首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Total internal reflection fluorescence microscopy has been applied to image the final stage of constitutive exocytosis, which is the fusion of single post-Golgi carriers with the plasma membrane. The use of a membrane protein tagged with green fluorescent protein allowed the kinetics of fusion to be followed with a time resolution of 30 frames/s. Quantitative analysis allowed carriers undergoing fusion to be easily distinguished from carriers moving perpendicularly to the plasma membrane. The flattening of the carriers into the plasma membrane is seen as a simultaneous rise in the total, peak, and width of the fluorescence intensity. The duration of this flattening process depends on the size of the carriers, distinguishing small spherical from large tubular carriers. The spread of the membrane protein into the plasma membrane upon fusion is diffusive. Mapping many fusion sites of a single cell reveals that there are no preferred sites for constitutive exocytosis in this system.  相似文献   

2.
Murthy M  Garza D  Scheller RH  Schwarz TL 《Neuron》2003,37(3):433-447
The exocyst (Sec6/8) complex is necessary for secretion in yeast and has been postulated to establish polarity by directing vesicle fusion to specific sites along the plasma membrane. The complex may also function in the nervous system, but its precise role is unknown. We have investigated exocyst function in Drosophila with mutations in one member of the complex, sec5. Null alleles die as growth-arrested larvae, whose neuromuscular junctions fail to expand. In culture, neurite outgrowth fails in sec5 mutants once maternal Sec5 is exhausted. Using a trafficking assay, we found impairments in the membrane addition of newly synthesized proteins. In contrast, synaptic vesicle fusion was not impaired. Thus, Sec5 differentiates between two forms of vesicle trafficking: trafficking for cell growth and membrane protein insertion depend on sec5, whereas transmitter secretion does not. In this regard, sec5 differs from the homologs of other yeast exocytosis genes that are required for both neuronal trafficking pathways.  相似文献   

3.
Hay JC 《EMBO reports》2007,8(3):236-240
For many years, it has been known that an increase in cytosolic calcium triggers the fusion of secretory granules and synaptic vesicles with the plasma membrane. However, the role of calcium in the intracellular membrane-fusion reactions that coordinate the secretory and endocytic pathways has been less clear. Initially, there was accumulating evidence to indicate that a focally localized and transient calcium signal is required to trigger even those fusion events formerly classified as 'constitutive'-that is, those that normally occur in the absence of global cytosolic calcium increases. Therefore, calcium seemed to be a required fundamental co-factor underlying all biological membrane-fusion steps, perhaps with a conserved mechanism of action. However, although such unification would be gratifying, new data indicate that several intracellular fusion events do not require calcium after all. In this review, the evidence for calcium requirements and its modes of action in constitutive trafficking are discussed. As a challenging perspective, I suggest that the specific absence of calcium requirements for some transport steps in fact expands the function of calcium in trafficking, because divergent luminal calcium concentrations and requirements for fusion might increase the specificity with which intracellular membrane-fusion partners are determined.  相似文献   

4.
Synaptic vesicle docking and fusion.   总被引:3,自引:0,他引:3  
Neurotransmitter secretion shares many features with constitutive membrane trafficking. In both cases, vesicles are targeted to a specific acceptor membrane and fuse via a series of protein-protein interactions. Recent work has added to the list of protein complexes involved and is beginning to define the order in which they act. The rapid fusion, precise regulation and plasticity characteristic of synaptic exocytosis probably results from the addition of specialized regulators.  相似文献   

5.
The SNARE complex, involved in vesicular trafficking and exocytosis, is composed of proteins in the vesicular membrane (v-SNAREs) that intertwine with proteins of the target membrane (t-SNAREs). Our results show that modified large dense-core neurosecretory granules (NSGs), isolated from the bovine neurohypophysis, spontaneously fuse with a planar lipid membrane containing only the t-SNARE syntaxin 1A. This provides evidence that syntaxin alone is able to form a functional fusion complex with native v-SNAREs of the NSG. The fusion was similar to constitutive, not regulated, exocytosis because changes in free [Ca2+] had no effect on the syntaxin-mediated fusion. Several deletion mutants of syntaxin 1A were also tested. The removal of the regulatory domain did not significantly reduce spontaneous fusion. However, a syntaxin deletion mutant consisting of only the transmembrane domain was incapable of eliciting spontaneous fusion. Finally, a soluble form of syntaxin 1A (lacking its transmembrane domain) was used to saturate the free syntaxin-binding sites of modified NSGs. This treatment blocks spontaneous fusion of these granules to a bilayer containing full-length syntaxin 1A. This method provides an effective model system to study possible regulatory components affecting vesicle fusion.  相似文献   

6.
Regulated translocation of canonical transient receptor potential (TRPC) proteins to the plasma membrane has been proposed as a mechanism of their activation. By using total internal reflection fluorescence microscopy (TIRFM), we monitored green fluorescent protein-labeled TRPC3 (TRPC3-GFP) movement to the plasma membrane in HEK293 cells stably expressing this fusion protein. We observed no increase in TRPC3-GFP TIRFM in response to the muscarinic receptor agonist methacholine or the synthetic diacylglycerol, 1-oleoyl-2-acetyl-sn-glycerol, despite activation of TRPC3 by these agents. We did, however, observe a TIRFM response to epidermal growth factor (EGF). This TIRFM response to EGF was accompanied by increased Ba2+ entry and TRPC3 currents. However, 1-oleoyl-2-acetyl-sn-glycerol-induced TRPC3 activity was not increased. TIRFM also increased in response to Gd3+, a competitive inhibitor of TRPC3 channels. This may be indicative of constitutive trafficking of TRPC3, with Gd3+ acting to "trap" cycling TRPC3 molecules in the plasma membrane. Consistent with this interpretation, TRPC3-expressing cells exhibited large variance in membrane capacitance, and this variance was decreased by both Gd3+ and EGF. These results indicate the following: (i) trafficking of TRPC3 may play a role in regulating the concentration of channels in the plasma membrane but is not involved in activation through the phospholipase C pathway; (ii) TRPC3 undergoes constitutive cyclical trafficking in the plasma membrane, and the mechanism by which growth factors increase the number of plasma membrane channels may involve stabilizing them in the plasma membrane.  相似文献   

7.
Intracellular membrane trafficking along endocytic and secretory transport pathways plays a critical role in diverse cellular functions including both developmental and pathological processes. Briefly, proteins and lipids destined for transport to distinct locations are collectively assembled into vesicles and delivered to their target site by vesicular fusion. SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins are required for these events, during which v-SNAREs (vesicle SNAREs) interact with t-SNAREs (target SNAREs) to allow transfer of cargo from donor vesicle to target membrane. Recently, the t-SNARE family member, syntaxin-6, has been shown to play an important role in the transport of proteins that are key to diverse cellular dynamic processes. In this paper, we briefly discuss the specific role of SNAREs in various mammalian cell types and comprehensively review the various roles of the Golgi- and endosome-localized t-SNARE, syntaxin-6, in membrane trafficking during physiological as well as pathological conditions.  相似文献   

8.
Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insulin signaling, and traffics with Glut4 to exocytic sites. Increasing PLD1 activity facilitates glucose uptake, whereas decreasing PLD1 activity is inhibitory. Diminished PA production does not substantially hinder trafficking of the vesicles or their docking at the plasma membrane, but it does impede fusion-mediated extracellular exposure of the transporter. The fusion block caused by RNA interference-mediated PLD1 deficiency is rescued by exogenous provision of a lipid that promotes fusion pore formation and expansion, suggesting that the step regulated by PA is late in the process of vesicle fusion.  相似文献   

9.
Integrin regulation of caveolin function   总被引:2,自引:0,他引:2  
Caveolae are unique organelles that are found in the plasma membrane of many cell types. They participate in various processes such as lipid recycling, cellular signalling and endocytosis. A variety of signalling molecules localize to caveolae in response to various stimuli, providing a potential mechanism for the spatial regulation of signal transduction pathways. Caveolin-1, a constitutive protein of caveolae, has been implicated in the regulation of cell growth, lipid trafficking, endocytosis and cell migration. Phosphorylation of caveolin-1 on Tyr 14 is involved in integrin-regulated caveolae trafficking and also in signalling at focal adhesions in migrating cells. In this review, we focus on recent studies that describe the role of caveolin-1 in integrin signal transduction, and how this interplay links extracellular matrix anchorage to cell proliferation, polarity and directional migration.  相似文献   

10.
Molecular motors drive the transport of vesicles and organelles within the cell. Traditionally, these transport processes have been considered separately from membrane trafficking events, such as regulated budding and fusion. However, recent progress has revealed mechanistic links that integrate these processes within the cell. Rab proteins, which function as key regulators of intracellular trafficking, have now been shown to recruit specific motors to organelle membranes. Rab-independent recruitment of motors by adaptor or scaffolding proteins is also a key mechanism. Once recruited to vesicles and organelles, these motors can then drive directed transport; this directed transport could in turn affect the efficiency of trafficking events. Here, we discuss this coordinated regulation of trafficking and transport, which provides a powerful mechanism for temporal and spatial control of cellular dynamics.  相似文献   

11.
Cho M  Lee ZW  Cho HT 《Plant physiology》2012,159(2):642-654
Intracellular trafficking of auxin transporters has been implicated in diverse developmental processes in plants. Although the dynamic trafficking pathways of PIN-FORMED auxin efflux proteins have been studied intensively, the trafficking of ATP-binding cassette protein subfamily B proteins (ABCBs; another group of auxin efflux carriers) still remains largely uncharacterized. In this study, we address the intracellular trafficking of ABCB4 in Arabidopsis (Arabidopsis thaliana) root epidermal cells. Pharmacological analysis showed that ABCB4 barely recycled between the plasma membrane and endosomes, although it slowly endocytosed via the lytic vacuolar pathway. Fluorescence recovery after photobleaching analysis revealed that ABCB4 is strongly retained in the plasma membrane, further supporting ABCB4's nonrecycling property. The endocytosis of ABCB4 was not dependent on the GNOM-LIKE1 function, and the sensitivity of ABCB4 to brefeldin A required guanine nucleotide exchange factors for adenosyl ribosylation factor other than GNOM. These characteristics of intracellular trafficking of ABCB4 are well contrasted with those of PIN-FORMED proteins, suggesting that ABCB4 may be a basic and constitutive auxin efflux transporter for cellular auxin homeostasis.  相似文献   

12.
Actin remodeling to facilitate membrane fusion   总被引:1,自引:0,他引:1  
Actin and its associated proteins participate in several intracellular trafficking mechanisms. This review assesses recent work that shows how actin participates in the terminal trafficking event of membrane bilayer fusion. A recent flurry of reports defines a role for Rho proteins in membrane fusion and also demonstrates that this role is distinct from any vesicle transport mechanism. Rho proteins are well known to govern actin remodeling, which implicates this process as a condition of membrane fusion. A small but significant body of work examines actin-regulated events of intracellular membrane fusion, exocytosis and endocytosis. In general, actin has been shown to act as a negative regulator of exocytosis. Cortical actin filaments act as a barrier that requires transient removal to allow vesicles to undergo docking at the plasma membrane. However, once docked, F-actin synthesis may act as a positive regulator to give the final stimulus to drive membrane fusion. F-actin synthesis is clearly needed for endocytosis and intracellular membrane fusion events. What may seem like dissimilar results are perhaps snapshots of a single mechanism of membranous actin remodeling (i.e. dynamic disassembly and reassembly) that is universally needed for all membrane fusion events.  相似文献   

13.
Syntaxin plays a key role in intracellular membrane fusion in eukaryotic cells. The function of syntaxin relies on its proper trafficking to and targeting at the target membrane. The mechanisms underlying the trafficking and targeting of syntaxin to its physiological sites remain poorly understood. Here we have analyzed the trafficking of syntaxin 1A in INS-1 and CHO cells. We have identified the transmembrane domain together with several flanking positive-charged amino acids as the minimal domain required for the membrane delivery. Interestingly, we found that SNARE motif-exposed syntaxin 1A mutants were retained in endoplasmic reticulum (ER) and failed to transport to the cell surface in the absence of SNAP-25, suggesting that the exposure of the SNARE motif causes ER retention and complexation with SNAP-25 helps the ER escape. Finally, our data propose two key roles for the H(abc) domain: to protect nonspecific interaction by masking the SNARE motif and to participate in the clustering of syntaxin 1A to the fusion sites in the plasma membrane.  相似文献   

14.
The wing of Drosophila melanogaster has long been used as a model system to characterize intermolecular interactions important in development. Implicit in our understanding of developmental processes is the proper trafficking and sorting of signaling molecules, although the precise mechanisms that regulate membrane trafficking in a developmental context are not well studied. We have therefore chosen the Drosophila wing to assess the importance of SNARE-dependent membrane trafficking during development. N-Ethylmaleimide-sensitive fusion protein (NSF) is a key component of the membrane-trafficking machinery and we constructed a mutant form of NSF whose expression we directed to the developing wing margin. This resulted in a notched-wing phenotype, the severity of which was enhanced when combined with mutants of VAMP/Synaptobrevin or Syntaxin, indicating that it results from impaired membrane trafficking. Importantly, we find that the phenotype is also enhanced by mutations in genes for wingless and components of the Notch signaling pathway, suggesting that these signaling pathways were disrupted. Finally, we used this phenotype to conduct a screen for interacting genes, uncovering two Notch pathway components that had not previously been linked to wing development. We conclude that SNARE-mediated membrane trafficking is an important component of wing margin development and that dosage-sensitive developmental pathways will act as a sensitive reporter of partial membrane-trafficking disruption.  相似文献   

15.
Lipids are highly dynamic molecules that, due to their hydrophobicity, are spatially confined to membrane environments. From these locations, certain privileged lipids serve as signaling molecules. For understanding the biological functions of subcellular pools of signaling lipids, induced proximity tools have been invaluable. These methods involve controlled heterodimerization, by either small-molecule or light triggers, of functional proteins. In the arena of lipid signaling, induced proximity tools can recruit lipid-metabolizing enzymes to manipulate lipid signaling and create artificial tethers between organelle membranes to control lipid trafficking pathways at membrane contact sites. Here, we review recent advances in methodology development and biological application of chemical-induced and light-induced proximity tools for manipulating lipid metabolism, trafficking, and signaling.  相似文献   

16.
To examine endothelial nitric-oxide synthase (eNOS) trafficking in living endothelial cells, the eNOS-deficient endothelial cell line ECV304 was stably transfected with an eNOS-green fluorescent protein (GFP) fusion construct and characterized by functional, biochemical, and microscopic analysis. eNOS-GFP was colocalized with Golgi and plasma membrane markers and produced NO in response to agonist challenge. Localization in the plasma membrane was dependent on the palmitoylation state, since the palmitoylation mutant of eNOS (C15S/C26S eNOS-GFP) was excluded from the plasma membrane and was concentrated in a diffuse perinuclear pattern. Fluorescence recovery after photobleaching (FRAP) revealed eNOS-GFP in the perinuclear region moving 3 times faster than the plasmalemmal pool, suggesting that protein-lipid or protein-protein interactions are different in these two cellular domains. FRAP of the palmitoylation mutant was two times faster than that of wild-type eNOS-GFP, indicating that palmitoylation was influencing the rate of trafficking. Interestingly, FRAP of C15S/C26S eNOS-GFP but not wild-type eNOS-GFP fit a model of protein diffusion in a lipid bilayer. These data suggest that the regulation of eNOS trafficking within the plasma membrane and Golgi are probably different mechanisms and not due to simple diffusion of the protein in a lipid bilayer.  相似文献   

17.
The functional trafficking steps used by soluble NSF attachment protein receptor (SNARE) proteins have been difficult to establish because of substantial overlap in subcellular localization and because in vitro SNARE-dependent binding and fusion reactions can be promiscuous. Therefore, to functionally identify the site of action of the vesicle-associated membrane protein (VAMP) family of R-SNAREs, we have taken advantage of the temporal requirements of adipocyte biosynthetic sorting of a dual-tagged GLUT4 reporter (myc-GLUT4-GFP) coupled with small interfering RNA gene silencing. Using this approach, we confirm the requirement of VAMP2 and VAMP7 for insulin and osmotic shock trafficking from the vesicle storage sites, respectively, and fusion with the plasma membrane. Moreover, we identify a requirement for VAMP4 for the initial biosynthetic entry of GLUT4 from the Golgi apparatus into the insulin-responsive vesicle compartment, VAMP8, for plasma membrane endocytosis and VAMP2 for sorting to the specialized insulin-responsive compartment after plasma membrane endocytosis.  相似文献   

18.
The direction and specificity of endolysosomal membrane trafficking is tightly regulated by various cytosolic and membrane-bound factors, including soluble NSF attachment protein receptors (SNAREs), Rab GTPases, and phosphoinositides. Another trafficking regulatory factor is juxta-organellar Ca(2+) , which is hypothesized to be released from the lumen of endolysosomes and to be present at higher concentrations near fusion/fission sites. The recent identification and characterization of several Ca(2+) channel proteins from endolysosomal membranes has provided a unique opportunity to examine the roles of Ca(2+) and Ca(2+) channels in the membrane trafficking of endolysosomes. SNAREs, Rab GTPases, and phosphoinositides have been reported to regulate plasma membrane ion channels, thereby suggesting that these trafficking regulators may also modulate endolysosomal dynamics by controlling Ca(2+) flux across endolysosomal membranes. In this paper, we discuss the roles of phosphoinositides, Ca(2+) , and potential interactions between endolysosomal Ca(2+) channels and phosphoinositides in endolysosomal dynamics.  相似文献   

19.
Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV.  相似文献   

20.
To understand molecular mechanisms that regulate the intricate and dynamic organization of the endosomal compartment, it is important to establish the morphology, molecular composition, and functions of the different organelles involved in endosomal trafficking. Syntaxins and vesicle-associated membrane protein (VAMP) families, also known as soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs), have been implicated in mediating membrane fusion and may play a role in determining the specificity of vesicular trafficking. Although several SNAREs, including VAMP3/cellubrevin, VAMP8/endobrevin, syntaxin 13, and syntaxin 7, have been localized to the endosomal membranes, their precise localization, biochemical interactions, and function remain unclear. Furthermore, little is known about SNAREs involved in lysosomal trafficking. So far, only one SNARE, VAMP7, has been localized to late endosomes (LEs), where it is proposed to mediate trafficking of epidermal growth factor receptor to LEs and lysosomes. Here we characterize the localization and function of two additional endosomal syntaxins, syntaxins 7 and 8, and propose that they mediate distinct steps of endosomal protein trafficking. Both syntaxins are found in SNARE complexes that are dissociated by alpha-soluble NSF attachment protein and NSF. Syntaxin 7 is mainly localized to vacuolar early endosomes (EEs) and may be involved in protein trafficking from the plasma membrane to the EE as well as in homotypic fusion of endocytic organelles. In contrast, syntaxin 8 is likely to function in clathrin-independent vesicular transport and membrane fusion events necessary for protein transport from EEs to LEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号