首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
For many ecosystems, one of the primary avenues of climate impact may be through changes to foundation species, which create habitats and sustain ecosystem services. For plants, microbial symbionts can often act as mutualists under abiotic stress and may mediate foundational plant responses to climate change. We manipulated the presence of endophytes in Ammophila breviligulata, a foundational sand dune species, to evaluate their potential to influence plant responses to climate change. We simulated projected climate change scenarios for temperature and precipitation using a growth chamber experiment. A 5 °C increase in temperature relative to current climate in northern Michigan reduced A. breviligulata survival by 45 %. Root biomass of A. breviligulata, which is critical to dune stabilization, was also strongly reduced by temperature. Plants inoculated with the endophyte had 14 % higher survival than endophyte-free plants. Contrary to our prediction, endophyte symbiosis did not alter the magnitude or direction of the effects of climate manipulations on A. breviligulata survival. However, in the absence of the endophyte, an increase in temperature increased the number of sand grains bound by roots by 80 %, while in symbiotic plants sand adherence did not significantly respond to temperature. Thus, plant–endophyte symbiosis actually negated the benefits in ecosystem function gained under a warmer climate. This study suggests that heat stress related to climate change in the Great Lakes may compromise the ability of A. breviligulata to stabilize dune ecosystems and reduce carbon storage and organic matter build-up in these early-successional systems due to reduced plant survival and root growth.  相似文献   

2.
低磷供应对拟南芥根系构型的影响   总被引:2,自引:1,他引:2  
王学敏 《植物研究》2010,30(4):496-502
在人工气候箱中,采用Johnson培养基对拟南芥在低磷供应条件下根系构型的变化进行了研究,结果表明:拟南芥在磷饥饿诱导下,主根缩短,侧根密度、根毛的数量和长度显著增加,并且,根尖到第一侧根和第一根毛的距离也大大缩短。这些改变增加了根系比表面积,并且使得根系分布更加靠近土壤表层,有利于提高植物吸收土壤中有机磷的效率。低磷胁迫还导致拟南芥根系分生组织区细胞形状变异,柱细胞数量减少;主根生长和细胞伸长的动力学分析显示,磷饥饿促使拟南芥主根生长变缓,细胞长度随磷饥饿程度的加深迅速缩小。CycB1;1:GUS染色分析结果表明,低磷破坏拟南芥根系分生组织细胞分裂能力,这些结果说明磷胁迫同时抑制了细胞的伸长和分裂,从而引起拟南芥主根的缩短。  相似文献   

3.
The seminal root system of wheat (Triticum aestivum L.) is composed of the primary seminal root, the first pair of seminal roots, and the second pair of seminal roots, which are known to grow in different directions. The direction of root growth, which can be expressed by ϑ (the angle between the root and the plumb line) and φ (the angle between the root and a vertical plane including the primary seminal root), was studied with special attention to the latter. It was measured on seedlings grown in a small hemispherical soil-filled mesh basket. There were varietal differences in the φ of the first pair of roots (φf) and in the φ of the second pair of roots (φs). (φf) and (φs) were significantly correlated. The mean distance (MD), a measure to evaluate the efficiency of root spacing, was correlated with the difference between (φf) and (φs). Neither experimentally applied low soil water potential nor the excision of the primary seminal root affected φ. When the grain was sown vertically with the tip of the embryo pointing downwards, it was found that the growth movement into a direction different from the plumb line and (φs) was greatly modified. it is suggested that certain internal mechanisms, possibly involving gravitropic reactions, are operating to control the direction of root growth. The significance of root growth direction at the seedling stage is discussed.  相似文献   

4.
The effect of the low temperature (+4°C) on the organization of actin filaments (microfilaments) of cells from different growth zones has been studied in the roots of Arabidopsis thaliana (L.). It was found that cold treatment inhibited the growth of the primary root and changed its morphology, causing a formation of large number of deformed (ectopic) root hairs in differentiation zone. The temporal relationship between the disorientation and the organization of actin filaments and the detected changes of growth and morphology of roots after cold treatment was shown. It has been found that actin filaments of root hairs, meristematic cells, cells of elongation zone, and epidermal cells of all root zones of A. thaliana are the most sensitive to the cold.  相似文献   

5.
Mirza JI 《Plant physiology》1987,83(1):118-120
In an attempt to study and distinguish the effects of light and gravity on the direction of horizontal root growth, wild-type and an agravitropic mutant of Arabidopsis thaliana L., aux-1 were examined. The mutant aux-1 seedling roots are agravitropic but do respond to light, thus allowing the effects of light and gravity on roots to be studied separately. It is shown that in addition to the recognized negative phototropic and positive gravitropic responses of the root, there are also horizontal curvatures (clockwise or counterclockwise) induced by both unilateral light and gravity. The effects of light and gravity in inducing the horizontal curvature of roots are synergistic when both act in the same direction, and are antagonistic when acting in opposite directions. The results indicate that light and gravity interact to determine the direction and magnitude of the horizontal curvature of roots.  相似文献   

6.
The effect of arbuscular mycorrhizal (AM) fungus, Glomus etunicatum, on growth, water status, chlorophyll concentration and photosynthesis in maize (Zea mays L.) plants was investigated in pot culture under low temperature stress. The maize plants were placed in a sand and soil mixture at 25°C for 7 weeks, and then subjected to 5°C, 15°C and 25°C for 1 week. Low temperature stress decreased AM root colonization. AM symbiosis stimulated plant growth and had higher root dry weight at all temperature treatments. Mycorrhizal plants had better water status than corresponding non-mycorrhizal plants, and significant differences were found in water conservation (WC) and water use efficiency (WUE) regardless of temperature treatments. AM colonization increased the concentrations of chlorophyll a, chlorophyll b and chlorophyll a + b. The maximal fluorescence (Fm), maximum quantum efficiency of PSII primary photochemistry (Fv/Fm) and potential photochemical efficiency (Fv/Fo) were higher, but primary fluorescence (Fo) was lower in AM plants compared with non-AM plants. AM inoculation notably increased net photosynthetic rate (Pn) and transpiration rate (E) of maize plants. Mycorrhizal plants had higher stomatal conductance (gs) than non-mycorrhizal plants with significant difference only at 5°C. Intercellular CO2 concentration (Ci) was lower in mycorrhizal than that in non-mycorrhizal plants, especially under low temperature stress. The results indicated that AM symbiosis protect maize plants against low temperature stress through improving the water status and photosynthetic capacity.  相似文献   

7.

Background and Aims

As part of a study on growth of tree roots in hostile soil, we envisaged that establishment and survival of trees on hard, dry soil may depend on their ability to exert axial root growth pressures of similar magnitude to those of the roots of agricultural plants (with significant root thickening when roots grow across an air gap or cracks and biopores). We selected tree species originating from a range of different soil and climatic conditions to evaluate whether their relative success on harsh soil (in an evolutionary sense) might be related to the magnitude of root growth pressures they could exert, or how they performed in the very early stages of growth after germination.

Methods

We measured the maximum axial root growth force (Fmax) on single lateral root axes of 3- to 4- month old seedlings of 6 small-seeded eucalypts from 2 different habitats and 2 contrasting soil types. Root growth rate, root diameter and Fmax were also measured on the primary root axes of a large-seeded acacia and a domesticated annual (Pisum sativum) seedling for up to 10 days following germination.

Results

The lateral roots of the 6 eucalypts and the primary roots of the acacia were considerably smaller than the primary roots of P. sativum and they exerted average forces of similar magnitude to one another (0.198 to 0.312 N). The maximum axial root growth pressures were all in the range 150 to 250 kPa but E. leucoxylon, E. loxophleba and A. salicina exerted the greatest pressures among the trees, and comparable pressures to those exerted by the primary roots of 2-day-old P. sativum (211-252 kPa). Although the primary roots of acacia seedlings exerted increasing axial root growth pressures over a 10-day period following germination, the pressures were still only slightly greater than those of the domesticated plant, P. sativum.

Conclusions

The lack of any very large differences in axial root growth pressures between trees and domesticated plants suggests that trees that grow well in harsh soil don’t do so by exerting higher root growth pressures alone but by also exploring the network of cracks and pores more effectively than do other plants that are less successful.  相似文献   

8.
In the range 16 to 29°C, increases in temperature caused large (two-to threefold) increases in growth velocity, growth strain rate, and biomass deposition rate in primary roots of maize, Zea mays L. Temperature had small effects on root diameter, fresh weight density, and dry weight density, and negligible effects on length of the growth zone and growth strain at particular positions.  相似文献   

9.
Kato  Ryoichi 《Plant & cell physiology》1988,29(7):1215-1219
Caryopses with primary roots of Zea mays L. (cv. Golden CrossBantam 70) were incubated on agar-solidified distilled water(0.4% agar) in a magnetic field of 5 k gauss or 0.01 k gauss(control), the direction of root growth corresponding to thedirection of magnetic field from the north- to the south-seekingpole. The rate of growth of the roots exposed to 5 k gauss wasincreased by about 25% over that of the controls (0.01 k gauss).When caryopses with primary roots were incubated on agar-solidifieddistilled water that had previously been exposed to a magneticfield of 5 k gauss or 0.01 k gauss, no differences in ratesof root growth were observed. The growth rate of the primaryroot increased with increased magnetic flux density (from 0.01k to 5 k gauss). The orientation of the root in terms of thedirection of the magnetic field (from the north- to the south-seekingpole) affected the rate of growth of the root. When the directionof root growth was in line with the direction of the magneticfield of 5 k gauss or in the direction opposite to that of thefield, growth rates increased by 27% and 22%, respectively,of the growth rate of the controls (magnetic field of 0.01 kgauss). When the direction of growth was perpendicular to thedirection the field, the growth rate increased by 15% of thatof the control (0.01 k gauss). It appears that a magnetic stimulusmay induce an increase in the rate of root growth in some plantmaterials. (Received March 23, 1988; Accepted August 9, 1988)  相似文献   

10.
Vigorous early root growth at seedling stage has been shown to be important for efficient acquisition of nutrients in wheat (Triticum aestivum L.). Identifying quantitative trait loci (QTL) for early root growth can facilitate the selection of wheat varieties with efficient nutrient use. A recombinant inbred line population derived from two Chinese wheat varieties, Xiaoyan 54 and Jing 411, was grown hydroponically at seedling stage. The maximum root length (MRL), primary root length (PRL), lateral root length (LRL), total root length (TRL), and root tip number (RN) of seminal roots were measured using the WinRHIZO Root Analyser. Numerous QTL for the investigated root traits were detected with QTL numbers varying from two to six, depending on the traits. Among them, two loci had major effects on primary (MRL and PRL) and lateral (LRL and RN) root parameters, respectively. The QTL (namely qTaLRO-B1) between Xgwm210 and Xbarc1138.2 on chromosome 2B explained 68.0 and 59.0% of phenotypic variations in MRL and PRL, respectively; the major QTL between Xgwm570 and Xgwm169.2 on chromosome 6A explained 30.5 and 24.5% of phenotypic variations in LRL and RN, respectively. These two major loci showed linkage with previous reported QTL for yield component and nutrient uptake. Detailed analysis of qTaLRO-B1 indicated that the positive allele of qTaLRO-B1 showed dominance over the negative allele, which showed impairment in primary root elongation. The existence of major QTL for root trait and their linkage with agronomic traits and nutrient uptake will facilitate the design of root morphology for better yield performance and efficient nutrient use.  相似文献   

11.
The seminal root system of wheat (Triticum aestivum L.) is composed of the primary seminal root, the first pair of seminal roots, and the second pair of seminal roots, which are known to grow in different directions. The direction of root growth, which can be expressed by theta (the angle between the root and the plumb line) and phi (the angle between the root and a vertical plane including the primary seminal root), was studied with special attention to the latter. It was measured on seedlings grown in a small hemispherical soil-filled mesh basket. There were varietal differences in the phi of the first pair of roots (phi f) and in the phi of the second pair of roots (phi s). phi f and phi s were significantly correlated. The mean distance (MD), a measure to evaluate the efficiency of root spacing, was correlated with the difference between phi f and phi s. Neither experimentally applied low soil water potential nor the excision of the primary seminal root affected phi. When the grain was sown vertically with the tip of the embryo pointing downwards, it was found that the growth movement into a direction different from the plumb line and phi s was greatly modified. It is suggested that certain internal mechanisms, possibly involving gravitropic reactions, are operating to control the direction of root growth. The significance of root growth direction at the seedling stage is discussed.  相似文献   

12.

Key message

High root productions, especially in the fine roots, estimated by ingrowth cores were confirmed in mangrove forests. The zonal variation in root production was caused by inundation regime and soil temperature.

Abstract

Mangrove forests have high net primary productivity (NPP), and it is well known that these trees allocate high amounts of biomass to their root systems. In particular, fine root production (FRP) comprises a large component of the NPP. However, information on root production remains scarce. We studied FRP in three zones (Avicennia, Rhizophora, and Xylocarpus) of a mangrove forest in eastern Thailand using ingrowth cores (0–30 cm of soil depth). The root biomass and necromass were periodically harvested from the cores and weighed during the one-year study. The FRP was determined by summation of the fine root biomass (FRB) and root necromass. The results showed that the FRB clearly increased in the wet and cool dry seasons. Magnitude of FRB in the Rhizophora and Xylocarpus zones was 1171.07 and 764.23 g/m2/30 cm, respectively. The lowest FRB (292.74 g/m2/30 cm) was recorded in the Avicennia zone locating on the river edge where there is a greater frequency of inundation than the other zones. Root necromass was high in the Rhizophora and Xylocarpus zones, and accumulated noticeably when soil temperatures rapidly declined during the middle of the wet season to cool dry season. However, root necromass in the Avicennia zone varied within a small range. We attributed the small accumulation of root necromass in the Avicennia zone to the relative high soil temperature that likely caused a high root decomposition rate. The average FRP (3.403–4.079 ton/ha/year) accounted for 74.4, 81.5, and 92.4 % of the total root production in the Avicennia, Rhizophora, and Xylocarpus zone, respectively. The root production and causative factors (i.e., soil temperature and inundation regime) are discussed in relation to the carbon cycle of a mangrove forest.
  相似文献   

13.
Electric current precedes emergence of a lateral root in higher plants   总被引:3,自引:1,他引:2  
Stable electrochemical patterns appear spontaneously around roots of higher plants and are closely related to growth. An electric potential pattern accompanied by lateral root emergence was measured along the surface of the primary root of adzuki bean (Phaseolus angularis) over 21 h using a microelectrode manipulated by a newly developed apparatus. The electric potential became lower at the point where a lateral root emerged. This change preceded the emergence of the lateral root by about 10 h. A theory is presented for calculating two-dimensional patterns of electric potential and electric current density around the primary root (and a lateral root) using only data on the one-dimensional electric potential measured near the surface of the primary root. The development of the lateral root inside the primary root is associated with the influx of electric current of about 0.7 μA·cm−2 at the surface.  相似文献   

14.
Nakamoto  T.; Oyanagi  A. 《Annals of botany》1994,73(4):363-367
The seminal root system of wheat (Triticum aestivum L.) consistsof a primary seminal root and the first and second pair of seminalroots, counting upwards. These roots are plagiotropic. The directionof growth was estimated as the angle from the vertical for eachof the three types of seminal roots that protruded from a hemispherical,soil-filled basket buried in the field. The angle of growthvaried with cultivar. It was smallest in the primary seminalroot and largest in the second pair of roots in all 12 cultivarsgrown in the field. Attempts to modify the angle of growth weremade under controlled environmental conditions. When the grainwas sown with its embryo face down, the angle of growth of thefirst pair of roots became smaller in the cultivars with inherentlylarger angles. The excision of the primary seminal root affectedthe first pair of roots and the excision of the first pair affectedthe second pair. These effects comprised a decrease in the angleof growth and an increase in root diameter. These changes inthe angle of growth caused by root excision is interpreted asa kind of compensatory growth. The direction of root growthand its impact on shaping wheat root system is discussed.Copyright1994, 1999 Academic Press Compensatory growth, direction of growth, gravitropism, liminal angle, plagiotropism, seminal roots, Triticum aestivum L., wheat  相似文献   

15.

Background and Aims

Studies on the effects of sub- and/or supraoptimal temperatures on growth and phosphorus (P) nutrition of perennial herbaceous species at growth-limiting P availability are few, and the impacts of temperature on rhizosphere carboxylate dynamics are not known for any species.

Methods

The effect of three day/night temperature regimes (low, 20/13 °C; medium, 27/20 °C; and high, 32/25 °C) on growth and P nutrition of Cullen cinereum, Kennedia nigricans and Lotus australis was determined.

Key Results

The highest temperature was optimal for growth of C. cinereum, while the lowest temperature was optimal for K. nigricans and L. australis. At optimum temperatures, the relative growth rate (RGR), root length, root length per leaf area, total P content, P productivity and water-use efficiency were higher for all species, and rhizosphere carboxylate content was higher for K. nigricans and L. australis. Cullen cinereum, with a slower RGR, had long (higher root length per leaf area) and thin roots to enhance P uptake by exploring a greater volume of soil at its optimum temperature, while K. nigricans and L. australis, with faster RGRs, had only long roots (higher root length per leaf area) as a morphological adaptation, but had a higher content of carboxylates in their rhizospheres at the optimum temperature. Irrespective of the species, the amount of P taken up by a plant was mainly determined by root length, rather than by P uptake rate per unit root surface area. Phosphorus productivity was correlated with RGR and plant biomass.

Conclusions

All three species exhibited adaptive shoot and root traits to enhance growth at their optimum temperatures at growth-limiting P supply. The species with a slower RGR (i.e. C. cinereum) showed only morphological root adaptations, while K. nigricans and L. australis, with faster RGRs, had both morphological and physiological (i.e. root carboxylate dynamics) root adaptations.  相似文献   

16.
An imaging method was developed to evaluate crop species differences in root hair morphology using high resolution scanners, and to determine if the method could also detect root hair responses to soil water availability. High resolution (1890 picture elements (pixels) cm?1) desktop scanners were buried in containers filled with soil to characterize root hair development under two water availability levels (?63 and ?188?kPa) for canola (Brassica napus L. cv Clearwater), camelina (Camelina sativa L. Crantz cv Cheyenne), flax (Linum usitatissimum L. cv CDC Bethune), and lentil (Lens culinaris Medik. cv Brewer). There was notable effect of available moisture on root hair geometry (RHG). At ?188?kPa, length from the root tip to the root hair initiation zone decreased and root hair length (RHL) became more variable near the root hair initiation zone as compared to ?63?kPa. For the response of primary axial RHL, significant main effects were present for both water availability (P?<?0.05) and species (P?<?0.0001); lateral RHL showed a significant main effect for both water availability (P?<?0.05) and species (P?<?0.01) as well. For both primary axial and lateral root hair density (RHD), there was a significant effect of species (P?<?0.0001), but no significant response to water availability. No water availability x species interaction was present in any case. Low available water reduced RHL in both primary axial and lateral roots. The change in RHL due to water availability was most evident in canola and camelina. Additionally, those with greater RHL $ \left( {\text{canola} = \text{camelina} > \text{flax} = \text{lentil}} \right) $ had lower RHD $ \left( {\text{canola} = \text{camelina} < \text{flax} < \text{lentil}} \right) $ in primary axial roots and a similar trend was found in lateral RHL. Both water and species had a significant effect on primary axial root surface area (RSA) (P?<?0.05) but no significant effect was found for lateral RSA. For primary axial RSA the longest and most dense root hair had the greatest RSA. This novel approach to in situ rhizosphere imaging allowed observation of species differences in root hair development in response to water availability and should be useful in future studies of rhizosphere interactions and crop water and nutrient management.  相似文献   

17.
18.
Growth and cellular organization of the Arabidopsis root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled.  相似文献   

19.
Coumarin is a highly active allelopathic compound which plays a key role in plant–plant interactions and communications. It affects root growth and development of many species, but its mode of action has not been clarified yet. It has been hypothesized that auxin could mediate coumarin-induced effects on root system. Through morphological and pharmacological approaches together with the use of Arabidopsis auxin mutants, a possible interaction between coumarin and auxin in driving root system development has been investigated in Arabidopsis thaliana (Col-0). Coumarin strongly affected primary root elongation and lateral root development of Arabidopsis seedlings. In particular, 10?4 M coumarin significantly inhibited primary root elongation increasing lateral root number and root hairs length. Further, coumarin addition was able to restore the negative effects of TIBA and NPA, two auxin transport inhibitors, which caused a complete inhibition of lateral root formation. Arabidopsis auxin mutants differently responded to coumarin compared to wild type (Col-0). In particular, lax3 mutant showed the lowest (42 %) inhibition of primary root length, whereas, eir1-4 mutant had higher inhibition (53 %) compared to Col-0; conversely, aux1-22 mutant did not show any effect in response to coumarin. An increase of lateral root number was observed in pin1 mutant only. Finally, coumarin increased the root hairs length in eir1-4, lax3, pin1 and pin3-5 mutants, but not in aux1-22. These results suggested a functional interaction between coumarin and auxin polar transport in driving root development in A. thaliana.  相似文献   

20.
The effect of Heterodera avenae infestation on early seminal and lateral root growth was examined in four oat genotypes differing in tolerance to H. avenae. Recently emerged seminal roots were inoculated with a range of H. avenae larval densities, then transferred a hydroponic system to remove the effect of later nematode penetration on root development. Intolerance to H. avenae was assessed in terms of impairment of seminal root extension resulting in fewer primary lateral roots emerging from the seminal root below the zone of juvenile penetration. Tolerant plants infested with H. avenae had longer lateral root systems than infested intolerant plants. The decline in lateral root growth below the penetration zone was partly offset by increased growth above. This did not contribute to tolerance, however, as there were no differences between cultivars for this feature. Nematodes induced earlier nodal root emergence in all cultivars. Nodal root development was most advanced on the most tolerant cultivar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号