首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal heteromorphisms and DNA polymorphisms have been utilized to identify the mechanisms that lead to formation of human ovarian teratomas and to construct a gene-centromere map of chromosome 1 by using those teratomas that arise by meiotic nondisjunction. Of 61 genetically informative ovarian teratomas, 21.3% arose by nondisjunction at meiosis I, and 39.3% arose by meiosis II nondisjunction. Eight polymorphic marker loci on chromosome 1p and one marker on 1q were used to estimate a gene-centromere map. The results show clear linkage of the most proximal 1p marker (NRAS) and the most proximal 1q marker (D1S61) to the centromere at a distance of 14 cM and 20 cM, respectively. Estimated gene-centromere distances suggest that, while recombination occurs normally in ovarian teratomas arising by meiosis II errors, ovarian teratomas arising by meiosis I nondisjunction have altered patterns of recombination. Furthermore, the estimated map demonstrates clear evidence of chiasma interference. Our results suggest that ovarian teratomas can provide a rapid method for mapping genes relative to the centromere.  相似文献   

2.
By virtue of meiotic cell division, primordial germ cells with heterozygous alleles develop into postmeiotic germ cells with homozygous alleles. Female and male germ cells may develop tumors - so-called teratomas - with a unique co-existence of a variety of histological elements from all three embryonic germ layers. In particular, mature teratomas consist exclusively of developmentally mature tissues whereas immature teratomas contain variable amounts of mature and immature tissues. In this study, we report genetic analysis of individual tissue components from mature and immature teratomas. The majority of mature teratomas showed consistent and concordant homozygous alleles in all selectively procured tissue components. In a small subset of mature teratomas, we observed discordant homozygous alleles. In contrast, immature teratomatous tissue revealed a heterozygous genotype. Remarkably, mature tissue components within immature teratoma revealed homozygosity. The findings suggest that immature teratomas and at least a subset of mature teratomas may originate from premeiotic cells, and implicate that meiosis may be required for differentiation into mature tissues.  相似文献   

3.
Meiotic segregation of gonosomes from a 46,XY/47,XXY male was analysed by a three-colour fluorescence in situ hybridisation (FISH) procedure. This method allows the identification of hyperhaploid spermatozoa (with 24 chromosomes), diploid spermatozoa (with 46 chromosomes) and their meiotic origin (meiosis I or 11). Alpha satellite DNA probes specific for chromosomes X, Y and 1 were observed on 27,097 sperm nuclei. The proportions of X-and Y -bearing sperm were estimated to 52.78% and 43.88%, respectively. Disomy (24,XX, 24,YY, 24,X or Y,+1) and diploidy (46,XX, 46,YY, 46,XY) frequencies were close to those obtained from control sperm, whereas the frequency of hyperhaploid 24,XY spermatozoa (2.09%) was significantly increased compared with controls (0.36%). These results support the hypothesis that a few 47,XXY germ cells would be able to complete meiosis and to produce mature spermatozoa.  相似文献   

4.
Ovarian teratomas are tumors that arise from female germ cells and are often a mixture of immature embryonal carcinoma cells and mature embryonic cells. Tissues derived from all three primary embryonic lineages (ectoderm, mesoderm, and endoderm) are typically found in the mature elements of a teratoma. In the case of the transgenic mouse line TG.KD, created with an imprinted transgene construct, malignant ovarian teratomas of a mixed germ cell tumor morphology occur in 15–20% of hemizygous female carriers of the transgene. The tumors frequently metastasize and can result in death of the mouse. Genetic analysis indicates that the tumors are associated with the transgene's integration site. Inbred FVB/N and female mice of other transgenic lines, also created in the inbred FVB/N strain with the same DNA construct as TG.KD, do not develop teratomas. In addition to teratomas, the integration of the transgene on Chromosome (Chr) 8 is associated with a perinatal lethality in homozygous transgenic carriers. The hemizygous genotypes of the teratomas suggest that they arise from early germ cells, prior to the completion of meiosis I. Received: 31 August 1995 / Accepted: 3 November 1995  相似文献   

5.
N. Gupta, A. Rajwanshi, L. K. Dhaliwal, N. Khandelwal, P. Dey, R. Srinivasan and R. Nijhawan
Fine needle aspiration cytology in ovarian lesions: an institutional experience of 584 cases Objective: To assess the diagnostic value of fine needle aspiration cytology (FNAC) in ovarian lesions. Methods: This was a retrospective study of ultrasound‐guided (US) FNAC of 584 ovarian lesions from January 1998 to July 2010. The lesions were categorized into non‐neoplastic lesions, neoplastic lesions and inadequate aspirates. The results were compared with the corresponding histopathology whenever available. Results: Of the 584 lesions, 180 (30.8%) were reported as non‐neoplastic (48 non‐specific inflammation, 11 tuberculosis, 63 functional cysts and 58 endometriotic cysts), 249 (42.6%) as neoplastic (81 benign lesions/tumours and 168 malignant) and 155 (26.5%) as inadequate. Based on the subsequent histopathology, which was available in 121 (20.7%), the cases were divided into those that were concordant and discordant. Concordant cases comprised 92/121 (76%), including 28 non‐neoplastic lesions (seven non‐specific inflammation, nine functional cysts and 12 endometriotic cysts), 42 surface epithelial tumours (13 benign and 29 malignant), 10 germ cell tumours (five mature cystic teratomas and five mixed germ cell tumours), seven sex‐cord stromal tumours (three granulosa cell tumours, one sclerosing stromal tumour, one strümal leutoma, one Sertoli Leydig cell tumour and one malignant Sertoli cell tumour) and five miscellaneous lesions (one plasma cell tumour, two leiomyosarcomas and two cases of necrosis). Discordant cases comprised 29/121 (24%) (21were inconclusive or inadequate on cytology), including four endometriotic cysts, 14 surface epithelial tumours (one cystadenofibroma, one borderline mucinous tumour and 12 carcinomas), five germ cell tumours (two immature teratomas and three mature cystic teratomas), two thecomas, one fibroma, one sclerosing stromal tumour, one fibrosarcoma and one myxoma. FNAC sensitivity for a diagnosis of malignancy was 85.7%, specificity 98.0%, positive predictive value 97.7%, negative predictive value 87.7% and accuracy 92.0%, if 21 inconclusive/inadequate FNACs were excluded; with the latter taken as false negatives, sensitivity was 73.7% and accuracy 76.0%. Conclusion: FNAC has a high specificity for diagnosis of ovarian/adnexal lesions but greater experience is required for the accurate subtyping of neoplasms and sensitivity is limited by inconclusive/inadequate results.  相似文献   

6.
The phenotypic effects of a new recessive mutation mas −1, which in homozygous condition induces testicular development in XX animals of common carp ( Cyprinus carpio L.), are described. Sexual differentiation of XX; mas −+/ mas −1 and XX; mas −1/ mas −1 animals was compared with the gonad development of XX wild type females and XY males. In XX females gonadal differentiation starts with the formation of an ovarian cavity and entry into meiosis of germ cells at around 80 days post hatching (ph). Male gonads remain quiescent until 120 days ph during which period they develop a network of loose connective tissue. Spermatogenesis starts with tubule formation and the differentiation of germ cells into spermatogonia type B. Heterozygous XX; mas −+/ mas −1 animals developed as normal females, but in homozygous XX; mas −1/ mas −1 animals two types of gonad development were observed. In the first type, germ cells did not enter meiosis until 100 days ph when they differentiated as spermatogonia. An ovarian cavity was not formed but male specific connective tissue developed instead. These gonad developed as normal testes. In the second type, germ cells differentiated at 80 days ph as either oocytes or spermatocytes, which resulted in the gonads developing as ovotestes. The formation of an ovarian cavity was in most cases incomplete. The phenotypic effects of mas −1 are interpreted as a timing mismatch between mas activation and female sex differentiation.  相似文献   

7.
The cell of origin of the five subtypes (I-V) of germ cell tumors (GCTs) are assumed to be germ cells from different maturation stages. This is (potentially) reflected in their methylation status as fetal maturing primordial germ cells are globally demethylated during migration from the yolk sac to the gonad. Imprinted regions are erased in the gonad and later become uniparentally imprinted according to fetal sex. Here, 91 GCTs (type I-IV) and four cell lines were profiled (Illumina’s HumanMethylation450BeadChip). Data was pre-processed controlling for cross hybridization, SNPs, detection rate, probe-type bias and batch effects. The annotation was extended, covering snRNAs/microRNAs, repeat elements and imprinted regions. A Hidden Markov Model-based genome segmentation was devised to identify differentially methylated genomic regions. Methylation profiles allowed for separation of clusters of non-seminomas (type II), seminomas/dysgerminomas (type II), spermatocytic seminomas (type III) and teratomas/dermoid cysts (type I/IV). The seminomas, dysgerminomas and spermatocytic seminomas were globally hypomethylated, in line with previous reports and their demethylated precursor. Differential methylation and imprinting status between subtypes reflected their presumed cell of origin. Ovarian type I teratomas and dermoid cysts showed (partial) sex specific uniparental maternal imprinting. The spermatocytic seminomas showed uniparental paternal imprinting while testicular teratomas exhibited partial imprinting erasure. Somatic imprinting in type II GCTs might indicate a cell of origin after global demethylation but before imprinting erasure. This is earlier than previously described, but agrees with the totipotent/embryonic stem cell like potential of type II GCTs and their rare extra-gonadal localization. The results support the common origin of the type I teratomas and show strong similarity between ovarian type I teratomas and dermoid cysts. In conclusion, we identified specific and global methylation differences between GCT subtypes, providing insight into their developmental timing and underlying developmental biology. Data and extended annotation are deposited at GEO (GSE58538 and GPL18809).  相似文献   

8.
The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway.  相似文献   

9.
46,X,i(Xq)/47,XX,+13 mosaicism   总被引:1,自引:0,他引:1  
A 10-year-old girl with short stature and other features of Turner's syndrome was found to be a mosaic consisting of 46,X,i(Xq) and 47,XX,+13 cell lines, a hitherto undescribed situation. She had none of the clinical features of trisomy 13 syndrome, with a possible exception of postaxial polydactyly of the left foot. Her PHA-stimulated blood lymphocytes and EB virus-transformed B lymphocytes both revealed the Xi(Xq)/XX,+13 mosaicism, while her skin fibroblasts showed an exclusively 46,X,i(Xq) karyotype. Studies using Q-and R-banding heteromorphisms as markers indicated that the patient started as a 13 trisomic zygote resulting from a maternal meiotic error, followed by the loss of chromosome 13 at an early mitotic division. C-banding analysis revealed two C banding blocks in the iso X chromosome, an indication that the chromosome was dicentric. BrdU-Hoechst-Giemsa analysis revealed that the iso X chromosome was late-replicating with both its arms either synchronously or asynchronously replicating. The iso X chromosome was thus designated as idic (Xq)(p11:p11). In view of the presence of the XX cell line, it was concluded that the patient started as an XX,+13 zygote, followed by two mitotic events, the loss of a chromosome 13 and the formation of the iso X chromosome, occurring either simultaneously or in succession.  相似文献   

10.
The highly inbred Coatzacoalcos (Cp) strain of the platyfish, Xiphophorus maculatus, was noted for a high percentage of infertile females (XX). The ovaries of approximately one-quarter of all females regress. The time of gonadal atrophy varied from before sexual maturation up to 11 months of age. The gonadotropic zone of the pituitary was hypertrophied in regressed females. Transplants of immature testes and ovarian tissue into the caudal musculature of regressed females and the subsequent maturation of the grafts demonstrated that the ovarian degeneration was not due to pituitary or hypothalamic malfunction or an autoimmune disease. The cause of the gonadal degeneration was apparently localized to the ovary itself. This phenomenon was never observed in males (XY). Regressed ovaries fell into two categories, designated types I and II, with all being characterized by the presence of ductlike structures which resembled male efferent ducts, lined by Sertoli cells. Type I ovaries bore a marked similarity to certain mammalian dysgenetic gonads, while type II ovaries contained many proliferating germ cells and could be compared to the human neoplasm termed gonadoblastoma. It is suggested that the physiological lesion responsible for the ovarian regression syndrome involves the processes that control the determination and differentiation of the germ cells similar to those found in human 46,XY gonadal dysgenesis.  相似文献   

11.
A family, including two sibs with partial trisomy 15 is described. Maternal chromosome analysis revealed 46,XX/47,XX,+15q-, mosaicism. These findings are discussed in relation to seventeen previously published cases, some of which were sporadic and others due to maternal balanced translocation.  相似文献   

12.
From January 1st 1990 until December 31st 2001, we collected 19686 prenatal diagnosis (on amniocentesis and chorius villus sampling). Five hundred twelve samples (2.6%) concerned 278 twin pregnancies. The most frequent indications were maternal age > or = 35 years (108/278 = 38.8%), medically assisted procreation (34/278 = 12.3%), positive ultrasound (20/278 = 7.2%). Chromosome abnormalities were found in eight twin-pregnancies (2.9%): five with only one fetus affected [47,XX,+ 18; 45,XX,t( 13;14); 47,XYY; 47,XXX; 45,XX, t(13;14)], two with both fetuses showing the same chromosomal abnormality [inv(11)(q21q25); 47,XX,+ 18] and one with only one fetus tested [47,XX,+ 18]. In total, we found eight autosomal abnormalities, four inherited balanced rearrangements (two robertsonian translocations and two paracentric inversions of chromosome 11) and four trisomies 18. We also observed two sex chromosome abnormalities interesting only one of the two fetuses. Surprisingly, we did no detect any Down Syndrome among this population. The frequency of Down Syndrome was significantly (p < 0.05) lower in our population of twin pregnancies (0.0%) as compared to the observed incidence in singleton pregnancies during the same period (163/19162 = 0.9%).  相似文献   

13.
The parental origin of the extra X chromosome in 47,XXX females.   总被引:10,自引:3,他引:7       下载免费PDF全文
We used X-linked DNA polymorphisms to study the parental origin of X chromosome nondisjunction in 28 47,XXX live-born females. Errors in oogenesis accounted for 26 of the cases, with the majority of these being attributable to an error at meiosis I. We observed an association between advanced parental age and meiosis I nondisjunction--but not meiosis II nondisjunction--in the maternally derived cases. In studies of recombination we found little evidence for an association between pairing failure and X chromosome nondisjunction, but our results suggest that increased recombination near the centromere may play a role in the etiology of the 47,XXX condition.  相似文献   

14.
The distribution of 5-methyl cytosine (5-MeC) residues in a highly repetitive sequence, mouse major satellite, was examined in germinal versus somatic DNAs by digestion with the methylation sensitive isoschizomers Msp I and Hpa II and Southern blot analysis, using a cloned satellite probe. DNA from liver, brain, and a mouse fibroblast cell line, C3H 10T1/2, yielded a multimeric hybridization pattern after digestion with Msp I (and control Eco RI) but were resistant to digestion with Hpa II, reflecting a high level of methylation of the satellite sequences. In contrast, DNA from mature sperm was undermethylated at these same sequences as indicated by the ability of Hpa II to generate a multimeric pattern. DNAs from purified populations of testis cells in different stages of spermatogenesis were examined to determine when during germ cell differentiation the undermethylation was established. As early as in primitive type A, type A, and type B spermatogonia, an undermethylation of satellite sequences was observed. This suggest that this highly specific undermethylation of germ cell satellite DNA occurs very early in the germ cell lineage, prior to entry into meiosis.  相似文献   

15.
Trisomy rescue is one of various proposed mechanisms in formation of supernumerary small marker chromosomes (SMC) and uniparental disomy (UPD). In the present report a small de novo marker chromosome derived from chromosome 14 or 22 was diagnosed at prenatal diagnosis due to maternal age. Follow up investigations at birth revealed mosaicism 47,XX,+mar/46,XX. Using FISH, the marker was positive for the probe D14/22Z1, but negative for the probes midi 54 and D22Z4. Using three informative markers both chromosomes 22 were shown to be inherited from the mother (UPDmat). The results are consistent with nondisjunction at maternal meiosis I. The girl is 18 months old now and phenotypically normal. Cardiac and abdominal malformations were excluded by sonographic examinations. Motor and mental development is according to or ahead of developmental milestones (free walking with 10 months, first words at 12 months). The case confirms that maternal UPD 22 most likely is not associated with clinical abnormalities. According to FISH results, UPD 22, and 47,XX,+22 in the placenta, we conclude that the SMC was derived from alpha satellite sequences of chromosome 22. This case for the first time gives evidence that early postzygotic reduction of a chromosome to a small marker chromosome is a real existing mechanism to rescue a conceptus with trisomy.  相似文献   

16.
Summary A total of 33 spontaneous abortuses with various acrocentric trisomies were studied for the origin of the extra chromosomes using Q- and R-band polymorphisms as markers. Eleven trisomic abortuses were informative: nine trisomic abortuses (one with trisomy 13, three with trisomy 21, and five with trisomy 22 including one with a 46,XX/47,XX,+22 mosaicism) originated at maternal first meiosis; a 21-trisomic abortus resulted from an error at maternal second meiosis (or first mitosis); and a 13-trisomic abortus was of maternal first or second meiotic origin. The abortus with mosaic trisomy 22 started as a 22-trisomic zygote resulting from an error at maternal first meiosis, followed by a mitotic (in vivo or in vitro) loss of the paternally derived chromosome 22.  相似文献   

17.
A 9-year-old female child of healthy parents (mother: 43 years, father: 44 years) was referred to our center because of severe mental retardation. While pedigree analysis was not contributory, two older sibs were normal and healthy. Physical examination revealed facial dysmorphism, microcephaly and hyperflexibility of all joints. Her chromosome constitution showed a mosaic pattern; mos 46,XX[98]/47,XX,+22[2]. So skin biopsy was performed and mosaic trisomy 22 was confirmed with FISH analysis (46,XX[73]/47,XX,+22[27]). Physical features of this case seemed consistent with her mosaic constitution. This report would be a demonstrative example to show the significant contribution of FISH in states of mosaicism.  相似文献   

18.
By combining molecular and cytogenetic techniques, we demonstrated the feasibility and desirability of a comprehensive approach to analysis of nondisjunction for chromosome 21. We analyzed the parental origin and stage of meiotic errors resulting in trisomy 21 in each of five families by successfully using cytogenetic heteromorphisms and DNA polymorphisms. The 16 DNA fragments used to detect polymorphisms spanned the length of the long arm and detected recombinational events on nondisjoined chromosomes in both maternal meiosis I and maternal meiosis II errors. The meiotic stage at which errors occurred was determined by sandwiching the centromere between cytogenetic heteromorphisms on 21p and an informative haplotype constructed using two polymorphic DNA probes that map to 21q just below the centromere. This study illustrates the necessity of combining cytogenetic polymorphisms on 21p with DNA polymorphisms spanning 21q to determine (1) the source and stage of meiotic errors that lead to trisomy 21 and (2) whether an association exists between nondisjunction and meiotic recombination.  相似文献   

19.
Parental origin of the extra chromosome in Down's syndrome   总被引:13,自引:1,他引:12  
Summary Chromosome 21 fluorescent heteromorphisms were studied in 42 patients with Down's syndrome, their parents and their siblings. Included in this number are two instances of an aunt and niece affected with trisomy 21, and one of affected siblings. One case has a de novo 21/21 translocation. Blood group, red cell and serum protein markers were also studied for linkage, gene exclusions, associations, and paternity testing. Thirty-one of the trisomy 21 cases were informative for parental origin of the extra chromosome and for stage of meiosis. The non-disjunctional event was of maternal origin in 24; 23 occurred in meiosis I, 1 in meiosis II. Seven were of paternal origin; 5 in meiosis I, and 2 in meiosis II. The translocation case was of paternal origin. A literature search revealed a total of 98 cases informative for the parent of origin of the extra chromosome, of >347 families tested. In addition, 3 de novo translocation cases, of 7 tested, were informative. The data suggest that most cases result from an error in the first meiotic division in the mother, but that a significant proportion are paternal in origin.  相似文献   

20.
In humans, studies of female germ cells are very limited by ethics. The current study investigated the usefulness of benign ovarian teratomas as a substitute for ova in analyses of imprinted genes. Twenty-five human benign ovarian teratomas were typed with 45 microsatellite DNA markers and classified according to their genotypic features. Two oppositely imprinted genes, H19 and SNRPN, were then chosen for analysis of their methylation states in these tumors. These analyses revealed that benign ovarian teratomas consist of a mixture of genetically and epigenetically heterogeneous cell populations. In contrast to previous reports, we could document only one case rising from germ cells by meiosis-II nondisjunction. H19 and SNRPN were methylated in individual teratomas to various degrees, ranging from normal somatic cell to expected ovum levels. The allele with residual methylation of H19 was consistent with that methylated in the patient's blood DNA, thus being of paternal origin. Degrees of H19 hypomethylation and SNRPN hypermethylation increased as the cellular origin of the tumors advanced in oogenesis and were closely correlated in individual teratomas. These results could be best explained by the assumption that the primary imprinting is a progressively organized process and suggest that the establishment of primary imprints on different genes might be mechanistically linked, even when those genes are oppositely imprinted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号