首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition element molybdenum is essential for (nearly) all organisms and occurs in more than 30 enzymes catalyzing diverse redox reactions; however, only three Mo-enzymes have been found in plants so far. (1) Nitrate reductase catalyzes the key step in inorganic nitrogen assimilation, (2) aldehyde oxidase(s) recently have been shown to catalyze the last step in the biosynthesis of the phytohormones indole acetic acid and abscisic acid, respectively, and (3) xanthine dehydrogenase is involved in purine catabolism. These enzymes are homodimeric proteins harboring an electron transport chain that involves different prosthetic groups (FAD, heme, or Fe-S, Mo). Among different Mo-enzymes, the alignment of amino acid sequences helps to define regions that are well conserved (domains) and other regions that are highly variable in sequence (interdomain hinge regions). The existence of additional plant Mo-enzymes (like sulfite oxidase) also has to be considered. In this review we focus on structure-function relationships and stress the functional importance of the enzymes for the plant. With the exception of bacterial nitrogenase, Mo-enzymes share a similar pterin compound at their catalytic sites, the molybdenum cofactor. Molybdenum itself seems to be biologically inactive unless it is complexed by the cofactor. This molybdenum cofactor combines with diverse apoproteins where it is responsible for the correct anchoring and positioning of the Mo-center within the holo-enzyme so that the Mo-center can interact with other components of the enzyme's electron transport chain. The organic moiety of the molybdenum cofactor is a unique pterin named molybdopterin. The core structure of molybdopterin is conserved in all organisms. Accordingly, its biosynthetic pathway seems to be conserved because a similar set of cofactor genes has been found in bacteria and higher plants. We describe a model for the biosynthesis of the plant molybdenum cofactor involving the complex interaction of seven proteins.  相似文献   

2.
The molybdenum co-factor (Moco) is an essential part of all eukaryotic molybdoenzymes. It is a molybdopterin and reveals the same principal structure in eubacteria, archaebacteria and eukaryotes. This paper reports the isolation of cnx1 , a cDNA clone of Arabidopsis thaliana which complements the Escherichia coli Moco mutant mogA . The mapping data of this cDNA correlate well with the mapping position of the A. thaliana molybdenum cofactor locus chl6 . As mutants in chl6 are known to be repairable by high concentrations of molybdate, the defective gene is very likely to be involved in the last step of Moco biosynthesis, that is, the insertion of molybdenum into molybdopterin. The protein encoded by cnx1 shows a two-domain structure: the N-terminal domain is homologous to the E. coli Moco protein MoeA, the C-terminal domain is homologous to the E. coli Moco proteins MoaB and MogA, respectively. These homologies show that part of the prokaryotic Moco biosynthetic pathway accomplished by monofunctional proteins in E. coli , is performed by a single multifunctional protein in eukaryotes. In addition Cnx1 is homologous to the eukaryotic proteins Gephyrin, a rat neuroprotein, and Cinnamon, a Drosophila protein with a function in Moco biosynthesis. These proteins also show a two-domain structure but the order of the domains is inversed as compared with Cnx1. Southern analysis indicates the existence of at least one further member, in addition to the cnx1 gene, of this novel gene family in the Arabidopsis genome.  相似文献   

3.
The molybdenum cofactor is an important cofactor, and its biosynthesis is essential for many organisms, including humans. Its basic form comprises a single molybdopterin (MPT) unit, which binds a molybdenum ion bearing three oxygen ligands via a dithiolene function, thus forming Mo-MPT. In bacteria, this form is modified to form the bis-MPT guanine dinucleotide cofactor with two MPT units coordinated at one molybdenum atom, which additionally contains GMPs bound to the terminal phosphate group of the MPTs (bis-MGD). The MobA protein catalyzes the nucleotide addition to MPT, but the mechanism of the biosynthesis of the bis-MGD cofactor has remained enigmatic. We have established an in vitro system for studying bis-MGD assembly using purified compounds. Quantification of the MPT/molybdenum and molybdenum/phosphorus ratios, time-dependent assays for MPT and MGD detection, and determination of the numbers and lengths of Mo–S and Mo–O bonds by X-ray absorption spectroscopy enabled identification of a novel bis-Mo-MPT intermediate on MobA prior to nucleotide attachment. The addition of Mg-GTP to MobA loaded with bis-Mo-MPT resulted in formation and release of the final bis-MGD product. This cofactor was fully functional and reconstituted the catalytic activity of apo-TMAO reductase (TorA). We propose a reaction sequence for bis-MGD formation, which involves 1) the formation of bis-Mo-MPT, 2) the addition of two GMP units to form bis-MGD on MobA, and 3) the release and transfer of the mature cofactor to the target protein TorA, in a reaction that is supported by the specific chaperone TorD, resulting in an active molybdoenzyme.  相似文献   

4.
5.
Molybdoenzymes are involved in a variety of essential pathways including nitrate assimilation, sulfur and/or purine metabolism and abscisic acid biosynthesis. Most organisms produce several such enzymes requiring a molybdopterin cofactor for catalytic function. Mutations that result in a lack of the molybdopterin cofactor display a pleiotropic loss of molybdoenzyme activities, and this phenotype has been used to identify genes involved in cofactor biosynthesis or utilization. Although several cofactor genes have been analyzed in prokaryotes, much less is known concerning eukaryotic molybdenum cofactor (MoCF) genes. This work is focused on the Drosophila MoCF gene cinnamon (cin) which encodes a multidomain protein, CIN, that shows significant similarity to three proteins encoded by separate prokaryotic MoCF genes. These domains are also present in the product of cnx1, an Arabidopsis MoCF gene, and in GEPHYRIN, a rat protein thought to organize the glycine receptor, GlyR, within the postsynaptic membrane. Since this apparent consolidation of separate prokaryotic genes into a single eukaryotic gene is a feature of other conserved metabolic pathways, we wished to determine whether the protein's function is also conserved. This report shows that the plant gene cnx1 can rescue both enzymatic and physiological defects of Drosophila carrying cin mutations, indicating that the two genes serve similar or identical functions. In addition, we have investigated the relationship between CINNAMON and GEPHYRIN, using immunohistochemical methods to localize the CIN protein in Drosophila embryos. Most of the CIN protein, like GEPHYRIN in the rat CNS, is localized to the cell borders and shows a tissue-specific pattern of expression. In a parallel study, antibody to GEPHYRIN revealed the same tissue-specific expression pattern in fly embryos. Both antibodies show altered staining patterns in cin mutants. Taken together, these results suggest that GEPHYRIN may also carry out a MoCF-related function.  相似文献   

6.
The final stages of bacterial molybdenum cofactor (Moco) biosynthesis correspond to molybdenum chelation and nucleotide attachment onto an unique and ubiquitous structure, the molybdopterin. Using a bacterial two-hybrid approach, here we report on the in vivo interactions between MogA, MoeA, MobA, and MobB implicated in several distinct although linked steps in Escherichia coli. Numerous interactions among these proteins have been identified. Somewhat surprisingly, MobB, a GTPase with a yet unclear function, interacts with MogA, MoeA, and MobA. Probing the effects of various mo. mutations on the interaction map allowed us (i) to distinguish Moco-sensitive interactants from insensitive ones involving MobB and (ii) to demonstrate that molybdopterin is a key molecule triggering or facilitating MogA-MoeA and MoeA-MobA interactions. These results suggest that, in vivo, molybdenum cofactor biosynthesis occurs on protein complexes rather than by the separate action of molybdenum cofactor biosynthetic proteins.  相似文献   

7.
Molybdoenzymes are involved in a variety of essential pathways including nitrate assimilation, sulfur and/or purine metabolism and abscisic acid biosynthesis. Most organisms produce several such enzymes requiring a molybdopterin cofactor for catalytic function. Mutations that result in a lack of the molybdopterin cofactor display a pleiotropic loss of molybdoenzyme activities, and this phenotype has been used to identify genes involved in cofactor biosynthesis or utilization. Although several cofactor genes have been analyzed in prokaryotes, much less is known concerning eukaryotic molybdenum cofactor (MoCF) genes. This work is focused on the Drosophila MoCF gene cinnamon (cin) which encodes a multidomain protein, CIN, that shows significant similarity to three proteins encoded by separate prokaryotic MoCF genes. These domains are also present in the product of cnx1, an Arabidopsis MoCF gene, and in GEPHYRIN, a rat protein thought to organize the glycine receptor, GlyR, within the postsynaptic membrane. Since this apparent consolidation of separate prokaryotic genes into a single eukaryotic gene is a feature of other conserved metabolic pathways, we wished to determine whether the protein's function is also conserved. This report shows that the plant gene cnx1 can rescue both enzymatic and physiological defects of Drosophila carrying cin mutations, indicating that the two genes serve similar or identical functions. In addition, we have investigated the relationship between CINNAMON and GEPHYRIN, using immunohistochemical methods to localize the CIN protein in Drosophila embryos. Most of the CIN protein, like GEPHYRIN in the rat CNS, is localized to the cell borders and shows a tissue-specific pattern of expression. In a parallel study, antibody to GEPHYRIN revealed the same tissue-specific expression pattern in fly embryos. Both antibodies show altered staining patterns in cin mutants. Taken together, these results suggest that GEPHYRIN may also carry out a MoCF-related function. Received: 14 September 1998 / Accepted: 8 March 1999  相似文献   

8.
Molybdenum cofactor deficiency (MIM 252150) is a rare progressive neurodegenerative disorder with about 100 cases reported worldwide. We have identified a male with molybdenum cofactor deficiency and analyzed the molybdenum cofactor synthesis (MOCS)1 gene, MOCS2 gene, MOCS3 gene and GEPH gene. We homozygously identified the CGA insertion after A666 of the MOCS1 gene which produces arginine insertion at codon 222 of MOCS1A. The parents, his brother and his sister who did not have any symptoms were heterozygous for the same mutation. This region was highly conserved in various species. The N-terminal part of MOCS1 a protein is suggested to form the central core of the protein and be composed of an incomplete [(alpha/beta)6] triosephosphate isomerase (TIM) barrel with a lateral opening that is covered by the C-terminal part of the protein. The insertion is located in the loop connecting the fifth beta strand to the sixth alpha helices of the TIM barrel structure. This arginine insertion would induce the conformation change and the lack of the activity.  相似文献   

9.
The molybdenum cofactor (Moco) is a prosthetic group required by a number of enzymes, such as nitrate reductase, sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Its biosynthesis in eukaryotes can be divided into four steps, of which the last three are proposed to occur in the cytosol. Here, we report that the mitochondrial ABC transporter ATM3, previously implicated in the maturation of extramitochondrial iron-sulfur proteins, has a crucial role also in Moco biosynthesis. In ATM3 insertion mutants of Arabidopsis thaliana, the activities of nitrate reductase and sulfite oxidase were decreased to ∼50%, whereas the activities of xanthine dehydrogenase and aldehyde oxidase, whose activities also depend on iron-sulfur clusters, were virtually undetectable. Moreover, atm3 mutants accumulated cyclic pyranopterin monophosphate, the first intermediate of Moco biosynthesis, but showed decreased amounts of Moco. Specific antibodies against the Moco biosynthesis proteins CNX2 and CNX3 showed that the first step of Moco biosynthesis is localized in the mitochondrial matrix. Together with the observation that cyclic pyranopterin monophosphate accumulated in purified mitochondria, particularly in atm3 mutants, our data suggest that mitochondria and the ABC transporter ATM3 have a novel role in the biosynthesis of Moco.  相似文献   

10.
11.
The molybdenum cofactor is shared by nitrate reductase (NR), xanthine dehydrogenase (XDH), and abscisic acid (ABA) aldehyde oxidase in higher plants (M. Walker-Simmons, D.A. Kudrna, R.L. Warner [1989] Plant Physiol 90:728-733). In agreement with this, cnx mutants are simultaneously deficient for these three enzyme activities and have physiological characteristics of ABA-deficient plants. In this report we show that aba1 mutants, initially characterized as ABA-deficient mutants, are impaired in both ABA aldehyde oxidase and XDH activity but overexpress NR. These characteristics suggest that aba1 is in fact involved in the last step of molybdenum cofactor biosynthesis specific to XDH and ABA aldehyde oxidase; aba1 probably has the same function as hxB in Aspergillus. The significance of NR overexpression in aba1 mutants is discussed.  相似文献   

12.
13.
Molybdopterin guanine dinucleotide (MGD) is the form of the molybdenum cofactor that is required for the activity of most bacterial molybdoenzymes. MGD is synthesized from molybdopterin (MPT) and GTP in a reaction catalyzed by the MobA protein. Here we report that wild type MobA can be copurified along with bound MPT and MGD, demonstrating a tight binding of both its substrate and product. To study structure-function relationships, we have constructed a number of site-specific mutations of the most highly conserved amino acid residues of the MobA protein family. Variant MobA proteins were characterized for their ability to support the synthesis of active molybdenum enzymes, to bind MPT and MGD, to interact with the molybdenum cofactor biosynthesis proteins MobB and MoeA. They were also characterized by x-ray structural analysis. Our results suggest an essential role for glycine 15 of MobA, either for GTP binding and/or catalysis, and an involvement of glycine 82 in the stabilization of the product-bound form of the enzyme. Surprisingly, the individual and double substitution of asparagines 180 and 182 to aspartate did not affect MPT binding, catalysis, and product stabilization.  相似文献   

14.
15.
16.
Amidoximes can be used as prodrugs for amidines and related functional groups to enhance their intestinal absorption. These prodrugs are reduced to their active amidines. Other N-hydroxylated structures are mutagenic or responsible for toxic effects of drugs and are detoxified by reduction. In this study, a N-reductive enzyme system of pig liver mitochondria using benzamidoxime as a model substrate was identified. A protein fraction free from cytochrome b5 and cytochrome b5 reductase was purified, enhancing 250-fold the minor benzamidoxime-reductase activity catalyzed by the membrane-bound cytochrome b5/NADH cytochrome b5 reductase system. This fraction contained a 35-kDa protein with homologies to the C-terminal domain of the human molybdenum cofactor sulfurase. Here it was demonstrated that this 35-kDa protein contains molybdenum cofactor and forms the hitherto ill defined third component of the N-reductive complex in the outer mitochondrial membrane. Thus, the 35-kDa protein represents a novel group of molybdenum proteins in eukaryotes as it forms the catalytic part of a three-component enzyme complex consisting of separate proteins. Supporting these findings, recombinant C-terminal domain of the human molybdenum cofactor sulfurase exhibited N-reductive activity in vitro, which was strictly dependent on molybdenum cofactor.  相似文献   

17.
The molybdenum cofactor is ubiquitous in nature, and the pathway for Moco biosynthesis is conserved in all three domains of life. Recent work has helped to illuminate one of the most enigmatic steps in Moco biosynthesis, ligation of metal to molybdopterin (the organic component of the cofactor) to form the active cofactor. In Escherichia coli, the MoeA protein mediates ligation of Mo to molybdopterin while the MogA protein enhances this process in an ATP-dependent manner. The X-ray crystal structures for both proteins have been previously described as well as two essential MogA residues, Asp49 and Asp82. Here we describe a detailed mutational analysis of the MoeA protein. Variants of conserved residues at the putative active site of MoeA were analyzed for a loss of function in two different, previously described assays, one employing moeA- crude extracts and the other utilizing a defined system. Oddly, no correlation was observed between the activity in the two assays. In fact, our results showed a general trend toward an inverse relationship between the activity in each assay. Moco binding studies indicated a strong correlation between a variant's ability to bind Moco and its activity in the purified component assay. Crystal structures of the functionally characterized MoeA variants revealed no major structural changes, indicating that the functional differences observed are not due to disruption of the protein structure. On the basis of these results, two different functional areas were assigned to regions at or near the MoeA active site cleft.  相似文献   

18.
In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Förster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.  相似文献   

19.
The soluble subcellular fraction of a chlB mutant contains an inactive precursor form of the molybdoenzyme nitrate reductase, which can be activated by the addition to the soluble fraction of protein FA, which is thought to be the active product of the chlB locus. Dialysis or desalting of the chlB soluble fraction leads to the loss of nitrate reductase activation, indicating that some low-molecular-weight material is required for the activation. The protein FA-dependent activation of nitrate reductase can be restored to the desalted chlB soluble fraction by the addition of a clarified extract obtained after heating the chlB soluble fraction at 100 degrees C for 8 min. The heat-stable substance present in this preparation has a molecular weight of approximately 1,000. This substance is distinct from the active molybdenum cofactor since its activity is unimpaired in heat-treated extracts prepared from the organism grown in the presence of tungstate, which leads to loss of cofactor activity. Mutations at the chlA or chlE locus, which are required for molybdenum cofactor biosynthesis, similarly do not affect the activity of the heat-treated extract in the in vitro activation process. Moreover, the active material can be separated from the molybdenum cofactor activity by gel filtration. None of the other known pleiotropic chlorate resistance loci (chlD, chlG) are required for the expression of its activity. Magnesium ATP appears to have a role in the formation of the active substance. We conclude that a low-molecular-weight substance, distinct from the active molybdenum cofactor, is required to bestow activity on the molybdoenzyme nitrate reductase during its biosynthesis.  相似文献   

20.
The apo-nitrate reductase precursor in an Escherichia coli chlB mutant preparation obtained following growth in the presence of tungstate is activated by incubation with protein FA and a heat-treated preparation from an E. coli crude extract. We show that the requirement for heat-treated E. coli crude extract can be fulfilled by material obtained from either of two heat-denatured purified E. coli molybdoenzymes, namely nitrate reductase or trimethylamine N-oxide reductase. Apo-trimethylamine N-oxide reductase precursor in the tungstate-grown chlB preparation can be activated in a similar manner with material from either heat-denatured molybdoenzyme. The active component in the denatured molybdoenzyme preparations is shown to be the molybdenum cofactor by Neurospora crassa nit1 molybdenum cofactor assay, size estimation and fluorimetric analysis. The direct demonstration of the requirement for molybdenum cofactor in the E. coli tungstate-grown chlB complementation system is an important step towards the molecular definition of the activation process and an understanding of the mechanism of cofactor acquisition during molybdoenzyme biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号