首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary According to the conventional carrier model, an inhibitor bound at the substrate transfer site inhibits competitively when on the same side of the membrane as the substrate, but noncompetitively when on the opposite side. This prediction was tested with the nonpenetrating choline analog dimethyl-n-pentyl (2-hydroxyethyl) ammonium ion. In zerotrans entry and infinitetrans entry experiments, where the labeled substrate and the inhibitor occupy the same compartment, the inhibition was competitive, but in zerotrans exit it was noncompetitive, in accord with the model. Similar behavior was seen with dimethyl-n-decyl (2-hydroxyethyl) ammonium ion. With this property of the choline transport system established, it becomes possible to estimate the relative affinity inside and outside of inhibitors present on both sides of the membrane. The tertiary amine, dibutylaminoethanol, which enters the cell by simple diffusion, is such an inhibitor. Here the inhibition kinetics were the reverse of those for nonpenetrating inhibitors; zerotrans and infinitetrans exit was inhibited competitively, and zerotrans entry noncompetitively. It follows that dibutylaminoethanol binds predominantly to the inner carrier form.  相似文献   

2.
3.
The use of a simple rate equation with apparent parameters to describe the kinetic behavior of an immobilized enzyme with noncompetitive substrate inhibition was assessed. To do so, the reaction rate was calculated as a function of the interfacial substrate concentration, and the results were used to identify the apparent kinetic parameters by nonlinear regression. This procedure was repeated for different values of the diffusional constraints and of the inhibition constant. The equation using apparent parameters can describe the global kinetic behavior, provided that the diffusional and inhibitory constraints are not too high. When the constraints are high, a Michaelis-Menten equation can be used to model the kinetics for interfacial concentrations lower than the concentration leading to the maximum reaction rate.  相似文献   

4.
The ribonucleases H (RNases H) of HIV and hepatitis B virus are type 1 RNases H that are promising drug targets because inhibiting their activity blocks viral replication. Eukaryotic ribonuclease H1 (RNase H1) is an essential protein and a probable off-target enzyme for viral RNase H inhibitors. α-hydroxytropolones (αHTs) are a class of anti-RNase H inhibitors that can inhibit the HIV, hepatitis B virus, and human RNases H1; however, it is unclear how these inhibitors could be developed to distinguish between these enzymes. To accelerate the development of selective RNase H inhibitors, we performed biochemical and kinetic studies on the human enzyme, which was recombinantly expressed in Escherichia coli. Size-exclusion chromatography showed that free RNase H1 is monomeric and forms a 2:1 complex with a substrate of 12 bp. FRET heteroduplex cleavage assays were used to test inhibition of RNase H1 in steady-state kinetics by two structurally diverse αHTs, 110 and 404. We determined that turnover rate was reduced, but inhibition was not competitive with substrate, despite inhibitor binding to the active site. Given the compounds’ reversible binding to the active site, we concluded that traditional noncompetitive and mixed inhibition mechanisms are unlikely. Instead, we propose a model in which, by binding to the active site, αHTs stabilize an inactive enzyme–substrate–inhibitor complex. This new model clarifies the mechanism of action of αHTs against RNase H1 and will aid the development of RNase H inhibitors selective for the viral enzymes.  相似文献   

5.
Acetylcholinesterase: theory of noncompetitive inhibition   总被引:1,自引:0,他引:1  
The theory of noncompetitive inhibition of acetylcholinesterase based on the binding of inhibitor to the acetylenzyme and the free enzyme was proven correct by demonstrating that tripropylammonium ion increases the steady-state concentration of acetylenzyme, as predicted by the theory. By contrast, the traditional theory that the inhibitor binds to the enzyme-substrate complex and the free enzyme predicts that the amount of acetylenzyme will be drastically reduced when the inhibition is high. A third theory involving all three types of binding remains possible.  相似文献   

6.
M M Tucker  M E Nesheim  K G Mann 《Biochemistry》1983,22(19):4540-4546
The Ca2+ dependence of factor Xa binding to phospholipid vesicles was measured in the presence and absence of factor Va. The increase in polarization of a fluorescently labeled derivative of factor Xa, [5-(dimethylamino)-1-naphthalenesulfonyl] glutamylglycylarginyl factor Xa (Dns-EGR-Xa), was used as a probe to measure the interaction of factor Xa with phospholipid. The Ca2+ concentration required for half-maximal binding of Dns-EGR-Xa to phospholipid vesicles was 3.5 X 10(-4) M in the presence of factor Va and 9.5 X 10(-4) M in the absence of factor Va. At a Ca2+ concentration of 5 X 10(-4) M, the binding of Dns-EGR-Xa to phospholipid-bound factor Va was near maximal, whereas there was no detectable interaction of Dns-EGR-Xa with phospholipid alone at this Ca2+ concentration as detected by fluorescence polarization. These results were qualitatively confirmed by high-performance liquid chromatography. The rate of hydrolysis of the factor Xa synthetic substrate, benzoylisoleucylglutamylglycylarginine p-nitroanilide, by factor Xa in the presence of factor Va and phospholipid decreased in a Ca2+-dependent manner. These data were analyzed as fraction of factor Xa bound to the phospholipid. A Ca2+ concentration of 2.7 X 10(-4) M resulted in half-maximal binding by this technique. The relationship observed between rates of prothrombin activation and Ca2+ concentration could be predicted quantitatively from calculations of local enzyme and substrate concentrations.  相似文献   

7.
We report a detailed kinetic investigation of the aminoglycosides neomycin B and neamine as inhibitors of the lethal factor protease from Bacillus anthracis. Both inhibitors display a mixed-type, noncompetitive kinetic pattern, which suggests the existence of multiple enzyme-inhibitor binding sites or the involvement of multiple structural binding modes at the same site. Quantitative analysis of the ionic strength effects by using the Debye-Hückel model revealed that the average interionic distance at the point of enzyme-inhibitor attachment is likely to be extremely short, which suggests specific, rather than nonspecific, binding. Only one ion pair seems to be involved in the binding process, which suggests the presence of a single binding site. Combining the results of our substrate competition studies with the ionic strength effects on the apparent inhibition constant, we propose that aminoglycoside inhibitors, such as neomycin B, bind to the lethal factor protease from B. anthracis in two different structural orientations. These results have important implications for the rational design of lethal factor protease inhibitors as possible therapeutic agents against anthrax. The strategies and methods we describe are general and can be employed to investigate in depth the mechanism of inhibition by other bioactive compounds.  相似文献   

8.
The transporter associated with antigen processing (TAP) plays a key role in the class I major histocompatibility complex (MHC) mediated immune surveillance. It translocates peptides generated by the proteasome complex into the endoplasmic reticulum (ER) for loading onto MHC class I molecules. At the cell surface these MHC complexes are monitored for their antigenic cargo by cytotoxic T-lymphocytes. Peptide binding to TAP is the essential step for peptide selection and for subsequent ATP-dependent translocation into the ER lumen. To examine the pathway of substrate recognition by TAP, we employed peptide epitopes, which were labeled with an environmentally sensitive fluorophore. Upon binding to TAP, a drastic fluorescence quenching of the fluorescent substrate was detected. This allowed us to analyze TAP function in real-time by using a homogeneous assay. Formation of the peptide-TAP complex is composed of a fast association step followed by a slow isomerization of the transport complex. Proton donor groups moving in proximity to the fluorescence label cause fluorescence quenching. Taken together, this peptide-induced structural reorganization may reflect the crosstalk of structural information between the peptide binding site and both nucleotide-binding domains within the TAP complex.  相似文献   

9.
We examine here the dynamics of forming the Michaelis complex of the enzyme lactate dehydrogenase by characterizing the binding kinetics and thermodynamics of oxamate (a substrate mimic) to the binary lactate dehydrogenase/NADH complex over multiple timescales, from nanoseconds to tens of milliseconds. To access such a wide time range, we employ standard stopped-flow kinetic approaches (slower than 1 ms) and laser-induced temperature-jump relaxation spectroscopy (10 ns-10 ms). The emission from the nicotinamide ring of NADH is used as a marker of structural transformations. The results are well explained by a kinetic model that has binding taking place via a sequence of steps: the formation of an encounter complex in a bimolecular step followed by two unimolecular transformations on the microsecond/millisecond timescales. All steps are well described by single exponential kinetics. It appears that the various key components of the catalytically competent architecture are brought together as separate events, with the formation of strong hydrogen bonding between active site His(195) and substrate early in binding and the closure of the catalytically necessary protein surface loop over the bound substrate as the final event of the binding process. This loop remains closed during the entire period that chemistry takes place for native substrates; however, motions of other key molecular groups bringing the complex in and out of catalytic competence appear to occur on faster timescales. The on-enzyme K(d) values (the ratios of the microscopic rate constants for each unimolecular step) are not far from one. Either substantial, approximately 10-15%, transient melting of the protein or rearrangements of hydrogen bonding and solvent interactions of a number of water molecules or both appear to take place to permit substrate access to the protein binding site. The nature of activating the various steps in the binding process seems to be one overall involving substantial entropic changes.  相似文献   

10.
The functional mechanisms of noncompetitive blockade of the nicotinic acetylcholine receptor from the BC3H-1 cell line were examined using single-channel currents recorded from cell-attached patches. Channel open times were distributed as sums of two exponentials and the closed times as sums of at least four exponentials. The single-channel currents of the receptor were analyzed in terms of activation schemes in which the receptor exists in two open states and a number of closed or blocked states. The existence of two distinct open states for the acetylcholine receptor allows for predictions to be made that will distinguish between different mechanisms of blockade. Notably, predictions could be made based on the model for the sequential block of open channels, that would allow us to discriminate such a mechanism, even for ligands that appear to dissociate so slowly that sequential openings of the same channel do not appear as distinct bursts. Four noncompetitive blockers of the acetylcholine receptor were studied: tetracaine, phencyclidine, and the (+) and (-) isomers of N-allylnormetazocine (SKF-10047). All four of these ligands decreased the duration of single-channel currents without increasing the number of fast closures per burst. The data suggest that the ligands block the channel in at least two distinct ways, one of which involves a specific interaction with open channels and the other is most consistent with the blockade of channels that may be either open or closed. In addition, the duration of the open state may be allosterically lengthened by the interaction of certain blockers with another class of sites.  相似文献   

11.
12.
WW781 binds reversibly to red blood cell AE1 and inhibits anion exchange by a two-step mechanism, in which an initial complex (complex 1) is rapidly formed, and then there is a slower equilibration to form a second complex (complex 2) with a lower free energy. According to the ping-pong kinetic model, AE1 can exist in forms with the anion transport site facing either inward or outward, and the transition between these forms is greatly facilitated by binding of a transportable substrate such as Cl(-). Both the rapid initial binding of WW781 and the formation of complex 2 are strongly affected by the conformation of AE1, such that the forms with the transport site facing outward have higher affinity than those with the transport site facing inward. In addition, binding of Cl(-) seems to raise the free energy of complex 2 relative to complex 1, thereby reducing the equilibrium binding affinity, but Cl(-) does not compete directly with WW781. The WW781 binding site, therefore, reveals a part of the AE1 structure that is sensitive to Cl(-) binding and to transport site orientation, in addition to the disulfonic stilbene binding site. The relationship of the inhibitory potency of WW781 under different conditions to the affinities for the different forms of AE1 provides information on the possible asymmetric distributions of unloaded and Cl(-)-loaded transport sites that are consistent with the ping-pong model, and supports the conclusion from flux and nuclear magnetic resonance data that both the unloaded and Cl(-)-loaded sites are very asymmetrically distributed, with far more sites facing the cytoplasm than the outside medium. This asymmetry, together with the ability of WW781 to recruit toward the forms with outward-facing sites, implies that WW781 may be useful for changing the conformation of AE1 in studies of structure-function relationships.  相似文献   

13.
J W Karpen  G P Hess 《Biochemistry》1986,25(7):1786-1792
The issue of whether d-tubocurarine, the classical acetylcholine receptor inhibitor, inhibits the receptor by a competitive or noncompetitive mechanism has long been controversial. d-Tubocurarine, in this study, has been found to be both a competitive (KC = 120 nM) and a noncompetitive (KNC = 4 microM) inhibitor of receptor-mediated ion flux at zero transmembrane voltage in membrane vesicles prepared from Electrophorus electricus electroplax. A spectrophotometric stopped-flow method, based on fluorescence quenching of entrapped anthracene-1,5-disulfonic acid by Cs+, was used to measure both the rate coefficient of ion flux prior to receptor inactivation (desensitization) and the rate coefficient of the rapid inactivation process. Inhibition by d-tubocurarine of the initial rate of ion flux decreased with increasing acetylcholine concentration, consistent with competitive inhibition, but the inhibition by micromolar concentrations of d-tubocurarine could not be overcome with saturating concentrations of acetylcholine, consistent with noncompetitive inhibition. A minimum mechanism is proposed in which d-tubocurarine competes for one of the two acetylcholine activating sites and also binds to a noncompetitive site. The present data do not distinguish between one or two competitive sites, although one successfully accounts for all of the data. By variation of the acetylcholine concentration, the two types of sites could be studied in isolation. Binding of d-tubocurarine to the noncompetitive site does not change the rate of rapid receptor inactivation, whereas binding of d-tubocurarine to the competitive site decreases the rate of rapid inactivation by displacing acetylcholine, in agreement with the observation that d-tubocurarine does not inactivate (desensitize) the E. electricus receptor by itself.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
An analytical model is developed to describe the performance of a packed-bed immobilized enzyme reactor in which parallel processes take place. In particular, two-substrate reaction, inhibition of the enzyme by one of the reaction products, and binding of one substrate and/or one product to an added ligand are taken into account. In addition, substrates and product diffusion into the porous catalyst are also considered. Using this model, numerical simulations were performed. The results point to the fact that, when all the above processes occur concomitantly, a variety of performance characteristics can be obtained, depending on the particular values of the related parameters. Moreover, under certain conditions, the reactor performance can be improved by controlled addition of ligand.List of Symbols A total concentration of ligand - C 1,i concentration of Substrate-1 in the pores of stage i - C 2,i concentration of Substrate-2 in its free form in the pores of stage i - 2,i concentration of the Substrate-2-Ligand Complex in the pores of stage i - total concentration of Substrate-2 in the pores of stage i - i concentration of the Product-Ligand Complex in the pores of stage i - concentration of the free Product in the pores of stage i - total concentration of the Product in the pores of stage i - internal (pore) diffusion coefficient for the Substrate-Ligand Complex - D 1 internal (pore) diffusion coefficient of Substrate-1 - D 2 internal (pore) diffusion coefficient of Substrate-2 - effective (pore) diffusion coefficient for Substrate-2 - internal (pore) diffusion coefficient for the Product - internal (pore) diffusion coefficient for the Product-Ligand Complex - effective (pore) diffusion coefficient for the Product - K thermodynamic equilibrium constant for binding Substrate-2 to Ligand - K m,1,K m,2 Michaelis constants for Substrates-1 and 2, respectively - effective Michaelis constant for Substrate-2 - K p thermodynamic equilibrium constant for binding the reaction Product to Ligand - effective equilibrium constant for binding Substrate-2 to Ligand - effective equilibrium constant for binding the reaction Product to Ligand. - K b inhibition constant - K q inhibition constant - effective inhibition constant - effective inhibition constant - k a, k d association and dissociation rate constants for Substrate-2 — Ligand complex - association and dissociation constants for Product —Ligand complex - n total number of elementary stages in the reactor - Q volumetric flow rate throughout the reactor - R j,i reaction rate of Substrate-j in stage i, in terms of volumetric units - S 1,0 concentration of Substrate-1 in the reactor feed - total concentration of Substrate-2 in the reactor feed - S 1,i–1,S 1,i concentration of Substrate-1 in the bulk phase leaving stages i–1 and i, respectively - S 2,i concentration of Substrate-2 in its free form, in the bulk phase leaving stage i - 2,i–1, 2,i concentration of Substrate-2 in the bulk phase leaving stage i–1 and i, respectively - total concentration of Substrate-2 in the bulk phase leaving stages i–1 and i, respectively - i concentration of the Product-Ligand Complex in the bulk phase of stage i - concentration of free Product in the bulk phase of stage i - total concentration of Product in the bulk phase of stage i - V total volume of the reactor - V m maximal reaction rate in terms of volumetric units - y axial coordinate of the pores - y 0 depth of the pores Greek Symbols 1 dimensionless parameter - dimensionless parameter - dimensionless parameter - 1 dimensionless parameter - dimensionless parameter - 1,i dimensionless concentration of Substrate-1 in pores of stage i - dimensionless total concentration of Substrate-2 (in both free and bound form) in pores of stage i - dimensionless total concentration of the reaction product in the pores of stage i - 1 dimensionless parameter - dimensionless parameter - dimensionless parameter - dimensionless parameter - dimensionless parameter - dimensionless position along the pore - volumetric packing density of catalytic particles (dimensionless) - porosity of the catalytic particles (dimensionless) - 1,i dimensionless concentration of Substrate-1 in the bulk phase of stage i - dimensionless total concentration of Substrate-2 (in both free and bound form) in the bulk phase of stage i  相似文献   

15.
The C(2) proton resonances of the active site histidines (His 12 and His 119) of ribonuclease A have been exploited to study the inhibition pattern of both noncompetitive (four green tea polyphenols and their copper complexes) and competitive (3'-O-carboxy esters of thymidine and 3'-amino derivatives of uridine) inhibitors. Competitive inhibitors devoid of any phosphate group have the ability to change the pK(a) of the histidine residues at the active site. Their mode of inhibition, albeit competitive, is found to be different compared to known phosphate inhibitors 2'-CMP and 3'-CMP as revealed by changes in the pK(a) values. We find a correlation between the changes in the chemical shift of His 12 and the corresponding inhibition constants (K(i)).  相似文献   

16.
The 19-amino acid conopeptide (rho-TIA) was shown previously to antagonize noncompetitively alpha(1B)-adrenergic receptors (ARs). Because this is the first peptide ligand for these receptors, we compared its interactions with the three recombinant human alpha(1)-AR subtypes (alpha(1A), alpha(1B), and alpha(1D)). Radioligand binding assays showed that rho-TIA was 10-fold selective for human alpha(1B)-over alpha(1A)- and alpha(1D)-ARs. As observed with hamster alpha(1B)-ARs, rho-TIA decreased the number of binding sites (B(max)) for human alpha(1B)-ARs without changing affinity (K(D)), and this inhibition was unaffected by the length of incubation but was reversed by washing. However, rho-TIA had opposite effects at human alpha(1A)-ARs and alpha(1D)-ARs, decreasing K(D) without changing B(max), suggesting it acts competitively at these subtypes. rho-TIA reduced maximal NE-stimulated [(3)H]inositol phosphate formation in HEK293 cells expressing human alpha(1B)-ARs but competitively inhibited responses in cells expressing alpha(1A)- or alpha(1D)-ARs. Truncation mutants showed that the amino-terminal domains of alpha(1B)- or alpha(1D)-ARs are not involved in interaction with rho-TIA. Alanine-scanning mutagenesis of rho-TIA showed F18A had an increased selectivity for alpha(1B)-ARs, and F18N also increased subtype selectivity. I8A had a slightly reduced potency at alpha(1B)-ARs and was found to be a competitive, rather than noncompetitive, inhibitor in both radioligand and functional assays. Thus rho-TIA noncompetitively inhibits alpha(1B)-ARs but competitively inhibits the other two subtypes, and this selectivity can be increased by mutation. These differential interactions do not involve the receptor amino termini and are not because of the charged nature of the peptide, and isoleucine 8 is critical for its noncompetitive inhibition at alpha(1B)-ARs.  相似文献   

17.
Camptothecin, a cytotoxic antitumor compound, has been shown to produce protein-linked DNA breaks mediated by mammalian topoisomerase I. We have investigated the mechanism by which camptothecin disrupts DNA processing by topoisomerase I and have examined the effect of certain structurally related compounds on the formation of a DNA-topoisomerase I covalent complex. Enzyme-mediated cleavage of supercoiled plasmid DNA in the presence of camptothecin was completely reversed upon the addition of exogenous linear DNA or upon dilution of the reaction mixture. Camptothecin and topoisomerase I produced the same amount of cleavage from supercoiled DNA or relaxed DNA. In addition, the alkaloid decreased the initial velocity of supercoiled DNA relaxation mediated by catalytic quantities of topoisomerase I. Inhibition occurred under conditions favoring processive catalysis as well as under conditions favoring distributive catalysis. By use of [3H]camptothecin and an equilibrium dialysis assay, the alkaloid was shown to bind reversibly to a DNA-topoisomerase I complex, but not to isolated enzyme or isolated DNA. These results are consistent with a model in which camptothecin reversibly traps an intermediate involved in DNA unwinding by topoisomerase I and thereby perturbs a set of equilibria, resulting in increased DNA cleavage. By examining certain compounds that are structurally related to camptothecin, it was found that the 20-hydroxy group, which has been shown to be essential for antitumor activity, was also necessary for stabilization of the covalent complex between DNA and topoisomerase I. In contrast, no such correlation existed for UV-light-induced cleavage of DNA by Cu(II)-camptothecin derivatives.  相似文献   

18.
Calpain-mediated proteolysis regulates cytoskeletal dynamics and is altered during aging and the progression of numerous diseases or pathological conditions. Although several cytoskeletal proteins have been identified as substrates, how localized calpain activity is regulated and the mechanisms controlling substrate recognition are not clear. In this study, we report that phosphoinositide binding regulates the susceptibility of the cytoskeletal adhesion protein alpha-actinin to proteolysis by calpains 1 and 2. At first, alpha-actinin did not appear to be a substrate for calpain 2; however, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) binding to alpha-actinin resulted in nearly complete proteolysis of the full-length protein, producing stable breakdown products. Calpain 1 was able to cleave alpha-actinin in the absence of phosphoinositide binding; however, PtdIns(3,4,5)P(3) binding increased the rate of proteolysis, and phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)) binding significantly inhibited cleavage. Phosphoinositide binding appeared to regulate calpain proteolysis of alpha-actinin by modulating the exposure of a highly sensitive cleavage site within the calponin homology 2 domain. In U87MG glioblastoma cells, which contain elevated levels of PtdIns(3,4,5)P(3), alpha-actinin colocalized with calpain within dynamic actin cytoskeletal structures. Furthermore, proteolysis of alpha-actinin producing stable breakdown products was observed in U87MG cells treated with calcium ionophore to activate the calcium-dependent calpains. Additional evidence of PtdIns(3,4,5)P(3)-mediated calpain proteolysis of alpha-actinin was observed in rat embryonic fibroblasts. These results suggest that PtdIns(3,4,5)P(3) binding is a critical determinant for alpha-actinin proteolysis by calpain. In conclusion, phosphoinositide binding to the substrate is a potential mechanism for regulating susceptibility to proteolysis by calpain.  相似文献   

19.
Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus (SLE) and can mediate disease pathogenesis by the formation of immune complexes. Since blocking immune complex formation can attenuate disease manifestations, the effects of nucleic acid binding polymers (NABPs) on anti-DNA binding in vitro were investigated. The compounds tested included polyamidoamine dendrimer, 1,4-diaminobutane core, generation 3.0 (PAMAM-G3), hexadimethrine bromide, and a β-cylodextrin-containing polycation. As shown with plasma from patients with SLE, NABPs can inhibit anti-DNA antibody binding in ELISA assays. The inhibition was specific since the NABPs did not affect binding to tetanus toxoid or the Sm protein, another lupus autoantigen. Furthermore, the polymers could displace antibody from preformed complexes. Together, these results indicate that NABPs can inhibit the formation of immune complexes and may represent a new approach to treatment.  相似文献   

20.
The human DNA methyltransferase 3A (DNMT3A) is essential for establishing DNA methylation patterns. Knowing the key factors involved in the regulation of mammalian DNA methylation is critical to furthering understanding of embryonic development and designing therapeutic approaches targeting epigenetic mechanisms. We observe substrate inhibition for the full length DNMT3A but not for its isolated catalytic domain, demonstrating that DNMT3A has a second binding site for DNA. Deletion of recognized domains of DNMT3A reveals that the conserved PWWP domain is necessary for substrate inhibition and forms at least part of the allosteric DNA binding site. The PWWP domain is demonstrated here to bind DNA in a cooperative manner with μM affinity. No clear sequence preference was observed, similar to previous observations with the isolated PWWP domain of Dnmt3b but with one order of magnitude weaker affinity. Potential roles for a low affinity, low specificity second DNA binding site are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号