首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The electrogenic cation transporters OCT1 and OCT2 in the basolateral membrane of renal proximal tubules mediate the first step during secretion of organic cations. Previously we demonstrated stimulation and change of selectivity for rat OCT1 (rOCT1) by protein kinase C. Here we investigated the effect of cGMP on cation transport by rOCT1 or human OCT2 (hOCT2) after expression in human embryonic kidney cells (HEK293) or oocytes of Xenopus laevis. In HEK293 cells, uptake was measured by microfluorimetry using the fluorescent cation 4-(4-(dimethyl-amino)styryl)-N-methylpyridinium iodide (ASP + ) as substrate, whereas uptake into Xenopus laevis oocytes was measured with radioactively labelled cations. In addition, ASP +-induced depolarizations of membrane voltages (Vm) were measured in HEK293 cells using the slow whole-cell patch-clamp method. Incubation of rOCT1-expressing HEK293 cells for 10 min with 100 mM 8-Br-cGMP reduced initial ASP + uptake by maximally 78% with an IC50 value of 24 +/- 16 mM. This effect was not abolished by the specific PKG inhibitor KT5823, indicating that a cGMP-dependent kinase is not involved. An inhibition of ASP + uptake by rOCT1 in HEK293 cells was also obtained when the cells were incubated for 10 min with 100 mM cGMP, whereas no effect was obtained when cGMP was given together with ASP +. ASP + (100 mM)-induced depolarizations of Vm were reduced in the presence of 8-Br-cGMP (100 mM) by 44 +/- 11% (n = 6). Since it could be demonstrated that [3H]cGMP is taken up by an endogeneous cyanine863-inhibitable transporter, the effect of cGMP is probably mediated from inside the cell. Uptake measurements with [14C]tetraethylammonium and [3H]2-methyl-4-phenylpyridinium in Xenopus laevis oocytes expressing rOCT1 performed in the absence and presence of 8-Br-cGMP showed that cGMP does not interact directly with the transporter. The data suggest that the inhibition mediated by cGMP observed in HEK293 cells occurs most likely via a mammalian cGMP-binding protein that interacts with OCT1-2 transporters.  相似文献   

3.
Bahn A  Hagos Y  Rudolph T  Burckhardt G 《Biochimie》2004,86(2):133-136
Protein sequence alignments revealed one amino acid position, where organic cation transporters (OCTs, aspartate (D) at position 475 of rOCT2) and organic anion transporters (OATs, arginine (R) at position 466 of rOAT1) are charged oppositely. To address the impact of this amino acid for protein function we cloned rat organic cation transporter 2 (rOCT2), the renal electrogenic cation transporter of the basolateral side of proximal tubule cells. Site-directed mutagenesis was used to generate rOCT2-D475R (rOCT2-mut). Heterologous expression of rOCT2 wild-type (rOCT2-wt) in A6 cells resulted in a significant uptake of the fluorescent organic cation 4-(4-dimethylaminostyryl)-N-methylpyridinium (ASP(+)). Accordingly, rOCT2-wt-transfected COS 7 cells showed an almost fourfold uptake of 25 microM [(14)C]-TEA, whereas rOCT2-mut did not exhibit any uptake of [(14)C]-TEA. These data indicate that rOCT2 transports both ASP(+) and TEA and that aspartate at position 475 of rOCT2 plays a critical role in transport function.  相似文献   

4.
Okura T  Ito R  Ishiguro N  Tamai I  Deguchi Y 《Life sciences》2007,80(17):1564-1571
The blood-brain barrier (BBB) transport of pramipexole, a potent dopamine receptor agonist with high efficacy for Parkinson's disease, was mainly characterized using immortalized rat brain capillary endothelial cells (RBEC)1 as an in vitro BBB model. [(14)C]Pramipexole uptake by RBEC1 was dependent on temperature and pH, but not sodium ion concentration or membrane potential. The uptake was inhibited by several organic cations including pyrilamine. Mutual inhibition was observed between pramipexole and pyrilamine. In addition, [(14)C]pramipexole uptake was stimulated by preloading unlabeled pramipexole. RT-PCR analysis for organic cation transporters (rOCT1-3, rOCTN1-2) in RBEC1 was performed. The mRNA level of rOCTN2 was the highest, followed by rOCTN1, while expression of rOCT1, rOCT2 and rOCT3 was negligible. The brain uptake of [(14)C]pramipexole, which was measured by the in situ rat brain perfusion technique, was significantly inhibited by unlabeled pramipexole. These results suggest that pramipexole is, at least in part, transported across the BBB by an organic cation-sensitive transporter. The pramipexole transport in RBEC1 was pH-dependent, but sodium- and membrane potential-independent.  相似文献   

5.
Nucleoside and nucleobase transporters are important for salvage of purines and pyrimidines and for transport of their analog drugs into cells. However, the pathways for nucleobase translocation in mammalian cells are not well characterized. We identified an Na-independent purine-selective nucleobase/nucleoside transport system in the nucleoside transporter-deficient PK15NTD cells. This transport system has 1,000-fold higher affinity for nucleobases than nucleosides with K(m) values of 2.5 +/- 0.7 microM for [(3)H]adenine, 6.4 +/- 0.5 microM for [(3)H]guanine, 1.1 +/- 0.1 mM for [(3)H]guanosine, and 4.2 +/- 0.5 mM [(3)H]adenosine. The uptake of [(3)H]guanine (0.05 microM) was inhibited by other nucleobases and nucleobase analog drugs (at 0.5-1 mM in the order of potency): 6-mercaptopurine = thioguanine = guanine > adenine > thymine = fluorouracil = uracil. Cytosine and methylcytosine had no effect. Nucleoside analog drugs with modification at 2' and/or 5 positions (all at 1 mM) were more potent than adenosine in competing the uptake of [(3)H]guanine: 2-chloro-2'-deoxyadenosine > 2-chloroadenosine > 2'3'-dideoxyadenosine = 2'-deoxyadenosine > 5-deoxyadenosine > adenosine. 2-Chloro-2'-deoxyadenosine and 2-chloroadenosine inhibited [(3)H]guanine uptake with IC(50) values of 68 +/- 5 and 99 +/- 10 microM, respectively. The nucleobase/nucleoside transporter was resistant to nitrobenzylthioinosine {6-[(4-nitrobenzyl) thiol]-9-beta-D-ribofuranosylpurine}, dipyridamole, and dilazep, but was inhibited by papaverine, the organic cation transporter inhibitor decynium-22 (IC(50) of approximately 1 microM), and by acidic pH (pH = 5.5). In conclusion, we have identified a mammalian purine-selective nucleobase/nucleoside transporter with high affinity for purine nucleobases. This transporter is potentially important for transporting naturally occurring purines and purine analog drugs into cells.  相似文献   

6.
Feng B  Dresser MJ  Shu Y  Johns SJ  Giacomini KM 《Biochemistry》2001,40(18):5511-5520
Organic anion transporters (OATs) and organic cation transporters (OCTs) mediate the flux of xenobiotics across the plasma membranes of epithelia. Substrates of OATs generally carry negative charge(s) whereas substrates of OCTs are cations. The goal of this study was to determine the domains and amino acid residues essential for recognition and transport of organic anions by the rat organic anion transporter, rOAT3. An rOAT3/rOCT1 chimera containing transmembrane domains 1-5 of rOAT3 and 6-12 of rOCT1 retained the specificity of rOCT1, suggesting that residues involved in substrate recognition reside within the carboxyl-terminal half of these transporters. Mutagenesis of a conserved basic amino acid residue, arginine 454 to aspartic acid (R454D), revealed that this amino acid is required for organic anion transport. The uptakes of p-aminohippurate (PAH), estrone sulfate, and ochratoxin A were approximately 10-, approximately 48-, and approximately 32-fold enhanced in oocytes expressing rOAT3 and were only approximately 2-, approximately 6-, and approximately 5-fold enhanced for R454D. Similarly, mutagenesis of the conserved lysine 370 to alanine (K370A) suggested that K370 is important for organic anion transport. Interestingly, the charge specificity of the double mutant, R454DK370A, was reversed in comparison to rOAT3-R454DK370A preferentially transported the organic cation, MPP(+), in comparison to PAH (MPP(+) uptake/PAH uptake = 3.21 for the double mutant vs 0.037 for rOAT3). These data indicate that arginine 454 and lysine 370 are essential for the anion specificity of rOAT3. The studies provide the first insights into the molecular determinants that are critical for recognition and translocation of organic anions by a member of the organic anion transporter family.  相似文献   

7.
In this study, we examined the molecular and functional characterization of choline uptake into cultured rat cortical astrocytes. Choline uptake into astrocytes showed little dependence on extracellular Na+. Na+-independent choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 35.7 +/- 4.1 microm and a maximal velocity (Vmax) of 49.1 +/- 2.0 pmol/mg protein/min. Choline uptake was significantly decreased by acidification of the extracellular medium and by membrane depolarization. Na+-independent choline uptake was inhibited by unlabeled choline, acetylcholine and the choline analogue hemicholinium-3. The prototypical organic cation tetrahexylammonium (TEA), and other n-tetraalkylammonium compounds such as tetrabutylammonium (TBA) and tetrahexylammonium (THA), inhibited Na+-independent choline uptake, and their inhibitory potencies were in the order THA > TBA > TEA. Various organic cations, such as 1-methyl-4-tetrahydropyridinium (MPP+), clonidine, quinine, quinidine, guanidine, N-methylnicotinamide, cimetidine, desipramine, diphenhydramine and verapamil, also interacted with the Na+-independent choline transport system. Corticosterone and 17beta-estradiol, known inhibitors of organic cation transporter 3 (OCT3), did not cause any significant inhibition. However, decynium22, which inhibits OCTs, markedly inhibited Na+-independent choline uptake. RT-PCR demonstrated that astrocytes expressed low levels of OCT1, OCT2 and OCT3 mRNA, but the functional characteristics of choline uptake are very different from the known properties of these OCTs. The high-affinity Na+-dependent choline transporter, CHT1, is not expressed in astrocytes as evidenced by RT-PCR. Furthermore, mRNA for choline transporter-like protein 1 (CTL1), and its splice variants CTL1a and CTL1b, was expressed in rat astrocytes, and the inhibition of CTL1 expression by RNA interference completely inhibited Na+-independent choline uptake. We conclude that rat astrocytes express an intermediate-affinity Na+-independent choline transport system. This system seems to occur through a CTL1 and is responsible for the uptake of choline and organic cations in these cells.  相似文献   

8.
We determined the trans effects of extracellular reduced glutathione (GSH) on the rate of efflux of endogenous labeled GSH from freshly isolated rat hepatocytes. The presence of GSH (10 mM) in the medium significantly stimulated the fractional rate of efflux of [35S]GSH from 5.2 to 12.6%/15 min (p < 0.01). This effect was concentration-dependent, had sigmoid type of kinetics (D50 of 0.32 mM), and was reversible upon removal of external GSH. trans-Stimulation (counter-transport) was also observed with 5 mM oxidized glutathione (GSSG) and ophthalmic acid (fractional [35S] GSH efflux: 13.4% +/- 4.1 and 8.8% +/- 2.3 in 15 min, respectively, compared with control: 4.7 +/- 2.5/15 min). Bromosulphthalein-glutathione (BSP-GSH, 5 mM) in Krebs buffer inhibited the fractional [35S]GSH efflux (1.1%/15 min), whereas in Cl(-)-free buffer, GSH efflux was stimulated (14.2%/15 min) compared with control. trans-Stimulation was independent of chloride. BSP-GSH cis-inhibited and trans-stimulated the initial rate of GSH transport in basolateral-enriched membrane vesicles (bLPM) but not in canalicular-enriched membrane vesicles (cLPM). gamma-Glutamyl compounds also cis-inhibited and trans-stimulated GSH transport in bLPM vesicles. GSH-depleted hepatocytes incubated with 10 mM [35S]GSH accumulated more GSH than repleted cells, but the initial rate of uptake of radioactivity was faster in repleted cells. In contrast, repleted hepatocytes incubated with tracer or 50 microM [35S]GSH did not take up GSH. Thus, the sinusoidal membrane GSH transporter exhibits low affinity kinetics with sigmoid features for both GSH uptake and trans-stimulation of efflux, explaining the lack of uptake of GSH at low physiologic extracellular concentrations. Therefore, our findings support and explain the widely held view that GSH transport is unidirectional under physiologic conditions. However, the efflux of GSH may also occur in exchange for the uptake of organic anions and gamma-glutamyl compounds.  相似文献   

9.
Liou HH  Hsu HJ  Tsai YF  Shih CY  Chang YC  Lin CJ 《Life sciences》2007,81(8):664-672
To examine the interaction between nicotine and MPTP/MPP+ in the blood-brain barrier, cellular uptake of MPTP and MPP+ was studied in the presence of nicotine and several compounds, including MPTP/MPP+ analogs and a specific inhibitor of organic cation transporter (OCT) in an adult rat brain microvascular endothelial cell line (ARBEC). The kinetic properties of the uptake of MPTP, MPP+, and nicotine were also examined. In addition, a microdialysis study was performed to evaluate the in vivo effect of nicotine (i.p.) on extracellular levels of MPTP and MPP+ in the brain after intravenous administration of MPTP. The results showed that uptake of MPTP, MPP+, and nicotine was partly mediated by a carrier system that was sensitive to decynium22, a specific OCT inhibitor. RT-PCR showed the presence of OCT1 mRNA in ARBEC. Capacity for uptake of MPTP and nicotine was much higher than that for MPP+ (Km and Vm values of 10.94+/-1.44 microM and 0.049+/-0.007 pmol/mg s, respectively, for MPP+, compared to values of 35.75+/-0.85 microM and 40.95+/-3.56 pmol/mg s for MPTP and 25.29+/-6.44 microM and 51.15+/-14.18 pmol/mg s for nicotine). In addition, nicotine competitively inhibited the uptake of both MPTP and MPP+, with inhibition constants (Ki) of 328 microM and 210 microM, respectively. In vivo microdialysis results showed that nicotine significantly reduced brain extracellular levels of MPTP in the first 30 min (507.4+/-8.5 ng/ml vs. 637.9+/-30.8 ng/ml with and without nicotine pre-treatment, respectively), but did not have significant effect on those of MPP+. In conclusion, nicotine can inhibit in vitro cellular uptake and in vivo transfer of MPTP across the blood-brain barrier, which can be mediated by multiple pathways including OCT1.  相似文献   

10.
The present study was undertaken to elucidate the functional characteristics of choline uptake and deduce the relationship between choline uptake and the expression of organic cation transporters in the rat brain microvessel endothelial cell line RBE4. Confluent RBE4 cells were found to express a high affinity choline uptake system. The system is Na(+)-independent and shows a Michaelis-Menten constant of approx. 20 microM for choline. The choline analogue hemicholinium-3 inhibits choline uptake in these cells with an inhibition constant of approx. 50 microM. The uptake system is also susceptible for inhibition by various organic cations, including 1-methyl-4-phenylpyridinium, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, clonidine, procainamide, and tetramethylammonium. The prototypical organic cation tetraethylammonium shows very little affinity for the choline uptake system in these cells. The inhibition of choline uptake by hemicholinium-3 is competitive. Northern analysis and RT-PCR show that these cells do not express the organic cation transporters OCT2 and OCT3. These cells do express, however, low levels of OCT1, but the functional characteristics of choline uptake in these cells are very different from the known properties of choline uptake via OCT1. The Na(+)-coupled high affinity choline transporter CHT1 is not expressed in these cells as evidenced by RT-PCR. This corroborates the Na(+)-independent nature of choline uptake in these cells. It is concluded that RBE4 cells express an organic cation transporter that is responsible for choline uptake in these cells and that this transporter is not identical to any of the organic cation transporters thus far identified at the molecular level in mammalian cells.  相似文献   

11.
Absorption of exogenous choline by the cestode Hymenolepis diminuta was found to be both Na+- and HCO3--dependent and, at pH 6 to 7, accounted for up to 65% of the total choline uptake. Na+/HCO3- dependent choline uptake was activated at approximately 6 mM HCO3- (EC50 approximately 9 mM), and, above 100 mM Na+, the rate of uptake was directly proportional to the Na+ concentration. Atempts to uncouple Na+-dependent uptake from HCO3--dependent uptake were not successful: K+-depolarization was without effect on HCO3--dependent choline uptake, and use of valinoomycin to hyperpolarize the brush-border membrane resulted in inhibition of uptake. Na-/HCO3--dependent choline uptake was not associated with solvent drag. The Na+/HCO3--dependent choline uptake displayed a Q10 of 6.4 (27 degrees to 37 degrees) and a relatively high activation energy of 126 kJ x mol(-1). At pH 6.0 and 7.0, Na-/HCO3--dependent choline uptake rates were similar, but Na+/HCO3--dependent choline uptake was reduced at pH 5.0. The Na+/HCO3--dependent choline uptake, at pH 7.0, displayed a Kt of approximately 500 microM and a Vmax of 4.01 pmol x mg wet weight(-1) x min(-1). The Na+/HCO3--dependent choline uptake was hemicholinium-3 sensitive, but not significantly inhibited by 200 microM bumetanide, 100 microM amiloride, benzamil, or EIPA or by 1 mM 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) or 4-acetamido-4'-isothiocvanostilbene-2,2'-disulfonic acid (SITS). Although it remains to be shown that HCO3- uptake is coupled directly to both choline and Na+ uptake, the data suggest that choline up take occurs via choline/Na+/HCO3--co-trans porter.  相似文献   

12.
Many organic cations are transported across the apical membrane of the proximal tubule by specific saturable mechanisms. The goal of this study was to determine if the transporter for tetraethylammonium (TEA) in the brush border membrane of an established opossum kidney (OK) cell line is glycosylated and to elucidate the function of this glycosylation. The uptake of TEA was determined in OK cell monolayers treated with tunicamycin (TM), a compound that prevents synthesis of the core oligosaccharide precursor molecules. TM exposure significantly decreased the incorporation of [3H]mannose in OK cell proteins and significantly reduced TEA uptake in a time and a concentration dependent manner. No effect of TM exposure on cellular protein synthesis, DNA content, cell viability, or on [3H]proline uptake was observed. The transport of TEA in control cells was characterized by a Km of 26.9 +/- 16.4 microM and a Vmax of 378 +/- 39 pmol/mg of protein/min. TM treatment (1 microgram/ml for 21 h) significantly increased the Km by over 4-fold to 111.5 +/- 18.4 microM while not affecting the Vmax. The apparent KI values of other organic cations known to interact with this transport system were also significantly increased by TM exposure. Estimated KI values of N1-methylnicotinamide, cimetidine, and mepiperphenidol increased by 6-fold, 4-fold, and 2-fold, respectively, after exposure of OK cells to TM. An increased KI for protons was also observed. Additional inhibitors of the N-linked glycosylation pathway, castanospermine, deoxynojirimycin, and deoxymannojirimycin significantly decreased TEA transport, whereas swainsonine had no effect. Our results suggest that the organic cation transporter is glycosylated. The N-linked oligosaccharide side chain appears to be of the hybrid type, and it either directly or indirectly affects the binding site of the transporter for both organic cations and protons. This is the first report describing the importance of glycosylation in the function of the organic cation transporter in the apical membrane of OK cells.  相似文献   

13.
Urakami Y  Okuda M  Saito H  Inui K 《FEBS letters》2000,473(2):173-176
Rat (r) OCT2 was identified as the second member of the organic cation transporter (OCT) family, and is predominantly expressed in the kidney. We reported previously that rOCT2 was responsible for the gender differences in renal basolateral membrane organic cation transport activity. As renal rOCT2 expression in males is much higher than that in females, we hypothesized that rOCT2 expression may be under the control of sex hormones. Treatment of male and female rats with testosterone significantly increased the expression levels of rOCT2 mRNA and protein in the kidney, whereas estradiol treatment moderately decreased the expression levels of rOCT2. There was no regulation of renal rOCT1 mRNA expression by testosterone or estradiol. Treatment of male and female rats with testosterone significantly stimulated the tetraethylammonium (TEA) accumulation by renal slices, whereas estradiol treatment caused a decrease in the TEA accumulation by slices from male but not female rats. The present findings suggested that testosterone up-regulates renal rOCT2 expression and estradiol moderately down-regulates rOCT2.  相似文献   

14.
Cultures of dissociated embryonic rat mesencephalic cells were exposed to 10 microM 1-methyl-4-phenylpyridinium (MPP+), a concentration shown earlier to result in loss of greater than 85% of tyrosine hydroxylase (TH)-positive neurons without affecting the total number of cells observed by phase-contrast microscopy. To characterize better the selectivity of the toxic action of MPP+, other parameters were measured reflecting survival and function of dopaminergic or nondopaminergic neurons. Exposure of cultures to 10 microM MPP+ for 48 h reduced TH activity to 11% of control values without reducing protein levels. [3H]Dopamine uptake was reduced to less than 4% of control values, whereas the uptake of gamma-[3H]aminobutyric acid ([3H]GABA) was not affected in these cultures. This same treatment failed to reduce the number of cholinergic cells visualized in septal cultures and did not affect either choline acetyltransferase activity or high-affinity choline uptake. To assess for possible recovery of dopaminergic neurons, cultures were exposed to 10, 1.0, or 0.1 microM MPP+ for 48 h and then kept for up to 6 days in MPP(+)-free medium. After exposure to 10 microM MPP+, the number of TH-positive neurons, their neurite density, TH activity, and [3H]dopamine uptake remained at constant, reduced levels throughout the period of observation after termination of exposure, whereas GABA uptake remained normal. Treatment with lower concentrations of MPP+, i.e., 1.0 and 0.1 microM, induced less pronounced dopaminergic toxic effects. However, no recovery was seen after posttreatment incubation in toxin-free medium. These findings provide evidence that MPP+ treatment results in highly selective and irreversible toxicity for cultured dopaminergic neurons.  相似文献   

15.
The cardiac ganglion of the horseshoe crab, Limulus polyphemus, was incubated in Chao's solution containing 0.01 microM [3H]choline at room temperature (25 +/- 2 degrees C) and the ganglion readily accumulated the radiolabel. The ganglion uptake of [3H]choline was linear over 60 min. Kinetic analysis revealed dual choline uptake systems within the cardiac ganglion, a high affinity uptake system (Km = 2.2 microM, Vmax = 0.16 pmoles/mg/min) and a low affinity system (Km = 92.3 microM, Vmax = 3.08 pmoles/mg/min). The high affinity uptake system was sodium-dependent and inhibited by micromolar concentrations of hemicholinium-3. A 15 min pre-exposure of the ganglion to Chao's solution containing 90 mM potassium stimulated a significant increase in choline uptake. There was no detectable synthesis of [3H]acetylcholine from the [3H]choline taken up by the cardiac ganglion. The major portion of the extractable label appeared in a fraction which co-electrophoresed with phosphorylcholine. These results suggest that the sodium-dependent high affinity [3H]choline uptake system of the cardiac ganglion subserves a specific requirement for choline which is unrelated to a cholinergic function.  相似文献   

16.
The transport of cGMP out of cells is energy requiring and has characteristics compatible with an ATP-energised anion pump. In the present study a model with inside-out vesicles from human erythrocytes was employed for further characterisation of the cGMP transporter. The uptake of leukotriene C(4) (LTC(4)), a substrate for multidrug resistance protein (MRP), was concentration-dependently inhibited by the leukotriene antagonist MK571 (IC(50)=110+/-20 nM), but cGMP was unable to inhibit LTC(4) uptake. Oxidised glutathione (GSSG) and glutathione S-conjugates caused a concentration-dependent inhibition of [(3)H]cGMP uptake with IC(50) of 2200+/-700 microM for GSSG, 410+/-210 microM for S-(p-nitrobenzyl)glutathione and 37+/-16 microM for S-decylglutathione, respectively. Antioxidants such as reduced glutathione and dithiothreitol did not influence transport for concentrations up to 100 microM, but both inhibited cGMP uptake with approx. 25% at 1 mM. The cGMP pump was sensitive to temperature without activity below 20 degrees C. The transport of cGMP was dependent on pH with maximal activity between pH 8.0 and 8.5. Calcium caused a concentration-dependent inhibition with IC(50) of 43+/-12 microM. Magnesium gave a marked activation in the range between 1 and 20 mM with maximum effect at 10 mM. The other divalent cations, Mn(2+) and Co(2+), were unable to substitute Mg(2+), but caused some activation at 1 mM. EDTA and EGTA stimulated cGMP transport concentration-dependently with 50% and 100% above control at 100 microM, respectively. The present study shows that the cGMP pump has properties compatible with an organic anion transport ATPase, without affinity for the MRP substrate LTC(4). However, the blockade of the cGMP transporter by glutathione S-conjugates suggests it is one of several GS-X pumps.  相似文献   

17.
The purpose of this study was to characterize the renal uptake properties of the cytidine analog and antiretroviral agent 3TC. The uptake of radiolabelled 3TC was measured at 37 degrees C in a continuous porcine renal epithelial cell line (i.e., LLC-PK1 cells) grown as a monolayer on an impermeable support. 3TC (5 microM) uptake (37 degrees C) by the monolayer cells was saturable (Km = 1.2 +/- 0.2 mM) but not significantly altered by various dideoxynucleoside analog drugs, nucleosides, and nucleoside transport inhibitors, suggesting that a nucleoside transporter is not involved in 3TC uptake. A number of endogenous organic cation probes and inhibitors significantly reduced 3TC uptake by the monolayer cells. Quinine, trimethoprim (TMP), and tetraethylammonium (TEA) inhibited 3TC uptake in a dose dependent manner with IC50 values of 0.6 mM, 0.63 mM, and 1.9 mM, respectively. In turn, the uptake of the typical organic cation substrate TEA was inhibited by high concentrations of 3TC. An outwardly directed proton gradient significantly increased the uptake of 3TC by the monolayer cells, suggesting the involvement of a proton exchange process. Conversely, in the presence of monensin, a Na+/H+ ionophore, the uptake of 3TC was significantly reduced. These results suggest that the uptake of 3TC by a cultured renal epithelium may be mediated by an organic cation-proton exchanger. The observed clinical interaction between 3TC and trimethoprim may be explained by competition for a common renal organic cation tubular transporter.  相似文献   

18.
1-Methyl-4-phenylpyridinium (MPP+), the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, induces apoptosis in cerebellar granule neurons (CGNs). We have tested the hypothesis that organic cation transporter (OCT) 3 mediates the accumulation and, hence, the toxicity of MPP+ in CGNs. CGNs in primary culture express OCT3 but do not express mRNA for OCT1, OCT2 or the dopamine transporter. Cerebellar astrocytes are negative for OCT3 protein by immunocytochemistry. [3H]MPP+ accumulation by CGNs exhibits first-order kinetics, and a Kt value of 5.3 +/- 1.2 micro m and a Tmax of 0.32 +/- 0.02 pmol per min per 106 cells. [3H]MPP+ accumulation is inhibited by corticosterone, beta-estradiol and decynium 22 with Ki values of 0.25 micro m, 0.17 micro m and 4.0 nm respectively. [3H]MPP+ accumulation is also inhibited by desipramine, dopamine, serotonin and norepinephrine, but is not affected by carnitine (10 mm), mazindol (9 micro m) or GBR 12909 (1 micro m). MPP+-induced caspase-3-like activation and cell death are prevented by pretreatment with 5 micro mbeta-estradiol. In contrast, the neurotoxic effects of rotenone are unaffected by beta-estradiol. Interestingly, GBR 12909 protects CGNs from both MPP+ and rotenone toxicity. In summary, CGNs accumulate MPP+ in manner that is consistent with uptake via OCT3 and the presence of this protein in CGNs explains their sensitivity to MPP+ toxicity.  相似文献   

19.
In developing seeds, the permeability of the plasma membrane of seed coat parenchyma cells is crucial for the supply of nutrients to the embryo. Here, we report characteristics of the transport of the organic cation choline and the basic amino acid L- histidine (His; cation at pH 5, electroneutral at pH 7) into isolated seed coats of pea (Pisum sativum). Supplied at sub-micromolar concentrations, choline(+) accumulated in the seed coat tissue 5.1 +/- 0.8-fold, His(+) 2.4 +/- 0.3-fold, and His(0) 1.3 +/- 0.2-fold. Taking into consideration that at pH 5 His influxes as a cation but effluxes as a neutral molecule, these accumulations are in reasonable agreement with (electro) diffusional uptake at the prevailing membrane potential of -55 +/- 3 mV. At a concentration of 100 mM, choline(+) and His(+), but not His(0), depolarized the membrane of the parenchyma cells and neither of the substrates was accumulated. At this concentration, the relative influx (the ratio of influx and external concentration, a measure for membrane permeability) of choline and His was approximately 10 micromol g(-1) fresh weight min(-1) M(-1), similar to that found for neutral amino acids, sucrose, glucose, and mannitol. At lower concentrations, the relative influx of choline(+) and His(+) increased because of increasingly more negative membrane potentials, giving rise to apparent saturation kinetics. It is suggested that transport of organic cations can proceed by a general, poorly selective pore in the plasma membrane of seed coat parenchyma cells. This pore is thought to be responsible for the unloading of a range of solutes that serve as nutrients for the embryo.  相似文献   

20.
Besides cholinergic regulation, catecholamine secretion from adrenal chromaffin cells can be elicited and/or modulated by noncholinergic neurotransmitters and hormones. This study was undertaken to investigate the influence of somatostatin and octreotide on [3H]MPP+ secretion evoked by KCl or cholinergic agents, from bovine adrenal chromaffin cells. The release of [3H]MPP+ was markedly increased by excess KCl (50 mM), acetylcholine (50 microM-10 mM) and by the nicotinic agonists, nicotine (5-100 microM) and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP, 10-100 microM), but not by the muscarinic agonist, pilocarpine (10-100 microM). Acetylcholine-evoked release of [3H]MPP+ from these cells was mainly mediated by nicotinic receptors: a) nicotine and DMPP stimulated the release of [3H]MPP+, b) a nicotinic antagonist, hexamethonium, markedly blocked the acetylcholine-evoked response and c) pilocarpine was devoid of effect on [3H]MPP+ secretion. At all concentrations tested, somatostatin and octreotide interfered neither with [3H]MPP+ basal release nor with KCl-induced release of [3H]MPP+. However, somatostatin (0.01-0.3 microM) increased the release of [3H]MPP+ induced by a high concentration of acetylcholine (10 mM). Octreotide (1-10 microM) had no effect. These results, showing that somatostatin potentiates acetylcholine-induced [3H]MPP+ release, support the hypothesis that somatostatin may increase the release of catecholamines from adrenal medullary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号