首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hedgehog (Hh) family of morphogenetic proteins has important instructional roles in metazoan development and human diseases. Lipid modified Hh is able to migrate to and program cells far away from its site of production despite being associated with membranes. To investigate the Hh spreading mechanism, we characterized Shifted (Shf) as a component in the Drosophila Hh pathway. We show that Shf is the ortholog of the human Wnt inhibitory factor (WIF), a secreted antagonist of the Wingless pathway. In contrast, Shf is required for Hh stability and for lipid-modified Hh diffusion. Shf colocalizes with Hh in the extracellular matrix and interacts with the heparan sulfate proteoglycans (HSPG), leading us to suggest that Shf could provide HSPG specificity for Hh. We also show that human WIF inhibits Wg signaling in Drosophila without affecting the Hh pathway, indicating that different WIF family members might have divergent functions in each pathway.  相似文献   

2.
The signalling molecule Hedgehog (Hh) functions as a morphogen to pattern a field of cells in animal development. Previous studies in Drosophila have demonstrated that Tout-velu (Ttv), a heparan sulphate polymerase, is required for Hh movement across receiving cells. However, the molecular mechanism of Ttv- mediated Hh movement is poorly defined. We show that Dally and Dally-like (Dly), two Drosophila glypican members of the heparan sulphate proteoglycan (HSPG) family, are the substrates of Ttv and are essential for Hh movement. We show that embryos lacking dly activity exhibit defects in Hh distribution and its subsequent signalling. However, both Dally and Dly are involved and are functionally redundant in Hh movement during wing development. We further demonstrate that Hh movement in its receiving cells is regulated by a cell-to-cell mechanism that is independent of dynamin-mediated endocytosis. We propose that glypicans transfer Hh along the cell membrane to pattern a field of cells.  相似文献   

3.
Hedgehog (Hh) and Wingless (Wg) morphogens specify cell fate in a concentration-dependent manner in the Drosophila wing imaginal disc. Proteoglycans, components of the extracellular matrix, are involved in Hh and Wg stability, spreading, and reception. In this study, we demonstrate that the glycosyl-phosphatidyl-inositol (GPI) anchor of the glypican Dally-like (Dlp) is required for its apical internalization and its subsequent targeting to the basolateral compartment of the epithelium. Dlp endocytosis from the apical surface of Hh-receiving cells catalyzes the internalization of Hh bound to its receptor Patched (Ptc). The cointernalization of Dlp with the Hh/Ptc complex is dynamin dependent and necessary for full-strength Hh signaling. We also demonstrate that Wg is secreted apically in the disc epithelium and that apicobasal trafficking of Dlp allows Wg transcytosis to favor Wg spreading along the basolateral compartment. Thus, Dlp endocytosis is a common regulatory mechanism of both Hh and Wg morphogen action.  相似文献   

4.
Major developmental morphogens of the Hedgehog (Hh) family act at short range and long range to direct cell fate decisions in vertebrate and invertebrate tissues. To this end, Hhs are released from local sources and act at a distance on target cells that express the Hh receptor Patched. However, morphogen secretion and spreading are not passive processes because all Hhs are synthesized as dually (N- and C-terminal) lipidated proteins that firmly tether to the surface of producing cells. On the cell surface, Hhs associate with each other and with heparan sulfate (HS) proteoglycans. This raises the question of how Hh solubilization and spreading is achieved. We recently discovered that Sonic hedgehog (Shh) is solubilized by proteolytic processing (shedding) of lipidated peptide termini in vitro. Because unprocessed N termini block Patched receptor binding sites in the cluster, we further suggested that their proteolytic removal is required for simultaneous Shh activation. In this work we confirm inactivity of unprocessed protein clusters and demonstrate restored biological Shh function upon distortion or removal of N-terminal amino acids and peptides. We further show that N-terminal Shh processing targets and inactivates the HS binding Cardin-Weintraub (CW) motif, resulting in soluble Shh clusters with their HS binding capacities strongly reduced. This may explain the ability of Shh to diffuse through the HS-containing extracellular matrix, whereas other HS-binding proteins are quickly immobilized. Our in vitro findings are supported by the presence of CW-processed Shh in murine brain samples, providing the first in vivo evidence for Shh shedding and subsequent solubilization of N-terminal-truncated proteins.  相似文献   

5.
During development, secreted morphogens, such as Hedgehog (Hh), control cell fate and proliferation. Precise sensing of morphogen levels and dynamic cellular responses are required for morphogen-directed morphogenesis, yet the molecular mechanisms responsible are poorly understood. Several recent studies have suggested the involvement of a multi-protein Hh reception complex, and have hinted at an understated complexity in Hh sensing at the cell surface. We show here that the expression of the proteoglycan Dally in Hh-receiving cells in Drosophila is necessary for high but not low level pathway activity, independent of its requirement in Hh-producing cells. We demonstrate that Dally is necessary to sequester Hh at the cell surface and to promote Hh internalisation with its receptor. This internalisation depends on both the activity of the hydrolase Notum and the glycosyl-phosphatidyl-inositol (GPI) moiety of Dally, and indicates a departure from the role of the second glypican Dally-like in Hh signalling. Our data suggest that hydrolysis of the Dally-GPI by Notum provides a switch from low to high level signalling by promoting internalisation of the Hh-Patched ligand-receptor complex.  相似文献   

6.
Recently, we have shown that small cell lung cancer (SCLC) is dependent on activation of Hedgehog signaling, an embryonic pathway implicated in development, morphogenesis and the regulation of stem cell fates. These findings form the framework for an emerging view of cancer as a process of aberrant organogenesis in which progenitor/ stem cells escape dependence on niche signaling through mutation in genes such as Ptch, or through persistent activation of progenitor cell pathways. Interestingly, the normally quiescent airway epithelial compartment uses the Hh pathway to repopulate itself when challenged by injury. How Hh signaling works to promote the malignant phenotype promises to be as important biologically as the promise of Hh pathway inhibitors are clinically.  相似文献   

7.
《Fly》2013,7(6):333-336
Cell signaling mediated by the Hedgehog (Hh) family of secreted proteins is essential for metazoan development and its malfunction causes congenital disorders and cancer. The seven-transmembrane protein Smoothened (Smo) transduces the Hh signal across the plasma membrane in both vertebrates and invertebrates but the underlying mechanisms remain ill defined. In Drosophila, Hh induces phosphorylation of Smo at multiple sites by PKA and CK1, leading to its cell surface accumulation and activation. Recently, we have obtained evidence that Hh-induced phosphorylation promotes Smo activity by inducing a conformational switch and dimerization of its carboxy-terminal cytoplasmic tail (C-tail). Furthermore, we provided evidence that a similar mechanism regulates mammalian Smo. We discuss how Smo conformational change regulates the intracellular signaling complex and how Smo transduces the graded Hh signaling activities through different conformational states.  相似文献   

8.
Zhao Y  Tong C  Jiang J 《Fly》2007,1(6):333-336
Cell signaling mediated by the Hedgehog (Hh) family of secreted proteins is essential for metazoan development and its malfunction causes congenital disorders and cancer. The seven-transmembrane protein Smoothened (Smo) transduces the Hh signal across the plasma membrane in both vertebrates and invertebrates but the underlying mechanisms remain ill defined. In Drosophila, Hh induces phosphorylation of Smo at multiple sites by PKA and CK1, leading to its cell surface accumulation and activation. Recently, we have obtained evidence that Hh-induced phosphorylation promotes Smo activity by inducing a conformational switch and dimerization of its carboxy-terminal cytoplasmic tail (C-tail). Furthermore, we provided evidence that a similar mechanism regulates mammalian Smo. We discuss how Smo conformational change regulates the intracellular signaling complex and how Smo transduces the graded Hh signaling activities through different conformational states.  相似文献   

9.
Stem cells depend on signals from cells within their microenvironment, or niche, as well as factors secreted by distant cells to regulate their maintenance and function. Here we show that Boi, a Hedgehog (Hh)-binding protein, is a novel suppressor of proliferation of follicle stem cells (FSCs) in the Drosophila ovary. Hh is expressed in apical cells, distant from the FSC niche, and diffuses to reach FSCs, where it promotes FSC proliferation. We show that Boi is expressed in apical cells and exerts its suppressive effect on FSC proliferation by binding to and sequestering Hh on the apical cell surface, thereby inhibiting Hh diffusion. Our studies demonstrate that cells distant from the local niche can regulate stem cell function through ligand sequestration, a mechanism that likely is conserved in other epithelial tissues.  相似文献   

10.
Recently, we have shown that small cell lung cancer (SCLC) is dependent on activation of the Hedgehog signaling, an embryonic pathway implicated in development, morphogenesis and the regulation of stem cell fates. These findings form the framework for an emerging view of cancer as a process of aberrant organogenesis in which progenitor/ stem cells escape dependence on niche signaling through mutation in genes such as Ptch, or through persistent activation of progenitor cell pathways. Interestingly, the normally quiescent airway epithelial compartment uses the Hh pathway to repopulate itself when challenged by injury. How Hh signaling works to promote the malignant phenotype promises to be as important biologically as the promise of Hh pathway inhibitors are clinically.

Key words

Cancer, Hedgehog signaling, Morphogenesis, Stem cells  相似文献   

11.
Sulfs are secreted sulfatases that catalyse removal of sulfate from Heparan Sulfate Proteoglycans (HSPGs) in the extracellular space. These enzymes are well known to regulate a number of crucial signalling pathways during development. In this study, we report that DSulfatase-1 (DSulf1), the unique Drosophila Sulf protein, is a regulator of Hedgehog (Hh) signalling during wing development. DSulf1 activity is required in both Hh source and Hh receiving cells for proper positioning of Hh target gene expression boundaries. As assessed by loss- and gain-of-function experiments in specific compartments, DSulf1 displays dual functions with respect to Hh signalling, acting as a positive regulator in Hh producing cells and a negative regulator in Hh receiving cells. In either domain, DSulf1 modulates Hh distribution by locally lowering the concentration of the morphogen at the apical pole of wing disc cells. Thus, we propose that DSulf1, by its desulfation catalytic activity, lowers Hh/HSPG interaction in both Hh source and target fields, thereby enhancing Hh release from its source of production and reducing Hh signalling activity in responding cells. Finally, we show that Dsulf1 pattern of expression is temporally regulated and depends on EGFR signalling, a Hh-dependent secondary signal in this tissue. Our data reveal a novel Hh regulatory feedback loop, involving DSulf1, which contributes to maintain and stabilise expression domains of Hh target genes during wing disc development.  相似文献   

12.
Morphogenetic gradient of Hh is tightly regulated for correct patterning in Drosophila and vertebrates. The Patched (Ptc) receptor is required for restricting Hh long-range activity in the imaginal discs. In this study, we investigate the different types of Hh accretion that can be observed in the Drosophila embryonic epithelial cells. We found that, in receiving cells, large apical punctate structures of Hh (Hh-LPSs) are not depending on the Ptc receptor-dependent internalization of Hh but rather reflect Hh gradient. By analyzing the dynamic of the Hh-LPS gradient formation, we demonstrate that Hh distribution is strongly restricted during late embryonic stages compared to earlier stages. We demonstrate that the up-regulation of Ptc is required for the temporal regulation of the Hh gradient. We further show that dynamin-dependent internalization of Hh is not regulating Hh spreading but is involved in shaping Hh gradient. We found that Hh gradient modulation is directly related with the dynamic expression of the ventral Hh target gene serrate (ser) and with the Hh-dependent dorsal cell fate determination. Finally, our study shows that, in vivo, the Hh/Ptc complex is internalized in the Rab7-enriched lysosomal compartment in a Ptc-dependent manner without the co-receptor Smoothened (Smo). We propose that controlled degradation is an active mechanism important for Hh gradient formation.  相似文献   

13.
14.
Hedgehog (Hh) molecules play critical roles during development as a morphogen, and therefore their distribution must be regulated. Hh proteins undergo several modifications that tether them to the membrane. We have previously identified tout velu (ttv), a homolog of the mammalian EXT tumor suppressor gene family, as a gene required for movement of Hh. In this paper, we present in vivo evidence that ttv is involved in heparan sulfate proteoglycan (HSPG) biosynthesis, suggesting that HSPGs control Hh distribution. In contrast to mutants in other HSPG biosynthesis genes, the activity of the HSPG-dependent FGF and Wingless signaling pathways are not affected in ttv mutants. This demonstrates an unexpected level of specificity in the regulation of the distribution of extracellular signals by HSPGs.  相似文献   

15.
The Hedgehog (Hh) pathway plays multiple patterning roles during development of the mammalian gastrointestinal tract, but its role in adult gut function has not been extensively examined. Here we show that chronic reduction in the combined epithelial Indian (Ihh) and Sonic (Shh) hedgehog signal leads to mislocalization of intestinal subepithelial myofibroblasts, loss of smooth muscle in villus cores and muscularis mucosa as well as crypt hyperplasia. In contrast, chronic over-expression of Ihh in the intestinal epithelium leads to progressive expansion of villus smooth muscle, but does not result in reduced epithelial proliferation. Together, these mouse models show that smooth muscle populations in the adult intestinal lamina propria are highly sensitive to the level of Hh ligand. We demonstrate further that Hh ligand drives smooth muscle differentiation in primary intestinal mesenchyme cultures and that cell-autonomous Hh signal transduction in C3H10T1/2 cells activates the smooth muscle master regulator Myocardin (Myocd) and induces smooth muscle differentiation. The rapid kinetics of Myocd activation by Hh ligands as well as the presence of an unusual concentration of Gli sties in this gene suggest that regulation of Myocd by Hh might be direct. Thus, these data indicate that Hh is a critical regulator of adult intestinal smooth muscle homeostasis and suggest an important link between Hh signaling and Myocd activation. Moreover, the data support the idea that lowered Hh signals promote crypt expansion and increased epithelial cell proliferation, but indicate that chronically increased Hh ligand levels do not dampen crypt proliferation as previously proposed.  相似文献   

16.
17.
The Hedgehog (Hh) morphogenetic gradient controls multiple developmental patterning events in Drosophila and vertebrates. Patched (Ptc), the Hh receptor, restrains both Hh spreading and Hh signaling. We report how endocytosis regulates the concentration and activity of Hh in the wing imaginal disc. Our studies show that Ptc limits the Hh gradient by internalizing Hh through endosomes in a dynamin-dependent manner, and that both Hh and Ptc are targeted to lysosomal degradation. We also found that the ptc(14) mutant does not block Hh spreading, as it has a failure in endocytosis. However, this mutant protein is able to control the expression of Hh target genes as the wild-type protein, indicating that the internalization mediated by Ptc is not required for signal transduction. In addition, we noted that both in this mutant and in those not producing Ptc protein, Hh still occurred in the endocytic vesicles of Hh-receiving cells, suggesting the existence of a second, Ptc-independent, mechanism of Hh internalization.  相似文献   

18.
Hedgehog (Hh) is a secreted morphogen involved in both short- and long-range signaling necessary for tissue patterning during development. It is unclear how this dually lipidated protein is transported over a long range in the aqueous milieu of interstitial spaces. We previously showed that the long-range signaling of Hh requires its oligomerization. Here we show that Hh is secreted in the form of exovesicles. These are derived by the endocytic delivery of cell surface Hh to multivesicular bodies (MVBs) via an endosomal sorting complex required for transport (ECSRT)–dependent process. Perturbations of ESCRT proteins have a selective effect on long-range Hh signaling in Drosophila wing imaginal discs. Of importance, oligomerization-defective Hh is inefficiently incorporated into exovesicles due to its poor endocytic delivery to MVBs. These results provide evidence that nanoscale organization of Hh regulates the secretion of Hh on ESCRT-derived exovesicles, which in turn act as a vehicle for long-range signaling.  相似文献   

19.
The Hedgehog (Hh) signaling pathway play critical roles in embryonic development and adult tissue homeostasis. A critical step in Hh signal transduction is how Hh receptor Patched (Ptc) inhibits the atypical G proteincoupled receptor Smoothened (Smo) in the absence of Hh and how this inhibition is release by Hh stimulation. It is unlikely that Ptc inhibits Smo by direct interaction. Here we discuss how Hh regulates the phosphorylation and ubiquitination of Smo, leading to cell surface and ciliary accumulation of Smo in Drosophila and vertebrate cells, respectively. In addition, we discuss how PI(4)P phospholipid acts in between Ptc and Smo to regulate Smo phosphorylation and activation in response to Hh stimulation.  相似文献   

20.
The Hedgehog (Hh) family of secreted proteins plays essential roles in the development of a wide variety of animal species and underlies multiple human birth defects and cancers.To.ensure the proper ra...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号