首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of ganglioside GD1b from ganglioside GD2 was demonstrated using Golgi membranes isolated from rat liver. Competition experiments using gangliosides GA2, GM2 and GD2 as substrates, and as mutual inhibitors for ganglioside galactosyltransferase activity in preparations of Golgi vesicles derived from rat liver, suggested that galactosyl transfer to these three compounds, leading to gangliosides GA1, GM1a and GD1b respectively, is catalyzed by one enzyme. These results strengthen the hypothesis that the main site for the regulation of ganglioside biosynthesis occurs within the reaction sequence LacCer----GA3----GD3----GT3.  相似文献   

2.
Identity of GD1C, GT1a and GQ1b synthase in Golgi vesicles from rat liver   总被引:1,自引:0,他引:1  
H Iber  K Sandhoff 《FEBS letters》1989,254(1-2):124-128
Competition experiments using GM1b, GD1a and GT1b as substrates, and as mutual inhibitors for ganglioside sialyltransferase activity in preparations of Golgi vesicles derived from rat liver, suggested that sialyl transfer to these three respective compounds, leading to gangliosides GD1C, GT1a and GQ1b, respectively, is catalyzed by one enzyme. These results are incorporated into a model for ganglioside biosynthesis and its regulation.  相似文献   

3.
The effect of end-product gangliosides (GD1a, GT1b, GQ1b) on the activities of two key enzymes in ganglioside biosynthesis, namely GM2-synthase and GD3-synthase in rat liver Golgi apparatus, has been investigated in detergent-free as well as in detergent-containing assays. In detergent-free intact Golgi vesicles, phosphatidylglycerol was used as a stimulant. This phospholipid was earlier shown to stimulate the activity of GM2-synthase without disrupting the vesicular intactness; it has, however, no effect on GD3-synthase (Yusuf, H.K.M., Pohlentz, G., Schwarzmann, G. & Sandhoff, K. (1983) Eur. J. Biochem. 134, 47-54). In the presence of this stimulant, all higher gangliosides inhibited the activity of GM2-synthase, the inhibition being more profound with increasing negative charge of the inhibiting gangliosides. These inhibitions are unspecific, but they do not exclude an end-product regulation of ganglioside biosynthesis. In detergent-solubilized Golgi membranes, on the other hand, the inhibition pattern was completely different. Here, ganglioside GD1a was the strongest inhibitor of GM2-synthase, followed by GM1 and GM2, but GT1b also inhibited this enzyme appreciably, in fact more strongly than GM1 or GM2. On the other hand, GQ1b had no effect at all. Conversely, GD3-synthase activity was most strongly inhibited by GQ1b, followed by GT1b, but GD1a also inhibited this enzyme almost as strongly as GT1b. These latter findings indicate that feed-back control of the a- and the b-series pathways of ganglioside biosynthesis is probably not specific, but the pathways appear to be inhibited more preferably by their respective end-products than by any other gangliosides of the same of the other series.  相似文献   

4.
Golgi vesicles were isolated and purified from rat liver, in which the specific activities of glycosyltransferases (e.g. GM3:CMP-NeuAc sialyltransferase, GD3 synthase; GM3:UDP-GalNAc galactosaminyltransferase, GM2 synthase) were 50-60-times enriched relative to microsomes or total homogenate. Synthesis of gangliosides GM2 and GM1 in such Golgi vesicles is, in the absence of any detergents, stimulated 6-fold and 20-fold respectively by phosphatidylglycerol. Other phospholipids like phosphatidylethanolamine and phosphatidylserine are also significantly stimulatory. With 50 micrograms Golgi protein and 1 nmol UDP-GalNAc, optimal stimulation of GM2 synthase was obtained with 20 micrograms of phosphatidylglycerol and 7.5 nmol of the lipid acceptor GM3. Under the same experimental conditions this stimulation exceeds (by about 40%) that obtained with optimal amount (200 micrograms) of the detergent octylglucoside. Phosphatidylglycerol, on the other hand, has virtually no stimulatory activity on the synthesis of ganglioside GD3 either in the presence of Mg2+ or Mn2+, indicating that facilitation by phospholipid of GM3 transport into Golgi vesicles was not the basis of stimulation of GM2 synthesis. Tunicamycin inhibits the synthesis of gangliosides GM2 and GM1 in isolated Golgi vesicles, but only in the absence of detergents. In the presence of phosphatidylglycerol, GM2 synthesis, for example, was inhibited by 60% by 2 micrograms tunicamycin and more than 85% by 10 micrograms tunicamycin, per 50 micrograms Golgi membrane protein. The inhibition was stronger on GM1 synthesis: 85% with 2.5 micrograms of the antibiotic. The dependence on phosphatidylglycerol and the degree of inhibition by tunicamycin of the synthetic activities are strictly dependent on the intactness of the Golgi vesicles: both phenomena become increasingly less evident when the vesicles are pelleted, and frozen and thawed several times, and completely disappear when the vesicles are solubilized by detergents or disrupted by ultrasonication. Furthermore, tunicamycin inhibition is reversible by increased concentration of phosphatidylglycerol. All these results indicate that phosphatidylglycerol does not stimulate, and tunicamycin does not inhibit, the transferases themselves; rather, the two opposing effects might relate to carrier-mediated transport, e.g. of nucleotide sugars, across Golgi vesicles.  相似文献   

5.
Abstract: To characterize the sialyltransferase-IV activity in brain tissues, the activities of GM1b-, GD1a-, GT1b-, and GQ1c-synthases in adult cichlid fish and rat brains were examined using GA1, GM1, GD1b, or a cod brain ganglioside mixture as the substrate. The GD1a-synthase activity in the total membrane fraction from cichlid fish brain required divalent cations such as Mg2+ or Mn2+ and Triton CF-54 for its full activity. The Vmax value was 1,340 pmol/mg of protein/h at an optimal pH of 6.5, whereas the apparent Km values for CMP-sialic acid and GM1 were 172 and 78 µM, respectively. Cichlid fish and rat brains also contained GM1b-, GT1b-, and GQ1c-synthase activities. The ratio of GM1b-, GD1a-, and GT1b-synthase activities in fish brain was 1.00:0.89:1.13, respectively, and in rat brain 1.00:0.60:0.63. Incubation of fish brain membranes with a cod brain ganglioside mixture, which contains GT1c, and [3H]CMP-sialic acid produced radiolabeled GQ1c. It is interesting that the adult rat brain also contains an appreciable level of GQ1c-synthase activity despite its very low concentrations of c-series gangliosides. The GD1a- or GQ1c-synthase activity in fish and rat brain was inhibited specifically by coincubation with the glycolipids that serve as the substrates for other sialyltransferase-IV reactions. Thus, the GD1a-synthase activity was inhibited by GA1 and GD1b, but not by LacCer, GM3, or GD3. In a similar manner, the synthesis of GQ1c was suppressed by GA1, GM1, and GD1b, but not by LacCer, GM3, or GD3. The GD1a-synthase activity directed toward endogenous GM1 was inhibited by GA1 or GT1b, whereas the endogenous GT1b-synthase activity was suppressed by GA1 or GM1. GA1, GM1, and GD1b did not affect the endogenous GM3- and GD3-synthase activities. These results clearly demonstrate that sialyltransferase-IV in brain tissues catalyzes the reaction for GQ1c synthesis in the c-pathway as well as the corresponding steps in the asialo-, a-, and b-pathway in ganglioside biosynthesis.  相似文献   

6.
Subcellular distribution and biosynthesis of rat liver gangliosides   总被引:6,自引:0,他引:6  
Gangliosides have generally been assumed to be localized primarily in the plasma membrane. Analysis of gangliosides from isolated subcellular membrane fractions of rat liver indicated that 76% of the total ganglioside sialic acid was present in the plasma membrane. Mitochondria and endoplasmic reticulum fractions, while containing only low levels of gangliosides on a protein basis, each contained approx. 10% of total ganglioside sialic acid. Gangliosides also were present in the Golgi apparatus and nuclear membrane fractions, and soluble gangliosides were in the supernatant. Individual gangliosides were non-homogeneously distributed and each membrane fraction was characterized by a unique ganglioside composition. Plasma membrane contained only 14 and 28% of the total GD1a and GD3, respectively, but 80-90% of the GM1, GD1b, GT1b and GQ1b. Endoplasmic reticulum, when corrected for plasma membrane contamination, contained only trace amounts of GM1, GD1b, GT1b and GQ1b, but 11 and 5% of the total GD1a and GD3, respectively. The ganglioside composition of highly purified endoplasmic reticulum was similar. Ganglioside biosynthetic enzymes were concentrated in the Golgi apparatus. However, low levels of these enzymes were present in the highly purified endoplasmic reticulum fractions. Pulse-chase experiments with [3H]galactose revealed that total gangliosides were labeled first in the Golgi apparatus, mitochondria and supernatant within 10 min. Labeled gangliosides were next observed at 30 min in the endoplasmic reticulum, plasma membrane and nuclear membrane fractions. Analysis of the individual gangliosides also revealed that GM3, GM1, GD1a and GD1b were labeled first in the Golgi apparatus at 10 min. These studies indicate that gangliosides synthesized in the Golgi apparatus may be transported not only to the plasma membrane, but to the endoplasmic reticulum and to other internal endomembranes as well.  相似文献   

7.
The synthesis of gangliosides is compartmentalized in the Golgi complex. In most cells, glycosylation of LacCer, GM3, and GD3 to form higher order species (GA2, GM2, GD2, GM1, GD1b) is displaced toward the most distal aspects of the Golgi and the trans-Golgi network, where the involved transferases (GalNAcT and GalT2) form physical and functional associations. Glycosylation of the simple species LacCer, GM3, and GD3, on the other hand, is displaced toward more proximal Golgi compartments, and we investigate here whether the involved transferases (GalT1, SialT1, and SialT2) share the property of forming physical associations. Co-immunoprecipitation experiments from membranes of CHO-K1 cells expressing epitope-tagged versions of these enzymes indicate that GalT1, SialT1, and SialT2 associate physically in a SialT1-dependent manner and that their N-terminal domains participate in these interactions. Microscopic fluorescence resonance energy transfer and fluorescence recovery after photobleaching in living cells confirmed the interactions, and in addition to showing a Golgi apparatus localization of the complexes, mapped their formation to the endoplasmic reticulum. Neither co-immunoprecipitation nor fluorescence resonance energy transfer detected interactions between either GalT2 or GalNAcT and GalT1 or SialT1 or SialT2. These results, and triple color imaging of Golgi-derived microvesicles in nocodazole-treated cells, suggest that ganglioside synthesis is organized in distinct units each formed by associations of particular glycosyltransferases, which concentrate in different sub-Golgi compartments.  相似文献   

8.
Abstract: Previous studies from this laboratory have shown that synthesis of GT3, the precursor of c series gangliosides, occurs in proximal Golgi compartments, as has been shown for the synthesis of GM3 and GD3, the precursors of a and b series gangliosides, respectively. In this work we studied whether the synthesis of GM3, GD3, and GT3 occurs in the same or in different compartments of the proximal Golgi. For this, we examined in retina cells (a) the effect of monensin, a sodium ionophore that affects mostly the trans Golgi and the trans Golgi network function, on the metabolic labeling of glycolipids from [3H]Gal by cultured cells from 7- and 10-day chick embryos and (b) the labeling in vitro of endogenous glycolipids of Golgi membrane preparations from 7-day embryos incubated with UDP-[3H]Gal. In (a), 1 µM monensin produced a twofold accumulation of radioactive glucosylceramide and a decrease to ~50 and 20% of total ganglioside labeling in 7- and 10-day cells, respectively. At both ages, monensin produced a threefold accumulation of radioactive GM3 and an inhibition of >90% of GT3, GM1, GD1a, and GT1b synthesis. GD3 synthesis was inhibited ~30 and 70%, respectively, in 7- and 10-day cells. In (b), >80% of the [3H]Gal was incorporated into endogenous glucosylceramide to form radioactive lactosylceramide. About 90% of [3H]Gal-labeled lactosylceramide was converted into GM3, and most of this in turn into GD3 when unlabeled CMP-NeuAc was also present in the incubation system. Under the same conditions, however, <5% of labeled GD3 was converted into GT3. Golgi membranes incubated with CMP-[3H]NeuAc incorporated ~20% of [3H]NeuAc into endogenous GT3, and this percentage was not affected by 1 µM monensin. These results indicate that synthesis of GT3 is carried out in a compartment of the proximal Golgi different from those for lactosylceramide, GM3, and GD3 synthesis. Results from the experiments with monensin point to the cis/medial Golgi as the main compartment for coupled synthesis of lactosylceramide, GM3, and GD3 and to the trans Golgi as the main compartment for synthesis of GT3.  相似文献   

9.
Ganglioside GD3 induced the release of cytochrome c from isolated rat liver mitochondria. This process was completely prevented by cyclosporin A and partially prevented by a cysteine protease inhibitor, n-acetyl-leu-leu-norleucinal. Cyclosporin A is a potent inhibitor of the permeability transition pore, whereas n-acetyl-leu-leu-norleucinal has no effect on this pore. These results indicate that the release of cytochrome c from mitochondria requires both the opening of the permeability transition pore and a cysteine protease inhibitor-sensitive mechanism. Gangliosides GD1a, GD1b, GT1b, and GQ1b along with the synthetic GD3 mimetics TMS-42 and CI-22, which are glycerophospholipids carrying a disialo residue, also induced cytochrome c release. In contrast, gangliosides GM1, GM2, and GM3 did not induce cytochrome c release. These results indicate that two sialo residues must play an important role in the induction of cytochrome c release by gangliosides.  相似文献   

10.
The relationship among lactosylceramide-(LacCer), GD3- and GM2-synthases and between the two last transferases and their common GM3 acceptor was investigated in intact Golgi membrane from chick embryo neural retina cells at early (8-days) and late (14 days) stages of the embryonic development. [3H]Gal was incorporated into endogenous glucosylceramide by incubation of Golgi membranes with UDP-[3H]Gal. Conversion of the synthesized [3H]Gal-LacCer into GM3, and of the latter into GD3, GM2 and GD2 was examined after a second incubation step with unlabeled CMP-NeuAc and/or UDP-GalNAc. With CMP-NeuAc, most [3H]Gal-LacCer was converted into GM3 in either 8- or 14- day membranes. However, while about 90% of GM3 was converted into GD3 in 8-day membranes, only about 25% followed this route in 14-day membranes. With CMP-NeuAc and UDP-GalNAc, about 90% of GM3 was used for synthesis of GM2 in 14-day membranes, while in 8-day membranes about 80% followed the route to GD3, and a part to GD2. Performing the second incubation step in the presence of increasing detergent concentrations showed that conversion of GM3 to GM2 was inhibited at concentrations lower than those required for inhibition of LacCer to GM3 conversion. Taken together, results indicate that transfer steps leading to synthesis of GM3, GD3, GM2 and GD2 from LacCer are functionally coupled in the Golgi membranes, and that GD3- and GM2-synthases compete in a common compartment for using a fraction of GM3 as substrate. In this competition, the relative activities of the transferases and their relative saturation with the respective donor sugar nucleotides, are important factors influencing conversion of GM3 toward either GD3 or GM2.  相似文献   

11.
Uncoupling of ganglioside biosynthesis by Brefeldin A   总被引:13,自引:0,他引:13  
We have studied the effect of Brefeldin A (BFA), an antiviral antibiotic, on glycosphingolipid metabolism in primary cultured cerebellar cells. Cells were labeled metabolically with [14C]galactose, or pulse-labeled with precursors of glycosphingolipid biosynthesis; i.e., [14]serine, [3H]palmitic acid or [3H]sphingosine. In all cases BFA (1 microgram/ml) strongly inhibited (75-95%) ganglioside biosynthesis beyond the stage of GM3 and GD3, that is the formation of GM1, GD1a, GT1b and GQ1b. Simultaneously an accumulation of GlcCer, LacCer, GM3 and GD3 was observed (up to 2000%). These effects could be reversed fully by removal of the BFA from the culture medium. These results indicate that the LacCer-, GM3- and GD3-synthases of murine cerebellar cells are localized together on the proximal site of the Golgi apparatus, probably in the cis-Golgi compartment. It is probable that sphingomyelin synthase and some of the other glycosyltransferases involved in ganglioside biosynthesis are localized in distinct compartments beyond the cis Golgi.  相似文献   

12.
High titers of anti-GA1 antibodies have been associated with neurological syndromes. In most cases, these antibodies cross-react with the structurally related glycolipids GM1 and GD1b, although specific anti-GA1 antibodies have also been reported. The role of specific anti-GA1 antibodies is uncertain since the presence of GA1 in the human nervous system has not been clarified. A rabbit was immunized with GD1a and its sera were screened for antibody reactivity by standard immunoassay methods (HPTLC-immunostaining and ELISA). Anti-GD1a antibodies were not detected but, unexpectedly, anti-GA1 IgG-antibodies were found. Antibody binding to GA1 was inhibited by soluble GA1 but also by GD1a. These results indicate that the rabbit produced antibodies that recognize epitopes present on the glycolipids, that are absent or not exposed on solid phase adsorbed GD1a. We investigated the presence of these unusual anti-ganglioside antibodies in normal and neurological patient sera. Approximately, 10% of normal human sera contained low titer of specific anti-GA1 IgG-antibodies but none of them recognized soluble GD1a. High titers of IgG-antibodies reacting only with GA1 were detected in 12 patient sera out of 325 analyzed. Of these, 6 sera showed binding that was inhibited by soluble GD1a and four of them also by GM1. This new type of anti-ganglioside antibodies should be considered important elements for understanding of the pathogenesis of these diseases as well as their diagnosis.  相似文献   

13.
Neutral and acidic glycosphingolipids of Friend cells were characterized in 1) undifferentiated Friend cells (745A), 2) differentiated Friend cells induced with dimethyl-sulfoxide, and 3) solid tumors grown in mice after subcutaneous implantation of Friend cells. The structures of the isolated glycosphingolipids were determined by means of compositional analysis, methylation analysis and enzyme treatment. Gangliosides GD1a and N-acetylgalactosaminyl-GD1a, followed by GM1a and GM2, were the main gangliosides in undifferentiated Friend cells. GD1a and N-acetylgalactosaminyl-GD1a accounted for 45 and 25% of the total gangliosides, respectively. On differentiation, ganglioside GM2 decreased significantly, from 10% to a trace amount. In solid tumors, GD1a was the major ganglioside, whereas in contrast to the situation in the cultured cells, N-acetylgalactosaminyl-GD1a was almost completely absent, and ganglioside GM1b, but not GM1a, was detected. In addition, ganglioside GD1 alpha was detected in the solid tumors. Galactosylceramide, glucosylceramide, and lactosylceramide were the main neutral components in both types of cells, while globotetraosylceramide (globoside), IV3-N-acetyl-galactosaminyl globotetraosylceramide (Forssman glycolipid) and gangliotetraosylceramide (GA1) were major in solid tumors grown in vivo.  相似文献   

14.
Gangliosides were isolated from Trypanosoma brucei and analyzed by thin-layer chromatography (TLC) and TLC immunostaining test. Four species of gangliosides, designated as G-1, G-2, G-3, and G-4, were separated by TLC. G-1 ganglioside had the same TLC migration rate as GM3. In contrast, G-2, G-3, and G-4 gangliosides migrated a little slower than GM1, GD1a, and GD1b, respectively. To characterize the molecular species of gangliosides from T. brucei, G-1, G-2, G-3, and G-4 gangliosides were purified and analyzed by TLC immunostaining test with monoclonal antibodies against gangliosides. G-1 ganglioside showed the reactivity to the monoclonal antibody against ganglioside GM3. G-2 was recognized by the anti-GM1 monoclonal antibody. G-3 showed reaction with the monoclonal antibody to GD1a. G-4 had the reactivity to anti-GD1b monoclonal antibody. Using 4 kinds of monoclonal antibodies, we also studied the expression of GM3, GM1, GD1a, and GD1b in T. brucei parasites. GM3, GM1, GD1a, and GD1b were detected on the cell surface of T. brucei. These results suggest that G-1, G-2, G-3, and G-4 gangliosides are GM3 (NeuAc alpha2-3Gal beta1-4Glc beta1-1Cer), GM1 (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), GD1a (NeuAc alpha2-3Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), and GD1b (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-8NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), respectively, and also that they are expressed on the cell surface of T. brucei.  相似文献   

15.
Dasgupta S  Li D  Yu RK 《Neurochemical research》2004,29(11):2147-2152
Two very high titer polyclonal antibodies against two ganglioside antigens, GM1 and GD1a, have been raised in New Zealand white rabbits using a homogeneous suspension of the highly purified antigens in Keyhole Limpet Hemocyanin and Freunds adjuvant. The antisera were prepared over a period of 6 months with repeated injections of the ganglioside suspension, followed by an intravenous injection of the purified ganglioside solution, and collecting the serum (approximately 50 ml) at defined time intervals. The GM1-antibody, thus prepared, showed a cross reactivity toward GD1b and asialo-GM1 (GA1), while the GD1a-antibody reacted with GD1a, GM1 and GA1 and GD1b as determined by immuno-overlay and ELISA methods. The titer for GM1 antiserum, determined by ELISA, was greater than 1/10,000 dilution while the titer for GD1a antibody was greater than 1/5,000 dilution. No neurological or behavioral abnormality was observed during the period of antiserum production. To evaluate any likely pathological damage caused by such a high titer ganglioside-antibody, autopsy of CNS as well PNS tissues from the rabbits were carried out after the final bleeding. No obvious pathological changes, including demyelination, were noted in any of the four rabbits. These observations cast doubt as to the direct effect of anti-ganglioside antibody induced neurological and pathological disorders.Special issue dedicated to Lawrence F. Eng.  相似文献   

16.
Modulation of Ganglioside Biosynthesis in Primary Cultured Neurons   总被引:11,自引:4,他引:7  
Murine cerebellar cells were pulse labeled with [14C]galactose, and the incorporation of radioactivity into gangliosides and neutral glycosphingolipids was examined under different experimental conditions. In the presence of drugs affecting intracellular membrane flow, as well as at 15 degrees C, labeled GlcCer was found to accumulate in the cells, whereas the labeling of higher glycosphingolipids and gangliosides was reduced. Monensin and modulators of the cytoskeleton effectively blocked biosynthesis of the complex gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, whereas incorporation of radioactivity into neutral glycosphingolipids, such as glucosylceramide and lactosylceramide, as well as GM3, GM2, and GD3 was either increased or unaltered. As monensin has been reported to interfere with the flow of molecules from the cis to the trans stacks of the Golgi apparatus, this result highlights at least one subcompartmentalization of ganglioside biosynthesis within the Golgi system. Inhibitors of energy metabolism affected, predominantly, the biosynthesis of the b-series gangliosides, whereas a reduced temperature (15 degrees C) more effectively blocked incorporation of radiolabel into the a-series gangliosides, a result suggesting the importance of GM3, as the principal branching point, for the regulation of ganglioside biosynthesis.  相似文献   

17.
Using a sucrose density gradient fractionation of a highly purified Golgi apparatus from rat liver, we determined the sub-Golgi distribution of CMP-NeuAc:GM3 ganglioside alpha 2----8sialyltransferase (GM3-SAT) and CMP-NeuAc:GT1b ganglioside alpha 2----8sialyltransferase (GT1b-SAT), in comparison with that of the other glycosyltransferase activities involved in ganglioside biosynthesis. While GM3-SAT was recovered in several density fractions, GT1b-SAT was mainly found on less dense sub-Golgi membranes; this indicates that these two activities are physically separate. Moreover, with regard to the monosialo pathway, CMP-NeuAc:lactosylceramide alpha 2----3sialyltransferase, UDP-GalNAc:GM3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GM2 ganglioside beta 1----3galactosyltransferase, and CMP-NeuAc:GM1 ganglioside alpha 2----3sialyltransferase were resolved from more dense to less dense fractions, respectively. In the disialo pathway, UDP-GalNAc:GD3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GD2 ganglioside beta 1----3galactosyltransferase and CMP-NeuAc:GD1b ganglioside alpha 2----3sialyltransferase co-distributed with the corresponding activities of the monosialo pathway. These last results indicate that many Golgi glycosyltransferases involved in ganglioside biosynthesis are localized in the order in which they act.  相似文献   

18.
In the present study, three extremely minor but novel Chol-1 antigens, termed X1, X2, and X3 have been isolated from bovine brain gangliosides. Based on the results of sialidase degradation, TLC-immunostaining with anti-Chol-1 antibody and fast atom bombardment mass spectrometry, their chemical structures were identified as: $$\begin{gathered} III^6 NeuAc--GgOse4Cer (X1:GM1\alpha ) \hfill \\ III^6 NeuAc,II^3 NeuAc--GgOse4Cer (X2:GT1a\alpha ) \hfill \\ III^6 NeuAc,II^3 NeuAc--NeuGc--GgOse4Cer (X3:GT1b\alpha ) \hfill \\ \end{gathered} $$ The yields of GM1α, GD1aα, and GT1bα, were approximately 150, 20, and 10 µg, respectively, from 10 g of the bovine brain ganglioside mixture. In conjunction with our previous observations, all gangliosides with anti-Chol-1 reactivity were found to contain a common sialyl α2–6N-acetylgalactosamine residue, indicating that this unique sialyl linkage is the specific antigenic determinant. We subsequently examined the biosyntheses of the three novel Chol-1 gangliosides using rat liver Golgi fraction as an enzyme source. The results showed that GM1α, GD1aα, and GT1bα were synthesized from asialo-GM1, GM1a, and GD1b, respectively, by the action of a GalNAc α2-6sialyltransferase.  相似文献   

19.
Expression of gangliosides in the liver was examined in primary cultures of hepatocytes from adult rats and liver tissues from rats of different ages. Hepatocytes were isolated from 7-week-old rat liver and cultured in L-15 medium containing insulin, dexamethasone and 10% fetal bovine serum. Hepatocytes proliferated only on the first day, and then ceased proliferation. The content of GD3 and GD1a increased during the period of active proliferation and reached a nearly constant level, whereas GM1, GD1b, GT1b, and GQ1b gradually increased throughout culture. Addition of EGF to the culture medium caused significant increases in the content of GD3, and to a lesser degree of GM3, but exhibited little effect on the expression of other ganglioside species. The specific induction of GD3 and GM3 expression by EGF was reproduced under serum-free conditions, despite the lack of hepatocyte proliferation. Expression of gangliosides in cultured hepatocytes was also modulated by cell density; higher cell density brought about increased content of GM1, GD1a, GD1b, GT1b, and GQ1b with concomitant reduction of GM3 in cells. The composition of gangliosides in liver tissues demonstrated a unique developmental pattern. GD3 and GD1a were strongly expressed in E-16 embryonic tissue and rapidly decreased with increasing age. GD1b, GT1b, and GQ1b were found only in postnatal liver tissues. These findings suggest that the expression of gangliosides in rat hepatocytes and liver tissues are regulated by growth- and development-dependent factors.  相似文献   

20.
Incubations in vitro of GA1, labeled with 3H in the terminal D-galactopyranosyl group, with nonradioactive CMP-NeuNAc in the presence of homogenates of C21 rat brain glial cells, NIE mouse neuroblastoma cells, 3T3 mouse fibroblasts, SV 40-transformed 3T3 cells, chick embryo fibroblasts, Rous sarcoma virus-transformed chick embryo fibroblasts, and 9-day old rat brain resulted in all cases in the formation in high yield of GM1b, in which the neuraminidase-labile NeuNAc group is linked at O-3 of the terminal D-galactosyl residue, as shown by permethylation studies. No trace of the naturally occurring neuraminidase-stable GM1a was detected in any case. In addition, with NIE cells, and normal and RSV-transformed chick embryo fibroblasts, a disialosylganglioside (GD1) differing from GD1a and GD1b, and bearing only one substituent at O-3 of the terminal D-galactopyranosyl residue was formed. It was also biosynthesized from GM1b and CMP-NeuNAc by NIE and chick embryo cells but not by C21 cells, or rat brain. However, C21 cells and rat brain were capable of synthesizing GD1a from GM1a. Periodate oxidation degraded both NeuNAc groups in GD1 to a 7-carbon fragm:nt, indicating lack of substitution at O-8. GM1b could not be detected as a natural product in rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号