首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
类伸展蛋白(Leucine-Rich Repeats Extensins,LRX)是一类细胞壁嵌合蛋白,其N端包含一个LRR(leucine-rich repeats)结构域,C端含Extensins结构域.研究表明,LRX基因家族在拟南芥(Arabidopsis thaliana)花粉萌发和花粉管生长过程中具有重要作...  相似文献   

2.
3.
《Genomics》2020,112(5):3803-3814
FT-INTERACTING PROTEIN (FTIP) gene family in rice are the members of multiple C2 domain and transmembrane region proteins (MCTPs). There are many homologs of OsFTIPs in plants; however, the bioinformatics of them remains unclear. In the studies, 13 OsFTIP genes are identified in rice. OsFTIPs are unevenly located in 12 chromosomes. The OsFTIPs are phylogenetically divided into three clades. Cis-elements respond to abiotic stress, light, and hormones are found in the promoter region of OsFTIPs which are induced by the stimuli. All OsFTIPs are expressed with different profiles. Syntenic analysis of 128 OsFTIPs and FTIP-like homologs reveals that various number of gene pairs are identified between rice and other species. The 128 FTIP-like homologs are divided into six groups which fall into three classes. Ten motifs are shared by most OsFTIPs and their homologs. The studies provide a theoretical basis for further elucidating the functions of OsFTIP gene family.  相似文献   

4.
Leucine-rich repeat (LRR) proteins feature tandem leucine-rich motifs that form a protein-protein interaction domain. Plants contain diverse classes of LRR proteins, many of which take part in signal transduction. We have identified a novel family of nine Arabidopsis LRR proteins that, based on predicted intracellular location and LRR motif consensus sequence, are related to Ras-binding LRR proteins found in signaling complexes in animals and yeast. This new class has been named plant intracellular Ras group-related LRR proteins (PIRLs). We have characterized PIRL cDNAs, rigorously defined gene and protein annotations, investigated gene family evolution and surveyed mRNA expression. While LRR regions suggested a relationship to Ras group LRR proteins, outside of their LRR domains PIRLs differed from Ras group proteins, exhibiting N- and C-terminal regions containing low complexity stretches and clusters of charged amino acids. PIRL genes grouped into three subfamilies based on sequence relationships and gene structures. Related gene pairs and dispersed chromosomal locations suggested family expansion by ancestral genomic or segmental duplications. Expression surveys revealed that all PIRL mRNAs are actively transcribed, with three expressed differentially in leaves, roots or flowers. These results define PIRLs as a distinct, plant-specific class of intracellular LRR proteins that probably mediate protein interactions, possibly in the context of signal transduction. T-DNA knock-out mutants have been isolated as a starting point for systematic functional analysis of this intriguing family.  相似文献   

5.
Chini A  Loake GJ 《Planta》2005,221(4):597-601
The activated disease resistance (ADR) 1 gene encodes a protein that possesses an N-terminal coiled-coil (CC) motif, nucleotide-binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. ADR1 belongs to a small, atypical Arabidopsis thaliana sub-class containing four CC–NBS–LRR genes. The NBS region of most NBS–LRR proteins possesses numerous conserved motifs. In contrast, the LRR domain, which is subject to positive selection, is highly variable. Surprisingly, sequence analysis revealed that the LRR domain of the ADR1 sub-class was more conserved than the NBS region. Sequence analysis identified two novel conserved motifs, termed TVS and PKAE, specific for this CC–NBS–LRR sub-class. The TVS motif is adjacent to the P-loop, whereas the PKAE motif corresponded to the inter-domain region termed the NBS–LRR linker, which was conserved within the different CC–NBS–LRR classes but varied among classes. These ADR1-specific motifs were employed to identify putative ADR1 homologs in phylogenetically distant and agronomically important plant species. Putative ADR1 homologs were identified in 11 species including rice and in 3 further Poaceae species. The ADR1 sub-class of CC–NBS–LRR proteins is therefore conserved in both monocotyledonous and dicotyledonous plant species.  相似文献   

6.
7.
8.
张亮生  马成荣  戢茜  王翼飞 《遗传》2009,31(2):186-198
ET(Su(var), Enhancer of zeste (E(z)), and Trithorax)结构域基因家族是一组含有保守SET结构域的蛋白的统称, 它们参与蛋白甲基化, 影响染色体结构, 并且调控基因表达, 在植物发育中起着重要的作用。分析拟南芥和水稻中SET结构域基因家族进化关系, 对研究这一基因家族中各成员的功能有着重要的意义。我们系统地鉴定了47个拟南芥(Arabidopsis thaliana)和43个水稻(Orysa sativa japonica cultivar Nipponbare)的SET结构域基因, 染色体定位和基因复制分析表明SET结构域基因扩增是由片段复制和反转录引起的, 根据这些结构域差异和系统发育分析把拟南芥和水稻的SET结构域基因划分成5个亚家族。通过分析SET结构域基因家族在拟南芥和水稻各个发育阶段的表达谱, 发现SET结构域基因绝大部分至少在一个组织中表达; 大部分在花和花粉中高表达; 一些SET结构域基因在某些组织中有特异的表达模式, 表明与组织发育有密切的关系。在拟南芥和水稻中分别找到了4个差异表达基因。拟南芥4个差异基因都在花粉管高表达, 水稻4个差异基因有3个在雄性花蕊中高表达, 另一个在幼穗中高表达。  相似文献   

9.
Polyploidy events have played an important role in the evolution of angiosperm genomes. Here, we demonstrate how genomic histories can increase phylogenetic resolution in a gene family, specifically the expansin superfamily of cell wall proteins. There are 36 expansins in Arabidopsis and 58 in rice. Traditional sequence-based phylogenetic trees yield poor resolution below the family level. To improve upon these analyses, we searched for gene colinearity (microsynteny) between Arabidopsis and rice genomic segments containing expansin genes. Multiple rounds of genome duplication and extensive gene loss have obscured synteny. However, by simultaneously aligning groups of up to 10 potentially orthologous segments from the two species, we traced the history of 49 out of 63 expansin-containing segments back to the ancestor of monocots and eudicots. Our results indicate that this ancestor had 15-17 expansin genes, each ancestral to an extant clade. Some clades have strikingly different growth patterns in the rice and Arabidopsis lineages, with more than half of all rice expansins arising from two ancestral genes. Segmental duplications, most of them part of polyploidy events, account for 12 out of 21 new expansin genes in Arabidopsis and 16 out of 44 in rice. Tandem duplications explain most of the rest. We were also able to estimate a minimum of 28 gene deaths in the Arabidopsis lineage and nine in rice. This analysis greatly clarifies expansin evolution since the last common ancestor of monocots and eudicots and the method should be broadly applicable to many other gene families.  相似文献   

10.
11.
12.
13.
14.
Amino acid sequences from several thousand homologous gene pairs were compared for two plant genomes, Oryza sativa and Arabidopsis thaliana. The Arabidopsis genes all have similar G+C (guanine plus cytosine) contents, whereas their homologs in rice span a wide range of G+C levels. The results show that those rice genes that display increased divergence in their nucleotide composition (specifically, increased G+C content) showed a corresponding, predictable change in the amino acid compositions of the encoded proteins relative to their Arabidopsis homologs. This trend was not seen in a "control" set of rice genes that had nucleotide contents closer to their Arabidopsis homologs. In addition to showing an overall difference in the amino acid composition of the homologous proteins, we were also able to investigate the biased patterns of amino acid substitution since the divergence of these two species. We found that the amino acid exchange matrix was highly asymmetric when comparing the High G+C rice genes with their Arabidopsis homologs. Finally, we investigated the possible causes of this biased pattern of sequence evolution. Our results indicate that the biased pattern of protein evolution is the consequence, rather than the cause, of the corresponding changes in nucleotide content. In fact, there is an even more marked asymmetry in the patterns of substitution at synonymous nucleotide sites. Surprisingly, there is a very strong negative correlation between the level of nucleotide bias and the length of the coding sequences within the rice genome. This difference in gene length may provide important clues about the underlying mechanisms.  相似文献   

15.
Based on sequence similarity search and domain detection, nine ACT domain repeat protein-coding genes (the "ACR" genes) in rice were identified, which were mainly distributed on the chromosomes 2, 3, 4, and 8. An InterPro database search indicated that four copies of the ACT domain linearly occupied the entire polypeptide. The first three ACT domains were linked by two different sequences. However, the fourth ACT domain was extremely close to ACT3. Gene structure comparisons showed large differences in exon numbers, from three to eight, among members of the rice ACR gene family. In addition, it appeared that gene duplication might be operative when the compositions of exons and introns were analyzed. Phylogenetic analysis divided the ACR gene family into five distinct groups, and this division was generally according to the expression patterns of the ACR genes. The Arabidopsis and rice ACR proteins were clustered across together, suggesting that these ACR genes might originate from an ancient common ancestor. Notably, the identification of orthologues and paralogues would be useful for rice gene functional annotation.  相似文献   

16.
Structure and Evolution of the Actin Gene Family in Arabidopsis Thaliana   总被引:1,自引:0,他引:1  
Higher plants contain families of actin-encoding genes that are divergent and differentially expressed. Progress in understanding the functions and evolution of plant actins has been hindered by the large size of the actin gene families. In this study, we characterized the structure and evolution of the actin gene family in Arabidopsis thaliana. DNA blot analyses with gene-specific probes suggested that all 10 of the Arabidopsis actin gene family members have been isolated and established that Arabidopsis has a much simpler actin gene family than other plants that have been examined. Phylogenetic analyses suggested that the Arabidopsis gene family contains at least two ancient classes of genes that diverged early in land plant evolution and may have separated vegetative from reproductive actins. Subsequent divergence produced a total of six distinct subclasses of actin, and five showed a distinct pattern of tissue specific expression. The concordance of expression patterns with the phylogenetic structure is discussed. These subclasses appear to be evolving independently, as no evidence of gene conversion was found. The Arabidopsis actin proteins have an unusually large number of nonconservative amino acid substitutions, which mapped to the surface of the actin molecule, and should effect protein-protein interactions.  相似文献   

17.
We used a comparative genomics approach to investigate the evolution of a complex nucleotide-binding (NB)-leucine-rich repeat (LRR) gene cluster found in soybean (Glycine max) and common bean (Phaseolus vulgaris) that is associated with several disease resistance (R) genes of known function, including Rpg1b (for Resistance to Pseudomonas glycinea1b), an R gene effective against specific races of bacterial blight. Analysis of domains revealed that the amino-terminal coiled-coil (CC) domain, central nucleotide-binding domain (NB-ARC [for APAF1, Resistance genes, and CED4]), and carboxyl-terminal LRR domain have undergone distinct evolutionary paths. Sequence exchanges within the NB-ARC domain were rare. In contrast, interparalogue exchanges involving the CC and LRR domains were common, consistent with both of these regions coevolving with pathogens. Residues under positive selection were overrepresented within the predicted solvent-exposed face of the LRR domain, although several also were detected within the CC and NB-ARC domains. Superimposition of these latter residues onto predicted tertiary structures revealed that the majority are located on the surface, suggestive of a role in interactions with other domains or proteins. Following polyploidy in the Glycine lineage, NB-LRR genes have been preferentially lost from one of the duplicated chromosomes (homeologues found in soybean), and there has been partitioning of NB-LRR clades between the two homeologues. The single orthologous region in common bean contains approximately the same number of paralogues as found in the two soybean homeologues combined. We conclude that while polyploidization in Glycine has not driven a stable increase in family size for NB-LRR genes, it has generated two recombinationally isolated clusters, one of which appears to be in the process of decay.  相似文献   

18.
Sun X  Cao Y  Wang S 《Plant physiology》2006,140(3):998-1008
The rice (Oryza sativa) Xa26 gene, which confers resistance to bacterial blight disease and encodes a leucine-rich repeat (LRR) receptor kinase, resides at a locus clustered with tandem homologous genes. To investigate the evolution of this family, four haplotypes from the two subspecies of rice, indica and japonica, were analyzed. Comparative sequence analysis of 34 genes of 10 types of paralogs of the family revealed haplotype polymorphisms and pronounced paralog diversity. The orthologs in different haplotypes were more similar than the paralogs in the same haplotype. At least five types of paralogs were formed before the separation of indica and japonica subspecies. Only 7% of amino acid sites were detected to be under positive selection, which occurred in the extracytoplasmic domain. Approximately 74% of the positively selected sites were solvent-exposed amino acid residues of the LRR domain that have been proposed to be involved in pathogen recognition, and 73% of the hypervariable sites detected in the LRR domain were subject to positive selection. The family is formed by tandem duplication followed by diversification through recombination, deletion, and point mutation. Most variation among genes in the family is caused by point mutations and positive selection.  相似文献   

19.
王玲  郭长奎  任丁 《植物学报》2017,52(1):43-53
MID1编码R-R型的MYB转录因子,对不同的非生物胁迫均有响应,特别是在水稻(Oryza sativa)生殖期会受到干旱胁迫的诱导,进而在一定程度上可以保持花粉的育性并稳定水稻产量。为进一步研究水稻MID1对非生物胁迫的响应网络,利用酵母双杂交系统筛选出与其互作的蛋白因子OsMIP1,并利用双分子荧光互补系统在本氏烟草(Nicotiana benthamiana)细胞中得到验证。结果表明,OsMIP1编码1个预测含有ENTH/ANTH/VHS结构域的跨膜转运蛋白。OsMIP1在根、茎、叶、小穗和胚乳中均有表达。干旱胁迫下,OsMIP1在叶片和生殖器官中表达,特别是在减数分裂后的小花中表达显著上调。这些结果暗示,OsMIP1在花器官抵抗干旱胁迫中起一定的作用。在水稻营养生长阶段,OsMIP1表达还受到包括Na Cl和甘露醇在内的其它非生物胁迫的影响,暗示其可能在其它非生物胁迫调节中也具有一定的作用。植物中关于编码ENTH/ANTH/VHS结构域蛋白的研究很少。通过对MIP1亚家族进化关系进行分析,结果表明,在被子植物中,MIP1可分为6大类,这6大类分别来自被子植物祖先中原本就存在的6个拷贝,在被子植物的进化过程中又经历了多次基因重复和拷贝丢失等事件。MIP1家族成员广泛分布于被子植物中并可能具有抗胁迫等功能。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号