首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Bacillus anthracis BA2291 gene codes for a sensor histidine kinase involved in the induction of sporulation. Genes for orthologs of the sensor domain of the BA2291 kinase exist in virulence plasmids in this organism, and these proteins, when expressed, inhibit sporulation by converting BA2291 to an apparent phosphatase of the sporulation phosphorelay. Evidence suggests that the sensor domains inhibit BA2291 by titrating its activating signal ligand. Studies with purified BA2291 revealed that this kinase is uniquely specific for GTP in the forward reaction and GDP in the reverse reaction. The G1 motif of BA2291 is highly modified from ATP-specific histidine kinases, and modeling this motif in the structure of the kinase catalytic domain suggested how guanine binds to the region. A mutation in the putative coiled-coil linker between the sensor domain and the catalytic domains was found to decrease the rate of the forward autophosphorylation reaction and not affect the reverse reaction from phosphorylated Spo0F. The results suggest that the activating ligand for BA2291 is a critical signal for sporulation and in a limited concentration in the cell. Decreasing the response to it either by slowing the forward reaction through mutation or by titration of the ligand by expressing the plasmid-encoded sensor domains switches BA2291 from an inducer to an inhibitor of the phosphorelay and sporulation.  相似文献   

3.
4.
Incubation of Bacillus subtilis after outgrowth from spores in the presence of four different antibiotics in two different concentrations, showed that septation can occur without termination of nuclear division. Septation is then only partially uncoupled from the normal division cycle. Observations on location and development of mesosomes in the presence of the antibiotics, made in three-dimensional cell reconstructions, suggest that the mesosome plays a role in the normal coordination between nuclear and cell division, and may explain the partial independence between these two processes in B. subtilis.with technical assistance of Catherine J. SchaapThis work has been presented in part at the A.S.M. Conference on Bacilli: Biochemical Genetics, Physiology and Industrial Applications; 6–9 Aug, 1975, Ithaca, N.Y.  相似文献   

5.
We demonstrated in vitro that YycG-YycF of Bacillus subtilis constitutes a two-component system and shows a specificity of the sensor protein for the cognate phosphorylation partner. Based on inhibition of such an autophosphorylation of YycG, we searched imidazole and zerumbone derivatives to identify the antibacterial agents such as NH125, NH126, NH127, and NH0891.  相似文献   

6.
The Bacillus subtilis KinD signal‐transducing histidine kinase is a part of the sporulation phosphorelay known to regulate important developmental decisions such as sporulation and biofilm formation. We have determined crystal structures of the extracytoplasmic sensing domain of KinD, which was copurified and crystallized with a pyruvate ligand. The structure of a ligand‐binding site mutant was also determined; it was copurified and crystallized with an acetate ligand. The structure of the KinD extracytoplasmic segment is similar to that of several other sensing domains of signal transduction proteins and is composed of tandem Per‐Arnt‐Sim (PAS)‐like domains. The KinD ligand‐binding site is located on the membrane distal PAS‐like domain and appears to be highly selective; a single mutation, R131A, abolishes pyruvate binding and the mutant binds acetate instead. Differential scanning fluorimetry, using a variety of monocarboxylic and dicarboxylic acids, identified pyruvate, propionate, and butyrate but not lactate, acetate, or malate as KinD ligands. A recent report found that malate induces biofilm formation in a KinD‐dependent manner. It was suggested that malate might induce a metabolic shift and increased secretion of the KinD ligand of unknown identity. The structure and binding assays now suggests that this ligand is pyruvate and/or other small monocarboxylic acids. In summary, this study gives a first insight into the identity of a molecular ligand for one of the five phosphorelay kinases of B. subtilis.  相似文献   

7.
8.
Inhibition of d-alanine carboxypeptidase in Bacillus subtilis by 95% caused no measurable change in the degree of cross-linking of the peptidoglycan.  相似文献   

9.
The initiation of sporulation in Bacillus subtilis results primarily from phosphoryl group input into the phosphorelay by histidine kinases, the major kinase being kinase A. Kinase A is active as a homodimer, the protomer of which consists of an approximately 400-amino-acid N-terminal putative signal-sensing region and a 200-amino-acid C-terminal autokinase. On the basis of sequence similarity, the N-terminal region may be subdivided into three PAS domains: A, B, and C, located from the N- to the C-terminal end. Proteolysis experiments and two-hybrid analyses indicated that dimerization of the N-terminal region is accomplished through the PAS-B/PAS-C region of the molecule, whereas the most amino-proximal PAS-A domain is not dimerized. N-terminal deletions generated with maltose binding fusion proteins showed that an intact PAS-A domain is very important for enzymatic activity. Amino acid substitution mutations in PAS-A as well as PAS-C affected the in vivo activity of kinase A, suggesting that both PAS domains are required for signal sensing. The C-terminal autokinase, when produced without the N-terminal region, was a dimer, probably because of the dimerization required for formation of the four-helix-bundle phosphotransferase domain. The truncated autokinase was virtually inactive in autophosphorylation with ATP, whereas phosphorylation of the histidine of the phosphotransfer domain by back reactions from Spo0F~P appeared normal. The phosphorylated autokinase lost the ability to transfer its phosphoryl group to ADP, however. The N-terminal region appears to be essential both for signal sensing and for maintaining the correct conformation of the autokinase component domains.  相似文献   

10.
The fluid mosaic model of membrane structure has been revised in recent years as it has become evident that domains of different lipid composition are present in eukaryotic and prokaryotic cells. Using membrane binding fluorescent dyes, we demonstrate the presence of lipid spirals extending along the long axis of cells of the rod-shaped bacterium Bacillus subtilis. These spiral structures are absent from cells in which the synthesis of phosphatidylglycerol is disrupted, suggesting an enrichment in anionic phospholipids. Green fluorescent protein fusions of the cell division protein MinD also form spiral structures and these were shown by fluorescence resonance energy transfer to be coincident with the lipid spirals. These data indicate a higher level of membrane lipid organization than previously observed and a primary role for lipid spirals in determining the site of cell division in bacterial cells.  相似文献   

11.
12.
13.
14.
We have cloned and sequenced the promoter-proximal region of the Bacillus subtilis operon containing the pbpB gene, encoding essential penicillin-binding protein PBP2B. The first two genes in the operon, designated yllB and yllC, are significantly similar to genes of unknown function similarly positioned upstream of pbpB in Escherichia coli. Both B. subtilis genes are shown to be nonessential. The third B. subtilis gene, yllD, is essential, as is the correspondingly positioned ftsL gene of E. coli. The predicted product of yllD is similar to FtsL in size and distribution of charged residues but is not significantly related in primary amino acid sequence. The major promoter for the cluster lies upstream of the first gene, yllB, but at least one minor promoter lies within the yllC gene. The operon is transcribed throughout growth at a low level.  相似文献   

15.
The rate of turnover of peptidoglycan in exponentially growing cultures of Bacillus subtilis was observed to be sensitive to extracellular protease. In protease-deficient mutants the rates of cell wall turnover were greater than that of wild-type strain 168, whereas hyperprotease-producing strains exhibited decreased rates of peptidoglycan turnover. The rate of peptidogylcan turnover in a protease-deficient strain was decreased when the mutant was grown in the presence of a hyperprotease-producing strain. The addition of phenylmethylsulfonyl fluoride, a serine protease inhibitor, to cultures of hyperprotease-producing strains increased their rates of cell wall turnover. Isolated cell walls of all protease mutants contained autolysin levels equal to or greater than that of wild-type strain 168. The presence of filaments, or cells with incomplete septa, was observed in hyperprotease-producing strains or when a protease-deficient strain was grown in the presence of subtilisin. The results suggest that the turnover of cell walls in B. subtilis may be regulated by extracellular proteases.  相似文献   

16.
Cosegregation of cell wall and DNA in Bacillus subtilis.   总被引:8,自引:7,他引:1       下载免费PDF全文
Cosegregation of cell wall and DNA of a lysis-negative mutant of Bacillus subtilis was examined by continuously labeling (i) cell wall, (ii) DNA, and (iii) both cell wall and DNA. After four to five generations of chase in liquid media it was found by light microscope autoradiography that the numbers of wall segregation units per cell are 29 and 9 in rich and minimal medium, respectively. Under the same conditions the numbers of segregation units of DNA were almost 50% lower: 15 and 5, respectively. Simultaneous labeling of cell wall and DNA (iii) provided figures almost identical to those obtained for cell wall alone, (i), implying cosegregation of the two components. Statistical analysis ruled out their random distribution into daughter cells. Measurements of the positions of grain clusters at the end of the chase period along chains of cells, each derived from a single cell at the beginning of chase, show that cell wall units are localized according to a symmetrical pattern, whereas those of DNA are distributed in an asymmetrical but highly regular way. It appears that of two cell wall units of the same age one only has a strand of DNA attached to it. We present a simple diagrammatic model of cell wall organization and DNA-cell wall association which is compatible with our observations. Finally, we discuss previous experiments pertinent to cosegregation of cell wall and DNA obtained with cells grown on solid media as well as with germinating spores; an explanation for the independent segregation of cell wall and DNA observed in the latter case is advanced.  相似文献   

17.
Genetic basis of histidine degradation in Bacillus subtilis   总被引:13,自引:0,他引:13  
  相似文献   

18.
19.
Insertion and fate of the cell wall in Bacillus subtilis   总被引:8,自引:4,他引:8       下载免费PDF全文
Cell wall assembly was studied in autolysin-deficient and -sufficient strains of Bacillus subtilis. Two independent probes, one for peptidoglycan and the other for surface-accessible teichoic acid, were employed to monitor cell surface changes during growth. Cell walls were specifically labeled with N-acetyl-D-[3H]glucosamine, and after growth, autoradiographs were prepared for both cell types. The locations of silver grains revealed that label was progressively lost from numerous sites on the cell cylinders, whereas label was retained on the cell poles, even after several generations. In the autolysin-deficient and chain-forming strain, it was found that the distance between densely labeled poles approximately doubled after each generation of growth. In the autolysin-sufficient strain, it was found that the numbers of labeled cell poles remained nearly constant for several generations, supporting the premise that completed septa and poles are largely conserved during growth. Fluorescein-conjugated concanavalin A was also used to determine the distribution of alpha-D-glucosylated teichoic acid on the surfaces of growing cells. Strains with temperature-sensitive phosphoglucomutase were used because in these mutants, glycosylation of cell wall teichoic acids can be controlled by temperature shifts. When the bacteria were grown at 45 degrees C, which stops the glucosylation of teichoic acid, the cells gradually lost their ability to bind concanavalin A on their cylindrical surfaces, but they retained concanavalin A-reactive sites on their poles. Discrete areas on the cylinder, defined by the binding of fluorescent concanavalin A, were absent when the synthesis of glucosylated teichoic acid was inhibited during growth for several generations at the nonpermissive temperature. When the mutant was shifted from a nonpermissive to a permissive temperature, all areas of the cylinder became able to bind the labeled concanavalin A after about one-half generation. Old cell poles were able to bind the lectin after nearly one generation at the permissive temperature, showing that new wall synthesis does occur in the cell poles, although it occurs slowly. These data, based on both qualitative and quantitative experiments, support a model for cell wall assembly in B. subtilis, in which cylinders elongate by inside-to-outside growth, with degradation of the stress-bearing old wall in wild-type organisms. Loss of wall material, by turnover, from many sites on the cylinder may be necessary for intercalation of new wall and normal length extension. Poles tend to retain their wall components during division and are turned over much more slowly.  相似文献   

20.
The cell division gene divIB of Bacillus subtilis is essential for the normal rate of growth and division. The gene product, DivIB, is a membrane-bound protein in which the bulk of the protein (at the C-terminal end) is on the exterior surface of the cell membrane. DivIB is involved in the early stages of septum formation, but its exact role in cell division is unknown. To gain more information about the mode of action of DivIB in septum formation, we determined the location of DivIB within the cell membrane using immunofluorescence. This immunolocalization approach established that DivIB becomes localized to the division site before visible septation and remains localized to this site throughout the division process. Various DivIB immunostaining patterns were observed in immunofluorescence experiments and, together with cell length and nucleoid distance measurements, have allowed us to propose two models to describe DivIB localization during the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号