首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
冷激处理对油桃贮藏品质和抗氧化酶活性的影响   总被引:19,自引:5,他引:14  
以‘秦光2号’油桃为材料。研究了冷激处理对果实冷藏中品质及相关酶活性的影响。结果表明,0℃冷空气.处理3.5h可明显延迟油桃的后熟衰老;同时有推迟乙烯释放高峰和呼吸高峰。提高膜脂过氧化保护酶SOD、CAT、POD的活性,保持果肉硬度。减轻冷害发生的作用。但对可溶性固形物和可滴定酸含量无明显影响。  相似文献   

2.
外源腐胺对油桃采后生理及与其相关酶活性的影响   总被引:3,自引:0,他引:3  
研究外源腐胺(Put)对油桃品种‘秦光2号’果实采后生理及与其相关酶活性影响的结果表明:在0℃贮藏条件下Put处理的油桃冷害比未经Put处理的延迟10d发生,冷害发生率和冷害指数下降,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性均提高,脂氧合酶(LOX)活性受抑,果实的乙烯释放量和呼吸速率下降,二者跃变高峰出现推迟,果实硬度下降延缓,可溶性固形物(TSS)含量保持在较高水平,但Put对油桃中可滴定酸(TA)含量影响不显著。  相似文献   

3.
采后荔枝果实冷害过程中多胺含量的变化   总被引:4,自引:0,他引:4  
以桂味荔枝果实为材料,研究冷害及外源亚精胺(Spd)处理对果实膜透性和内源多胺含量变化的影响。结果表明,在0℃下贮藏时果实发生冷害过程中,荔枝果皮中腐胺(Put)、Spd、精胺(Spm)含量在14d后明显增加,膜透性快速增大,21d时果皮出现明显的冷害褐变,Put进一步积累,而Spm含量下降,Spd保持较高水平。非冷害温度(3℃)下贮藏时,果皮多胺含量变化相对较小。0℃下果肉的多胺含量和变化幅度低于3℃果实,并延迟7d衰老。外源Spd处理明显提高果实内源多胺含量的同时,延缓了果皮相对膜透性增加,减轻了冷害。这表明果皮中Put的积累可能是荔枝果实冷害的结果,冷藏初期Spm含量的上升可能是果实对冷害的防卫反应。  相似文献   

4.
低温胁迫对麻竹叶片和根系抗性生理指标的影响   总被引:3,自引:0,他引:3  
采用室内人工低温处理,研究了麻竹(Dendrocalamus latiflorus)叶片及根部质膜透性、丙二醛、可溶性蛋白、可溶性糖含量,超氧化物歧化酶(SOD)、过氧化物酶(POD)活性和膜脂脂肪酸组成的变化,寻找与竹类植物耐寒性关系最密切的抗性生理指标。结果表明:低温预处理(8℃)15d后,麻竹叶片中可溶性糖、可溶性蛋白含量、POD活性显著提高,根部可溶性糖含量、POD活性显著升高;低温胁迫处理(-2℃)72h后,经低温预处理的麻竹叶片可溶性糖、可溶性蛋白质含量、SOD、POD活性显著高于未经低温预处理,而质膜透性显著低于未经低温预处理,但膜脂过氧化程度显著高于-2℃处理前;经低温预处理的麻竹根部SOD、POD活性及膜脂不饱和脂肪酸相对含量显著高于未经低温预处理,而质膜透性、膜脂过氧化程度较-2℃处理前无显著差异。说明剧烈降温对麻竹生理特征造成严重影响,叶片通过提高可溶性蛋白、可溶性糖含量,维持较高的POD活性以减轻低温伤害;根系则通过维持较高的SOD、POD活性以减轻低温下膜脂过氧化水平,并通过提高膜脂不饱和脂肪酸比例降低质膜透性来抵御低温对膜的伤害。  相似文献   

5.
GA1处理采后油桃果实膜脂过氧化的影响   总被引:6,自引:1,他引:5  
采后GA3处理“阿姆肯”油桃果实(Prunus Persica (L.)nectarine.cv.‘armking’),降低了果实中过氧化氢(H2O2)积累和膜脂过氧化产物丙二醛(MDA)含量,显著提高了活性氧清除酶过氧化氢酶(CAT)和抗氧化剂谷胱甘肽(GSH)的含量,降低了果实衰老期间的膜脂过氧化,对“阿姆肯”油桃有一定保鲜效果。  相似文献   

6.
桃果实采后微粒体膜Ca2+-ATPase活性与膜脂过氧化   总被引:1,自引:1,他引:0  
以常温(25℃)和低温(4℃)贮藏的迎庆桃果实为试验材料,对其果实硬度、呼吸强度进行了测定,并对微粒体膜Ca^2+-ATPase、超氧化物歧化酶(SOD)活性、氧自由基变化和膜的伤害程度进行了研究.结果表明,随桃果实衰老,常温贮藏的果实硬度迅速下降、微粒体膜上的Ca^2+-ATPase活性、SOD活性和O2-产生速率均呈跃变式变化,先升高后降低;膜脂过氧化产物MDA的含量逐渐增加;与常温相比,低温可以抑制果实硬度的下降、呼吸速率、Ca^2+-ATPase和SOD活性的下降及推迟峰值的出现,同时降低O2^-产生速率和MDA含量.以上结果表明,桃果实衰老与细胞质内Ca^2+稳态的破坏和膜脂过氧化作用的加强有密切关系.  相似文献   

7.
以‘红阳’猕猴桃果实为试材,研究低温预贮[(5±1) ℃ 3 d]对‘红阳’猕猴桃果实冷害及转录因子CBF(C-repeat binding factor)表达的影响。结果表明,低温预贮处理可以有效地降低‘红阳’猕猴桃果实冷害率和冷害指数,显著减少膜脂过氧化产物丙二醛(MDA)的积累和抑制脂氧合酶(LOX)活性的增加,有效地抑制果实呼吸速率和乙烯释放速率,保持较高的过氧化物酶(POD)活性,降低多酚氧化酶(PPO)活性,促进CBF转录因子的表达,在贮藏末期失水较少,保持较高的好果率。可见,低温预贮处理可以减轻‘红阳’猕猴桃果实在低温贮藏过程中的冷害发生,促进CBF转录因子的表达,对控制‘红阳’猕猴桃果实冷害有较好的作用。  相似文献   

8.
外源水杨酸对冷藏桃果实的生理效应(简报)   总被引:12,自引:0,他引:12  
在(2±2)℃的冷害温度贮藏期间,经水杨酸(SA)处理的大久保桃果实呼吸速率、乙烯生成量、丙二醛和游离脯氨酸含量、多酚氧化酶(PPO)活性均有不同程度的降低,而组织电解质渗出率和过氧化物酶(POD)活性则升高.在8~10℃的非冷害温度下贮藏时,呼吸速率、丙二醛含量的变化幅度相对较小,SA处理的果实都有下降的趋势,组织的电解质渗出率也下降.  相似文献   

9.
以美国‘紫李’为试材,测定经间歇升温和热处理后果实的褐变度、抗氧化酶活性、抗氧化剂含量、膜质过氧化水平、总酚和可滴定酸含量的变化。结果表明:间歇升温和热处理可适当恢复因冷害而降低的细胞抗氧化活性,清除活性氧自由基,减少膜脂过氧化产物丙二醛的积累,抑制多酚氧化酶和过氧化物酶活性升高,强化抗低温防御系统,阻止多酚逆境代谢发生,使冷害和褐变症状得以延缓和减轻;同时,还可抑制可滴定酸含量的减少和固酸比的上升,延缓后熟衰老。间歇升温处理,李贮藏两个月果实品质良好。初步认为,-0.5~0℃贮藏,每15 d加温至18~20℃并保持l d,是贮藏美国‘紫李’适宜的变温模式。  相似文献   

10.
干旱对玉米叶片细胞透性及膜脂的影响   总被引:56,自引:1,他引:55  
叶片相对含水量随聚乙二醇(PEG)处理浓度的增加而依次降低,复水后它能恢复到对照水平;叶片质膜透性随PEG处理浓度的增加而依次增大,复水后它能不同程度地恢复;PEG处理时叶片膜脂的饱和脂肪酸含量增加,不饱和脂肪酸含量降低。复水后膜脂脂肪酸配比与复水前相似。干旱条件下叶片细胞的各类细胞器膜脂脂肪酸配比的变化与叶片总膜脂的变化相似;在轻度干旱条件下的叶绿体Mg~(++)-ATP酶活力低于对照,复水后能迅速恢复到对照水平,中度干旱条件下Mg~(++)-ATP酶活力明显高于对照,但复水后均有不周程度的恢复。  相似文献   

11.
The effects of paclobutrazol treatment on plasma membrane lipid composition and ATPase activity of bell pepper fruit ( Capsicum annuum ) subjected to chilling temperatures were assessed. Application of the growth regulator paclobutrazol affected plant growth and fruit morphology. The plants were more compact and the fruits were less elongated than control fruits. There was about 60% more plasma membrane on a fresh weight basis from treated fruits. At harvest there was no difference in sterol to phospholipid ratio, or in phospholipid fatty acid composition of control compared with paclobutrazol treated fruit. However, plasma membrane ATPase acitivity of treated fruit was two times higher than that of control fruit. After storage at chilling temperature (2°C), the control fruit developed more chilling iniury, and had greater weight loss and a higher rate of K+ leakage than paclobulrazol treated fruit. Plasma membrane phospholipid content decreased and saturation of phospholipid fatty acids was higher than in control fruit. These two changes were largely absent in plasma membrane from treated fruit. At harvest antioxidant levels in the plasma membrane of paclobutrazol treated peppers were higher than in those of controls and changed little during storage, whereas levels in control fruit plasma membrane decreased 66%. ATPase activity increased and then decreased in control fruit held at low temperature, whereas in treated fruit activity was constant. The protective effect of paclobutrazol against chilling injury of pepper fruit may result from a combination of its effect on fruit morphology, and protection of the lipids against oxidative stress.  相似文献   

12.
Mature green tomato fruit ( Lycopersicon esculentum cv. Caruso) were stored at 1°C or 20°C and analyzed on day 0, 18 and 22 for electrolyte leakage, ripening-associated changes in pigmentation and phospholipid fatty acid composition. Chilled fruit were also analyzed 4 days after they were returned to 20°C. Fruit did not ripen significantly during chilling and subsequent storage at 20°C, and showed visible chilling injury symptoms only at 20°C. Electrolyte leakage increased in control and chilled fruit, indicating enhanced membrane permeability during both ripening and chilling. Returning the fruit to ambient temperature gave an apparent decrease in electrolyte leakage. Phospholipid and linolenic acid content and double bond index decreased during ripening at 20°C. The small changes in phospholipid fatty acid composition during chilling cannot account for the enhanced membrane permeability. The significant decrease in percentage of linolenic acid and in double bond index in the total lipids, but not in the phospholipids, upon returning the fruit to 20°C suggests loss of galactolipid polyunsaturated fatty acids  相似文献   

13.
Plasma membrane (PM) plays central role in triggering primary responses to chilling injury and sustaining cellular homeostasis. Characterising response of membrane lipids to low temperature can provide important information for identifying early causal factors contributing to chilling injury. To this end, PM lipid composition and ATPase activity were assessed in pineapple fruit (Ananas comosus) in relation to the effect of low temperature on the development of blackheart, a form of chilling injury. Chilling temperature at 10 °C induced blackheart development in concurrence with increase in electrolyte leakage. PM ATPase activity was decreased after 1 week at low temperature, followed by a further decrease after 2 weeks. The enzyme activity was not changed during 25 °C storage. Loss of total PM phospholipids was found during postharvest senescence, but more reduction was shown from storage at 10 °C. Phosphatidylcholine and phosphatidylethanolamine were the predominant PM phospholipid species. Low temperature increased the level of phosphatidic acid but decreased the level of phosphatidylinositol. Both phospholipid species were not changed during storage at 25 °C. Postharvest storage at both temperatures decreased the levels of C18:3 and C16:1, and increased level of C18:1. Low temperature decreased the level of C18:2 and increased the level of C14:0. Exogenous application of phosphatidic acid was found to inhibit the PM ATPase activity of pineapple fruit in vitro. Modification of membrane lipid composition and its effect on the functional property of plasma membrane at low temperature were discussed in correlation with their roles in blackheart development of pineapple fruit.  相似文献   

14.
The effects of paclobutrazol on the leaf membrane lipid composition of seedlings of cucumber ( Cucumis sativus L. cv. Victory) subjected to chilling temperatures were assessed. At a non-injurious temperature (12.5°C), there was no difference in the polar lipid fatty acid composition or in the glycolipid, phospholipid or free sterol content of leaves from treated vs untreated seedlings, regardless of whether paclobutrazol was administered 1 or 7 days prior to analysis. In the latter case (7 days pretreatment), there were clear effects of the bioregulator on plant growth and morphology as well as on leaf chlorophyll content. At an injurious chilling temperature (5°C), desaturation of leaf polar lipid fatty acids was markedly reduced in both treated and untreated seedlings. Chilling at 5°C resulted in losses of fresh weight and membrane lipids in leaves of both groups of plants. These losses were either reversible or irreversible, depending upon the duration of chilling and of pretreatment with paclobutrazol. Seedlings pretreated with 10 μg ml−1 paclobutrazol generally sustained less chilling injury than untreated controls, as judged by the extent of wilting, necrosis and desiccation. This correlated with reduced losses of leaf fresh Weight and membrane lipids.  相似文献   

15.
The role of ethylene in the prevention of chilling injury in nectarines   总被引:1,自引:0,他引:1  
Woolliness is a chilling injury phenomenon occurring in nectarines held at low temperatures for extended periods. It is a disorder marked by altered cell wall metabolism during ripening leading to a dry, woolly texture in the fruit. Two treatments were found to alleviate this disorder. One was holding the fruits for 2 days at 20 °C before 0 °C storage (delayed storage) and the second was having ethylene present during cold storage (ethylene). Immediately stored fruit (control) had 88 percnt; woolliness while 7 percnt; of delayed storage and 15 percnt; of ethylene fruit showed woolliness. The severity of the injury in individual fruits was closely related to inhibition of ethylene evolution. Woolly fruit had higher levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and less 1-aminocyclopropane-1-carboxylic acid oxidase (ACO, EC 1.4.3) activity than healthy fruit. It is suggested that ethylene is essential for promoting the proper sequence of cell wall hydrolysis necessary for normal fruit softening. This is in contrast to chilling injury in other fruits, whereby ethylene is often a sign of incipient damage. Respiration was also found to be associated with chilling injury, in that fruit with woolliness had a depressed respiration.  相似文献   

16.
 本实验以自然生长的大头茶为材料,研究了其叶片膜脂脂肪酸组分及膜保护系统随气温下降的变化。结果表明,膜脂脂肪酸不饱和度增加;同时,SOD活性增强,Vc含量增加,POX出现了新的同工酶谱带,而使保护系统清除自由基的能力增强。这两方面的变化有着密切的关系,且都与大头茶的抗冷性发展相适应。  相似文献   

17.
The succinate oxidation capacities of mitochondria isolated from mango fruits (Mangifera indica L.) stored at 4, 8, 12, and 20 C were investigated during storage. In normally ripening fruits (at 12 and 20 C) the oxidative capacities increased during the first 10 days and then decreased slowly. At lower temperatures (4 and 8 C), the fruits showed chilling injury symptoms, after about 10 days of storage and the succinate oxidation capacities of mitochondria decreased progressively. Plots of succinate oxidation capacities as against storage temperature showed a marked discontinuity between 12 and 8 C, only when chilling injury was observed on fruits stored at low temperature.

The variations of mitochondrial fatty acid composition during the storage of fruits at different temperatures were also investigated. A marked decrease of the molar ratio palmitoleic acid/palmitic acid, the predominant fatty acids in mitochondrial lipids, was observed to accompany both the succinate oxidation decrease and the induction of chilling injury.

  相似文献   

18.
The aim of the present work was to investigate the effects of osmoconditioning on chilling injury in chilling-sensitive soybean ( Glycine max (L.) Merr. Zhonghuang No. 22) seeds during imbibition. Low temperatures reduced the germination rate and no seed germinated at 1 °C. Osmoconditioning of seeds at 20 °C with a polyethylene glycol-8000 (PEG8000) solution at 1.5 MPa for 72 h followed by drying back to their initial moisture content (MC) reduced their chilling sensitivity. The phenylarsine oxide (PAO), an inhibitor of protein tyrosinephosphatases, was used to investigate the possible involvement of phosphorylation-dephosphorylation of Tyr residues in the plasma membrane composition and function when seeds were osmoconditioned. The results showed the germination of osmoconditioned seeds decreased significantly when PAO was added in PEG solution after chilling treatment. PAO inhibited changes in composition of plasma membrane phospholipids and fatty acid induced by osmocondition, indicated that tyrosine protein phosphorylation is involved in the regulatory mechanisms of osmocondition-responsive chilling in soybean seeds. Western blot result further indicated that osmocondition treatment improved the activity of plasma membrane H+-ATPase after chilling treatment, but this effect was abolished by PAO. The possible regulation mechanism by Tyr protein phosphorylation is discussed.  相似文献   

19.
Sugar accumulation and membrane lipid parameters associated with membrane permeability in chilling injury and senescence were followed in the early stages of low‐temperature sweetening in Solanum tuberosum tubers to monitor their dynamics. Norchip, a low‐temperature sweetening‐susceptible potato cultivar, and North Dakota 860‐2, a low‐temperature sweetening‐tolerant selection, were stored for 55 days at 4 and 12°C. Sugar accumulations were not linear and were characterized by fluctuations or cycles over storage time. Sucrose cycling and accumulation were greatest for Norchip tubers stored at 4°C as compared to the other treatments. Increases in membrane permeability were not detected by increases in electrolyte leakage. No significant changes in the phospholipid, galactolipid, free sterol levels or phospholipid to free sterol ratio were observed. The double bond index obtained from the fatty acid profiles of the total lipid fraction decreased significantly (decreased unsaturation) for Norchip tubers at 4°C over time. Free fatty acid and diene conjugation values fluctuated and increased over time for all treatments with greater amplitude of fluctuations observed for Norchip tubers stored at 4°C. These latter effects may be due to the high levels of lipid acyl hydrolase and lipoxygenase found in potato tubers. When free fatty acid and diene conjugation values were plotted with glucose accumulation over time, a possible relationship among the variables was revealed. The observed peroxidation products could relate low‐temperature stress and the resultant low‐temperature sweetening to chilling injury and drought stress. The anti‐oxidative potential of potato tubers should be considered for future cultivar development as a mechanism to lessen the severity or rate of low‐temperature sweetening development.  相似文献   

20.
Sui N  Li M  Zhao SJ  Li F  Liang H  Meng QW 《Planta》2007,226(5):1097-1108
A tomato (Lycopersicon esculentum Mill.) glycerol-3-phosphate acyltransferase gene (LeGPAT) was isolated. The deduced amino acid sequence revealed that LeGPAT contained four acyltransferase domains, showing high identities with GPAT in other plant species. A GFP fusion protein of LeGPAT was targeted to chloroplast in cowpea mesophyll protoplast. RNA gel blot showed that the mRNA accumulation of LeGPAT in the wild type (WT) was induced by chilling temperature. Higher expression levels were observed when tomato leaves were exposed to 4 degrees C for 4 h. RNA gel and western blot analysis confirmed that the sense gene LeGPAT was transferred into the tomato genome and overexpressed under the control of 35S-CaMV. Although tomato is classified as a chilling-sensitive plant, LeGPAT exhibited selectivity to 18:1 over 16:0. Overexpression of LeGPAT increased total activity of LeGPAT and cis-unsaturated fatty acids in PG in thylakoid membrane. Chilling treatment induced less ion leakage from the transgenic plants than from the WT. The photosynthetic rate and the maximal photochemical efficiency of PS II (Fv/Fm) in transgenic plants decreased more slowly during chilling stress and recovered faster than in WT under optimal conditions. The oxidizable P700 in both WT and transgenic plants decreased obviously at chilling temperature under low irradiance, but the oxidizable P700 recovered faster in transgenic plants than in the WT. These results indicate that overexpression of LeGPAT increased the levels of PG cis-unsaturated fatty acids in thylakoid membrane, which was beneficial for the recovery of chilling-induced PS I photoinhibition in tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号