchange physiology. We discuss possible explanations for the host expansion, and its potential to damage commercial grapevines.  相似文献   

10.
The potato leafhopper, Empoasca fabae (Harris), is a key pest of alfalfa, Medicago sativa L., in part because of the leafhopper's ability to disrupt upward translocation within phloem tissues. To determine if leafhopper injury also disrupts basal translocation necessary for regrowth and perenniality of alfalfa, we used radiolabeled 14CO2 to measure the basal transport of photoassimilates in injured and healthy plants. In one experiment, less 14C was transported to lower stem tissue of leafhopper-injured plants in comparison to the same tissue of healthy plants in early vegetative and early reproductive stages of alfalfa development. In a second experiment, less 14C was transported to lower stem, crown, and root tissues of injured plants in comparison to the same tissues of healthy, early reproductive plants. The disruption of basal transport caused by potato leafhopper may impact carbon storage and mobilization subsequent to defoliation, winter survival, and nitrogen fixation.  相似文献   

11.
The potato leafhopper, Empoasca fabae (Harris) (Hemiptera: Cicadellidae), is an emerging pest of potato and insecticide applications to control this insect have increased in recent years. Based on field observations of leafhopper-crop dynamics, however, currently recommended action thresholds seem to be overly conservative. As a result, we initiated two experiments designed to quantify the impact of leafhoppers on potato yield, and determine how the magnitude of this effect changes among cultivars. In experiment 1, leafhoppers were manipulated (control versus insecticide-treated plots) on 17 potato varieties. In experiment 2, three cultivars (Superior, Atlantic, and Snowden) were planted representing early-, mid-, and late-season maturing lines, and six insecticide spray regimes were imposed (early-, late-, and full-season applications at high and low rates). In both experiments, leafhopper abundance, plant damage, and potato yield were measured. Overall, leafhoppers reduced yield in control plots by 15.7% relative to insecticide-treated plots. Leafhopper impact, however, varied among cultivars; a significant effect of leafhoppers on yield was detected in 6, 12, and 59% of cultivars tested in each of three trials. Of the 44 cases in which leafhoppers exceeded action thresholds, yield loss was only documented in 13 cases. Data from these experiments provide evidence that such variable effects ofleafhoppers on yield are explained by cultivar-specific resistance and tolerance traits. Our results suggest that potato growers can accept higher leafhopper densities than current thresholds recommend, particularly when cultivating resistant and/or tolerant varieties.  相似文献   

12.
The potato leafhopper, Empoasca fabae (Harris), is a circular migratory pest of many crops in the United States that overwinters in the southern states. Northward migrant population arrival to the northern states occurs earlier in the north central states compared with northeastern states. Migrant leafhopper arrival to the north varies from year to year depending on factors influencing the development of spring migrants in the overwintering areas and on timing of weather systems capable of transporting the migrants northward. An estimate of the potato leafhopper minimum temperature survival, the geographic limits of the potato leafhopper overwintering range, leafhopper spring development in the overwintering areas, and the identification of the spring migration initiation northwards can help to predict the leafhopper arrival time in the northern states. In the current study, geographic information system (GIS) was used to estimate the potato leafhopper minimum temperature survival and premigrant development. The minimum winter temperature was estimated by overlaying minimum temperature isolines with potato leafhopper collection data taken during the winter, The geographic limits of the overwintering range were estimated using the minimum temperature survival to create a condition-based model by using ArcMap-GIS 8.2. The estimated overwintering range was larger and covered areas further north than previously estimated and included Missouri, Kansas, Kentucky, Virginia, and Maryland. The use of degree-day accumulation to estimate days of first adult emergence in the overwintering areas resulted in earliest adult emergence in the south central region. First adult emergence in south central and southeastern areas occurred before the detection of potato leafhoppers in the north central United States. These data suggested that the difference in population arrival between the north central states and the northeastern states was more dependent on factors affecting the migration and weather conditions encountered along the migration pathway.  相似文献   

13.
New cultivars of alfalfa, Medicago sativa L., have been released with glandular trichomes for resistance to potato leafhopper, Empoasca fabae (Harris). Yet, the impact of the glandular trichomes on the primary natural enemy of the leafhopper, Anagrus nigriventris Girault, is unknown. We compared the host searching behavior of the egg parasitoid on four alfalfa clones varying in trichome characters. Female wasps were videotaped on Ranger, a susceptible clone with relatively sparse trichomes, B14, a resistant clone with dense but nonglandular trichomes, and FG12 and FG18, two resistant clones with glandular trichomes. Although the number of leafhopper eggs per stem exposed to wasps did not significantly differ among the four clones, the frequency of foraging and total foraging time were less on the two clones with glandular trichomes than on the two clones with nonglandular trichomes. In addition, an analysis of covariance demonstrated that, although the number of ovipositional probes increased with egg density on a stem, the number of probes on stems with glandular trichomes was significantly less than that on stems without glandular trichomes. The allocation of time by wasps among drumming, probing, and grooming behaviors was similar among the clones. Wasps tended to fly off of clones with glandular trichomes more often than off of clones with nonglandular trichomes. This study suggests that cultivars with glandular trichomes may interfere with host searching by A. nigriventris.  相似文献   

14.
Cool humid weather enhanced development and reproduction of Ditylenchus dipsaci in alfalfa in laboratory and field studies in Utah. Relative humidity and nematode reproduction were positively correlated (P < 0.05), whereas air temperature and nematode reproduction were negatively correlated (P < 0.05). The greatest number of nematodes per gram of alfalfa tissue was found in nondormant Moapa alfalfa tissue at St. George during April, whereas the greatest numbers of nematodes were found in dormant Ranger alfalfa in June at West Jordan and Smithfield. There was 100% invasion of both resistant Lahontan and susceptible Ranger alfalfa plants at soil moisture levels of 61-94% field capacity. Fall burning of alfalfa to control weeds reduced, and spring burning increased, the incidence of invaded plants, nematodes per gram of plant tissue, and the mortality of susceptible Ranger (P < 0.01) and Moapa (P < 0.01) alfalfa plants over that of plants in nonburned control plots. Fall burning also reduced and spring burning increased the incidence of invaded plants (P < 0.05), but had no influence on nematodes per gram of plant tissue or the mortality of resistant Lahontan and Nevada Synthetic XX alfalfa over those of plants in control plots.  相似文献   

15.
We investigated the potential for indirect interactions between two prey species, pea aphids ( Acyrthosiphon pisum ) and potato leafhoppers ( Empoasca fabae ), through a shared predator (Nabis spp.), and how these interactions may change across three spatial scales. In greenhouse experiments using small clusters of plants containing pea aphids and/or potato leafhoppers, the predation rates on both pea aphids and potato leafhoppers were independent of the presence of the other species, indicating no indirect interactions. In greenhouse experiments using cages containing 48 plants, when aphids and leafhoppers were confined to separate plants among which nabids could move, pea aphids had a positive effect on the survival of potato leafhoppers from predation. The positive effect of aphids on leafhoppers occurred because nabids spent more time on plants harboring aphids, thereby drawing nabids away from plants containing leafhoppers. Finally, we measured the abundance of nabids in a large-scale experiment designed to manipulate the abundances of pea aphids and potato leafhoppers in alfalfa fields. Fields with high aphid density contained more nabids, thereby suggesting that pea aphids will have a negative indirect effect on potato leafhoppers by increasing the density of nabids within fields. Potato leafhoppers had no indirect effects on pea aphids at any scale. This study shows that indirect interactions between prey species may depend upon spatial scale, because the factors affecting a predator's diet choice on a small scale may differ from those factors affecting a predator's distribution at larger scales.  相似文献   

16.
Spiroplasma citri is transmitted from plant to plant by phloem-feeding leafhoppers. In an attempt to identify mechanisms involved in transmission, mutants of S. citri affected in their transmission must be available. For this purpose, transposon (Tn4001) mutagenesis was used to produce mutants which have been screened for their ability to be transmitted by the leafhopper vector Circulifer haematoceps to periwinkle plants. With one mutant (G76) which multiplied in leafhoppers as efficiently as S. citri wild-type (wt) strain GII-3, the plants showed symptoms 4 to 5 weeks later than those infected with wt GII-3. Thirty to fifty percent of plants exposed to leafhoppers injected with G76 remained symptomless, whereas for wt GII-3, all plants exposed to the transmission showed severe symptoms. This suggests that the mutant G76 was injected into plants by the leafhoppers less efficiently than wt GII-3. To check this possibility, the number of spiroplasma cells injected by a leafhopper through a Parafilm membrane into SP4 medium was determined. Thirty times less mutant G76 than wt GII-3 was transmitted through the membrane. These results suggest that mutant G76 was affected either in its capacity to penetrate the salivary glands and/or to multiply within them. In mutant G76, transposon Tn4001 was shown to be inserted into a gene encoding a putative lipoprotein (Sc76) In the ABCdb database Sc76 protein was noted as a solute binding protein of an ABC transporter of the family S1_b. Functional complementation of the G76 mutant with the Sc76 gene restored the wild phenotype, showing that Sc76 protein is involved in S. citri transmission by the leafhopper vector C. haematoceps.  相似文献   

17.
The microbiomes of phloem‐feeding insects include functional bacteria and yeasts essential for herbivore survival and development. Changes in microbiome composition are implicated in virulence adaptation by herbivores to host plant species or host populations (including crop varieties). We examined patterns in adaptation by the green leafhopper, Nephotettix virescens, to near‐isogenic rice lines (NILs) with one or two resistance genes and the recurrent parent T65, without resistance genes. Only the line with two resistance genes was effective in reducing leafhopper fitness. After 20 generations on the resistant line, selected leafhoppers attained similar survival, weight gain, and egg laying to leafhoppers that were continually reared on the susceptible recurrent parent, indicating that they had adapted to the resistant host. By sequencing the 16s rRNA gene, we described the microbiome of leafhoppers from colonies associated with five collection sites, and continually reared or switched between NILs. The microbiomes included 69–119 OTUs of which 44 occurred in ≥90% of samples. Of these, 14 OTUs were assigned to the obligate symbiont Candidatus sulcia clade. After 20 generations of selection, collection site had a greater effect than host plant on microbiome composition. Six bacteria genera, including C. sulcia, were associated with leafhopper virulence. However, there was significant within‐treatment, site‐related variability in the prevalence of these taxa such that the mechanisms underlying their association with virulence remain to be determined. Our results imply that these taxa are associated with leafhopper nutrition. Ours is the first study to describe microbiome diversity and composition in rice leafhoppers. We discuss our results in light of the multiple functions of herbivore microbiomes during virulence adaptation in insect herbivores.  相似文献   

18.
Studies were conducted to separate the salivary and mechanical aspects of probing damage by the potato leafhopper,Empoasca fabae (Harris) (Homoptera: Cicadellidae), to stem vascular tissue of alfalfa,Medicago sativa L. Implantation of salivary gland tissue or fed-upon artificial diet under the stem epidermis yielded no evidence, three days later, of hopperburn-associated, anatomical changes. Mechanical puncturing of stems with implements approximating the size and shape of leafhopper stylets caused some anatomical changes, three days later, similar to those underlying hopperburn, i.e. tracks of necrosis, chlorosis, cell enlargement, and cell division. These changes, however, were much less severe than those observed in tissues three days after potato leafhopper probing. In contrast, puncturing through salivary gland or Malpighian tubule tissues produced extreme hyperplasia and other symptoms of wounding in cells near the puncture. This was similar to but more severe than effects from leafhopper probing, and was probably caused by leafhopper structural tissues or larger amounts of saliva being conveyed into the plant than normally occurs during leafhopper probing. We conclude that both salivation and mechanical wounding by leafhopper stylets are probably necessary to cause hopperburn-associated anatomical changes to vascular tissue in stems of alfalfa. This conclusion supports our hypothesis that hopperburn is a saliva-enhanced wound response.  相似文献   

19.
Spiroplasma citri is transmitted from plant to plant by phloem-feeding leafhoppers. In an attempt to identify mechanisms involved in transmission, mutants of S. citri affected in their transmission must be available. For this purpose, transposon (Tn4001) mutagenesis was used to produce mutants which have been screened for their ability to be transmitted by the leafhopper vector Circulifer haematoceps to periwinkle plants. With one mutant (G76) which multiplied in leafhoppers as efficiently as S. citri wild-type (wt) strain GII-3, the plants showed symptoms 4 to 5 weeks later than those infected with wt GII-3. Thirty to fifty percent of plants exposed to leafhoppers injected with G76 remained symptomless, whereas for wt GII-3, all plants exposed to the transmission showed severe symptoms. This suggests that the mutant G76 was injected into plants by the leafhoppers less efficiently than wt GII-3. To check this possibility, the number of spiroplasma cells injected by a leafhopper through a Parafilm membrane into SP4 medium was determined. Thirty times less mutant G76 than wt GII-3 was transmitted through the membrane. These results suggest that mutant G76 was affected either in its capacity to penetrate the salivary glands and/or to multiply within them. In mutant G76, transposon Tn4001 was shown to be inserted into a gene encoding a putative lipoprotein (Sc76) In the ABCdb database Sc76 protein was noted as a solute binding protein of an ABC transporter of the family S1_b. Functional complementation of the G76 mutant with the Sc76 gene restored the wild phenotype, showing that Sc76 protein is involved in S. citri transmission by the leafhopper vector C. haematoceps.  相似文献   

20.
Candidates for symbiotic control of sugarcane white leaf disease   总被引:1,自引:0,他引:1  
The leafhopper Matsumuratettix hiroglyphicus (Matsumura) is the most important vector of a phytoplasma pathogen causing sugarcane white leaf (SCWL) disease. The purpose of this study was to evaluate candidate bacterial symbionts for possible use as vehicles in the control of the disease. 16S rRNA bacterial genes were amplified from whole bodies of M. hiroglyphicus leafhoppers and analyzed by cloning and sequencing. Two dominant groups were found: one belonged to the Betaproteobacteria that did not closely match any sequences in the database and was named bacterium associated with M. hiroglyphicus (BAMH). Another one found to be abundant in this leafhopper is "Candidatus Sulcia muelleri" in the order Bacteroidetes, which was previously reported in the insect members of the Auchenorrhyncha. Most M. hiroglyphicus leafhoppers carry both BAMH and "Ca. Sulcia muelleri." Fluorescent in situ hybridization showed that BAMH and "Ca. Sulcia muelleri" colocalized in the same bacteriomes. BAMH was present in the midgut and ovaries of the leafhopper and was found in all developmental stages, including eggs, nymphs, and adults. Because BAMH appears to be specific for the SCWL vector, we evaluated it as a candidate for symbiotic control of sugarcane white leaf disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号