首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: The field of microarray data analysis is shifting emphasis from methods for identifying differentially expressed genes to methods for identifying differentially expressed gene categories. The latter approaches utilize a priori information about genes to group genes into categories and enhance the interpretation of experiments aimed at identifying expression differences across treatments. While almost all of the existing approaches for identifying differentially expressed gene categories are practically useful, they suffer from a variety of drawbacks. Perhaps most notably, many popular tools are based exclusively on gene-specific statistics that cannot detect many types of multivariate expression change. RESULTS: We have developed a nonparametric multivariate method for identifying gene categories whose multivariate expression distribution differs across two or more conditions. We illustrate our approach and compare its performance to several existing procedures via the analysis of a real data set and a unique data-based simulation study designed to capture the challenges and complexities of practical data analysis. We show that our method has good power for differentiating between differentially expressed and non-differentially expressed gene categories, and we utilize a resampling based strategy for controlling the false discovery rate when testing multiple categories. AVAILABILITY: R code (www.r-project.org) for implementing our approach is available from the first author by request.  相似文献   

2.
Unbiased pattern detection in microarray data series   总被引:1,自引:0,他引:1  
MOTIVATION: Following the advent of microarray technology in recent years, the challenge for biologists is to identify genes of interest from the thousands of genetic expression levels measured in each microarray experiment. In many cases the aim is to identify pattern in the data series generated by successive microarray measurements. RESULTS: Here we introduce a new method of detecting pattern in microarray data series which is independent of the nature of this pattern. Our approach provides a measure of the algorithmic compressibility of each data series. A series which is significantly compressible is much more likely to result from simple underlying mechanisms than series which are incompressible. Accordingly, the gene associated with a compressible series is more likely to be biologically significant. We test our method on microarray time series of yeast cell cycle and show that it blindly selects genes exhibiting the expected cyclic behaviour as well as detecting other forms of pattern. Our results successfully predict two independent non-microarray experimental studies.  相似文献   

3.

Background  

The small sample sizes often used for microarray experiments result in poor estimates of variance if each gene is considered independently. Yet accurately estimating variability of gene expression measurements in microarray experiments is essential for correctly identifying differentially expressed genes. Several recently developed methods for testing differential expression of genes utilize hierarchical Bayesian models to "pool" information from multiple genes. We have developed a statistical testing procedure that further improves upon current methods by incorporating the well-documented relationship between the absolute gene expression level and the variance of gene expression measurements into the general empirical Bayes framework.  相似文献   

4.
Layana C  Diambra L 《PloS one》2011,6(10):e26291
The microarray technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining these data one can identify the dynamics of the gene expression time series. The detection of genes that are periodically expressed is an important step that allows us to study the regulatory mechanisms associated with the circadian cycle. The problem of finding periodicity in biological time series poses many challenges. Such challenge occurs due to the fact that the observed time series usually exhibit non-idealities, such as noise, short length, outliers and unevenly sampled time points. Consequently, the method for finding periodicity should preferably be robust against such anomalies in the data. In this paper, we propose a general and robust procedure for identifying genes with a periodic signature at a given significance level. This identification method is based on autoregressive models and the information theory. By using simulated data we show that the suggested method is capable of identifying rhythmic profiles even in the presence of noise and when the number of data points is small. By recourse of our analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis.  相似文献   

5.
6.
MOTIVATION: A major focus of current cancer research is to identify genes that can be used as markers for prognosis and diagnosis, and as targets for therapy. Microarray technology has been applied extensively for this purpose, even though it has been reported that the agreement between microarray platforms is poor. A critical question is: how can we best combine the measurements of matched genes across microarray platforms to develop diagnostic and prognostic tools related to the underlying biology? RESULTS: We introduce a statistical approach within a Bayesian framework to combine the microarray data on matched genes from three investigations of gene expression profiling of B-cell chronic lymphocytic leukemia (CLL) and normal B cells (NBC) using three different microarray platforms, oligonucleotide arrays, cDNA arrays printed on glass slides and cDNA arrays printed on nylon membranes. Using this approach, we identified a number of genes that were consistently differentially expressed between CLL and NBC samples.  相似文献   

7.
As much of the focus of genetics and molecular biology has shifted toward the systems level, it has become increasingly important to accurately extract biologically relevant signal from thousands of related measurements. The common property among these high-dimensional biological studies is that the measured features have a rich and largely unknown underlying structure. One example of much recent interest is identifying differentially expressed genes in comparative microarray experiments. We propose a new approach aimed at optimally performing many hypothesis tests in a high-dimensional study. This approach estimates the optimal discovery procedure (ODP), which has recently been introduced and theoretically shown to optimally perform multiple significance tests. Whereas existing procedures essentially use data from only one feature at a time, the ODP approach uses the relevant information from the entire data set when testing each feature. In particular, we propose a generally applicable estimate of the ODP for identifying differentially expressed genes in microarray experiments. This microarray method consistently shows favorable performance over five highly used existing methods. For example, in testing for differential expression between two breast cancer tumor types, the ODP provides increases from 72% to 185% in the number of genes called significant at a false discovery rate of 3%. Our proposed microarray method is freely available to academic users in the open-source, point-and-click EDGE software package.  相似文献   

8.
Although two-color fluorescent DNA microarrays are now standard equipment in many molecular biology laboratories, methods for identifying differentially expressed genes in microarray data are still evolving. Here, we report a refined test for differentially expressed genes which does not rely on gene expression ratios but directly compares a series of repeated measurements of the two dye intensities for each gene. This test uses a statistical model to describe multiplicative and additive errors influencing an array experiment, where model parameters are estimated from observed intensities for all genes using the method of maximum likelihood. A generalized likelihood ratio test is performed for each gene to determine whether, under the model, these intensities are significantly different. We use this method to identify significant differences in gene expression among yeast cells growing in galactose-stimulating versus non-stimulating conditions and compare our results with current approaches for identifying differentially-expressed genes. The effect of sample size on parameter optimization is also explored, as is the use of the error model to compare the within- and between-slide intensity variation intrinsic to an array experiment.  相似文献   

9.
Bayesian mixture model based clustering of replicated microarray data   总被引:3,自引:0,他引:3  
MOTIVATION: Identifying patterns of co-expression in microarray data by cluster analysis has been a productive approach to uncovering molecular mechanisms underlying biological processes under investigation. Using experimental replicates can generally improve the precision of the cluster analysis by reducing the experimental variability of measurements. In such situations, Bayesian mixtures allow for an efficient use of information by precisely modeling between-replicates variability. RESULTS: We developed different variants of Bayesian mixture based clustering procedures for clustering gene expression data with experimental replicates. In this approach, the statistical distribution of microarray data is described by a Bayesian mixture model. Clusters of co-expressed genes are created from the posterior distribution of clusterings, which is estimated by a Gibbs sampler. We define infinite and finite Bayesian mixture models with different between-replicates variance structures and investigate their utility by analyzing synthetic and the real-world datasets. Results of our analyses demonstrate that (1) improvements in precision achieved by performing only two experimental replicates can be dramatic when the between-replicates variability is high, (2) precise modeling of intra-gene variability is important for accurate identification of co-expressed genes and (3) the infinite mixture model with the 'elliptical' between-replicates variance structure performed overall better than any other method tested. We also introduce a heuristic modification to the Gibbs sampler based on the 'reverse annealing' principle. This modification effectively overcomes the tendency of the Gibbs sampler to converge to different modes of the posterior distribution when started from different initial positions. Finally, we demonstrate that the Bayesian infinite mixture model with 'elliptical' variance structure is capable of identifying the underlying structure of the data without knowing the 'correct' number of clusters. AVAILABILITY: The MS Windows based program named Gaussian Infinite Mixture Modeling (GIMM) implementing the Gibbs sampler and corresponding C++ code are available at http://homepages.uc.edu/~medvedm/GIMM.htm SUPPLEMENTAL INFORMATION: http://expression.microslu.washington.edu/expression/kayee/medvedovic2003/medvedovic_bioinf2003.html  相似文献   

10.
We have evaluated the performance characteristics of three quantitative gene expression technologies and correlated their expression measurements to those of five commercial microarray platforms, based on the MicroArray Quality Control (MAQC) data set. The limit of detection, assay range, precision, accuracy and fold-change correlations were assessed for 997 TaqMan Gene Expression Assays, 205 Standardized RT (Sta)RT-PCR assays and 244 QuantiGene assays. TaqMan is a registered trademark of Roche Molecular Systems, Inc. We observed high correlation between quantitative gene expression values and microarray platform results and found few discordant measurements among all platforms. The main cause of variability was differences in probe sequence and thus target location. A second source of variability was the limited and variable sensitivity of the different microarray platforms for detecting weakly expressed genes, which affected interplatform and intersite reproducibility of differentially expressed genes. From this analysis, we conclude that the MAQC microarray data set has been validated by alternative quantitative gene expression platforms thus supporting the use of microarray platforms for the quantitative characterization of gene expression.  相似文献   

11.
In this paper, the problem of identifying differentially expressed genes under different conditions using gene expression microarray data, in the presence of outliers, is discussed. For this purpose, the robust modeling of gene expression data using some powerful distributions known as normal/independent distributions is considered. These distributions include the Student’s t and normal distributions which have been used previously, but also include extensions such as the slash, the contaminated normal and the Laplace distributions. The purpose of this paper is to identify differentially expressed genes by considering these distributional assumptions instead of the normal distribution. A Bayesian approach using the Markov Chain Monte Carlo method is adopted for parameter estimation. Two publicly available gene expression data sets are analyzed using the proposed approach. The use of the robust models for detecting differentially expressed genes is investigated. This investigation shows that the choice of model for differentiating gene expression data is very important. This is due to the small number of replicates for each gene and the existence of outlying data. Comparison of the performance of these models is made using different statistical criteria and the ROC curve. The method is illustrated using some simulation studies. We demonstrate the flexibility of these robust models in identifying differentially expressed genes.  相似文献   

12.
MOTIVATION: Statistical methods based on controlling the false discovery rate (FDR) or positive false discovery rate (pFDR) are now well established in identifying differentially expressed genes in DNA microarray. Several authors have recently raised the important issue that FDR or pFDR may give misleading inference when specific genes are of interest because they average the genes under consideration with genes that show stronger evidence for differential expression. The paper proposes a flexible and robust mixture model for estimating the local FDR which quantifies how plausible each specific gene expresses differentially. RESULTS: We develop a special mixture model tailored to multiple testing by requiring the P-value distribution for the differentially expressed genes to be stochastically smaller than the P-value distribution for the non-differentially expressed genes. A smoothing mechanism is built in. The proposed model gives robust estimation of local FDR for any reasonable underlying P-value distributions. It also provides a single framework for estimating the proportion of differentially expressed genes, pFDR, negative predictive values, sensitivity and specificity. A cervical cancer study shows that the local FDR gives more specific and relevant quantification of the evidence for differential expression that can be substantially different from pFDR. AVAILABILITY: An R function implementing the proposed model is available at http://www.geocities.com/jg_liao/software  相似文献   

13.
Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent “noise” within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.  相似文献   

14.
15.
MOTIVATION: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. RESULTS: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. AVAILABILITY: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request.  相似文献   

16.
Accurately identifying differentially expressed genes from microarray data is not a trivial task, partly because of poor variance estimates of gene expression signals. Here, after analyzing 380 replicated microarray experiments, we found that probesets have typical, distinct variances that can be estimated based on a large number of microarray experiments. These probeset-specific variances depend at least in part on the function of the probed gene: genes for ribosomal or structural proteins often have a small variance, while genes implicated in stress responses often have large variances. We used these variance estimates to develop a statistical test for differentially expressed genes called EVE (external variance estimation). The EVE algorithm performs better than the t-test and LIMMA on some real-world data, where external information from appropriate databases is available. Thus, EVE helps to maximize the information gained from a typical microarray experiment. Nonetheless, only a large number of replicates will guarantee to identify nearly all truly differentially expressed genes. However, our simulation studies suggest that even limited numbers of replicates will usually result in good coverage of strongly differentially expressed genes.  相似文献   

17.
18.
19.
20.
MOTIVATION: A common objective of microarray experiments is the detection of differential gene expression between samples obtained under different conditions. The task of identifying differentially expressed genes consists of two aspects: ranking and selection. Numerous statistics have been proposed to rank genes in order of evidence for differential expression. However, no one statistic is universally optimal and there is seldom any basis or guidance that can direct toward a particular statistic of choice. RESULTS: Our new approach, which addresses both ranking and selection of differentially expressed genes, integrates differing statistics via a distance synthesis scheme. Using a set of (Affymetrix) spike-in datasets, in which differentially expressed genes are known, we demonstrate that our method compares favorably with the best individual statistics, while achieving robustness properties lacked by the individual statistics. We further evaluate performance on one other microarray study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号