首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumour cells cultured with certain quantities of dbcAMP and theophylline are normalized with respect to cell morphology, cell volume and restoration of topo-inhibition. Raising the intracellular level of cyclic AMP by exogenous dbcAMP and/or theophylline also resulted in profound changes of the antigenic pattern of normal and transformed mouse cell surfaces. The expression of xenogeneic antigens is decreased, while at the same time the expression of embryonic and tumour-specific antigens is enhanced.
The results indicate that tumour-specific surface antigens are very consistent markers for the malignant state of a cell, even if the cell is phenotypically normalized by treatment with dbcAMP and theophylline. Furthermore, the antigenic pattern of the cell plasma membrane may well be influenced quantitatively by the intracellular cyclic AMP level.  相似文献   

2.
The differential sensitivity of various cell lines to the mitogenic effects of epidermal growth factor (EGF) was investigated. Two lines of evidence suggest that cellular capacity to respond proliferatively to EGF is related to intracellular cyclic AMP concentration. First, the ability of three density-arrested cell lines to synthesize DNA in response to EGF was directly proportional to the basal cyclic AMP level of the cells at quiescence. Second, treatment of cultures with various agents known to promote intracellular cyclic AMP accumulation increased the sensitivity of all three cell lines to EGF. The mechanism whereby cyclic AMP modulates EGF responsiveness is not known; cholera toxin did not affect the cellular capacity to bind or internalize and process EGF. Although platelet-derived growth factor (PDGF) had no effect on cyclic AMP levels, transient treatment of quiescent cultures with this polypeptide also enhanced EGF sensitivity. In agreement with previous data and in contrast to cholera toxin, PDGF induced the down-regulation of EGF receptors in the three cell lines. These data suggest that the capacity of various cell types to respond to EGF is subject to both intracellular regulation by cyclic AMP and extracellular modulation by factors such as PDGF which can affect EGF receptor activity.  相似文献   

3.
Cyclic AMP levels in Ehrlich ascites tumor cells changed little after deprivation of cells of essential nutrients, serum, glucose and amino acids, deprival of each of which leads to marked inhibition of growth and protein synthesis. Cyclic AMP levels also changed little after the addition of these nutrients to deprived cells. Thus cyclic AMP is not likely to be the intracellular mediator for growth regulation by these three nutrients. Elevation of cyclic AMP levels for short periods by exposure of cells to choleratoxin or theophylline produced only slight changes in parameters of protein synthesis (polyribosome pattern and rate of [3H]leucine incorporation). An exposure for 1 day to dibutyryl cyclic AMP did not inhibit cell growth. However, prolonged exposure to dibutyryl cyclic AMP inhibited the multiplication of Ehrlich ascites cells both in suspension and in stationary cultures. No morphological effects were evident in the former; in the latter, cells attached firmly to the substratum and formed elongated cytoplasmic processes. Inhibition of cell multiplication by dibutyryl cyclic AMP was related to cell density and to serum concentration. Cells in dibutyryl cyclic AMP-containing media plated at low cell densities multiplied as rapidly as control cells. The final densities cells reached were determined by the serum concentration; in dibutyryl cyclic AMP-containing media these densities were about one-half those of respective control cells. Limitation of cell multiplication by dibutyryl cyclic AMP was reversed by the addition of serum, by resuspending cells at lower densities, or by resuspending cells in media without dibutyryl cyclic AMP. These findings suggested that dibutyryl cyclic AMP may affect the utilization of serum factors by cells. Dibutyryl cyclic AMP did not inactivate serum factors and did not change the rate at which cells depleted the growth medium of serum factors. Dibutyryl cyclic AMP may limit cell multiplication by increasing the cellular requirement for serum factors.  相似文献   

4.
The intracellular levels of cyclic adenosine 3',5'-monophosphate (cyclic AMP) were measured at various intervals during growth and morphogenesis in Arthrobacter crystallopoietes. Cyclic AMP levels remained relatively constant throughout growth in spherical cells grown in glucose-based media. Immediately after inoculation of spheres from glucose- to succinate-containing media, a 30-fold increase in intracellular cyclic AMP was detected. This dramatic rise in cyclic AMP preceded the observed change in cellular morphology from spheres to rods. The cyclic AMP level in rod-shaped cells rapidly dropped to a relatively stable concentration during the exponential growth phase. At the onset of stationary phase and rod-to-sphere morphological transition, a second peak of cyclic AMP was observed. Neither of these two peaks was detectable in a morphogenetic mutant that grew only as spheres. The intracellular levels of cyclic AMP in this mutant remained constant throughout exponential growth and decreased slightly during stationary phase. Effects of exogenously added cyclic nucleotides and their derivatives to both parent and mutant cultures were investigated. The data presented indicate that dramatic changes in intracellular cyclic AMP levels occur just before the morphological transitions characteristic of the morphogenetic cycle in A. crystallopoietes. It is suggested that cyclic AMP is a contributing factor in the regulatory phenomenon associated with morphogenesis in this bacterium.  相似文献   

5.
The role of adenosine 3′,5′-monophosphate (cyclic AMP) in the regulation of mouse melanoma cell growth and differentiation was investigated. A variant melanoma (Cloudman S91-F) which displays a greater degree of transformation than the parental cell (Cloudman S91) was isolated. A correlation between cyclic AMP metabolism and transformation was made. Dibutyryl cyclic AMP depressed cell growth and increased pigmentation in both parental and variant cell lines. The parental cell line, however, was more responsive to melanocyte-stimulating hormone (MSH) which was found to affect cell growth and pigmentation by increasing cyclic AMP levels. The more transformed S91-F cell line contained lower levels of cyclic AMP than the parental cell line, and this fact correlated well with the higher degree of growth and lesser degree of pigmentation in the variant. Enzymatic analysis revealed that the hydrolysis of cyclic AMP in both cell lines was similar, while the adenylate cyclase activity of the variant cell line was lower than that of the parental cell line. Lineweaver-Burk plots demonstrated that the Km′s for the enzymes in the two cell lines were the same but that the Vmax of the S91-F cell line was significantly less than that of the S91 cell line. Thus, the lesion in the S91-F cell which is responsible for its more transformed characteristics seems to be one which affects adenylate cyclase at the level of the cell membrane.  相似文献   

6.
The morphological change of several neuroblastoma cell lines induced by griseolic acid, a novel and potent inhibitor of cyclic nucleotide phosphodiesterase (PDE), was examined. In the cell lines tested, Neuro-2a (a murine neuroblastoma cell line) showed dose-dependent (1 microM-1 mM) neurite extension. Griseolic acid markedly increased the intracellular cyclic AMP level of Neuro-2a cells, suppressed DNA synthesis (82% at 1 mM), and induced multipolar (multiple-neurite-bearing)-type neuritogenesis. A similar type of neurite outgrowth was induced by 8-bromo-cyclic AMP, which also elevated the intracellular cyclic AMP concentration. In contrast, when Neuro-2a cells were treated with retinoic acid, neurite formation was of the monopolar (single-neurite-bearing) type. Papaverine and theophylline, which have been frequently used as PDE inhibitors, failed to induce these morphological changes up to 1 mM, probably owing to the lesser potency of these compounds as compared with griseolic acid on the inhibition of PDE. Retinoic acid, theophylline, and papaverine were ineffective at elevating the intracellular cyclic AMP level. These results suggest that multipolar-type cell shape change in Neuro-2a cells is correlated with the accumulation of intracellular cyclic AMP and that griseolic acid is a useful compound to induce neuroblastoma cells into terminal differentiation.  相似文献   

7.
The role of cyclic AMP on endothelial cell proliferation was investigated, since these cells can be exposed to high concentrations of physiological and pharmacological agents that alter cyclic AMP metabolism. Cloned bovine aortic endothelial cells were plated at 25,000 cells/35mm dish and grown for 5 days in the presence of phosphodiesterase (PDE) inhibitors, forskolin, or cyclic AMP analogs. The PDE inhibitors dipyridamole, ZK 62 711, isobutylmethylxanthine (IBMX) and theophylline inhibited cell growth in a concentration-dependent manner. Dipyridamole produced a 30% and a 50% inhibition at 5 microM and 12.5 microM, while higher concentrations were cytotoxic. At its therapeutic plasma concentration range (50-100 microM) theophylline inhibited cell proliferation by 15-25%, while IBMX and the highly specific cyclic AMP phosphodiesterase inhibitor, ZK 62 711 inhibited growth by 60-80% and 40-50%, respectively. Forskolin (5 microM) increased cyclic AMP levels and cyclic AMP-kinase activity ratios by 2.5-fold and 2-fold. In the absence of PDE inhibitors forskolin produced a 20% growth inhibition at 0.5 microM and a 60% inhibition at 10 microM. The forskolin dose-response curve was not altered by theophylline, but was shifted to the left by approximately 10-fold with dipyridamole and ZK 62 711 and 5-fold with IBMX. Forskolin (5 microM), by itself produced a 1.8-fold increase in cyclic AMP. In the presence of 5 microM theophylline, dipyridamole, IBMX, and ZK 62 711, cyclic AMP was increased by forskolin 2.0, 2.6, 3.5, and 6.6-fold, respectively. 8-Bromo cyclic AMP and dibutyryl cyclic AMP produced a 55% and 60% growth inhibition at 100 microM. The cyclic GMP analogs were less effective inhibitors of growth (15-30%). Our results demonstrate that cyclic AMP analogs and pharmacological agents that elevate intracellular cyclic AMP levels inhibit cell growth and suggest that cyclic AMP may be an important endogenous regulator of endothelial cell proliferation.  相似文献   

8.
Cloudman S91 mouse melanoma cells lose their ability to demonstrate an MSH-induced increase in tyrosinase activity as cell density increases. This loss in hormone responsiveness occurs before confluency is reached and cannot be reversed by exposure of cells to increasing concentrations of MSH. The failure of high-density cultures to respond to MSH is apparently not the result of an inability of MSH to stimulate cAMP production, since either low- or high-density cultures exposed to MSH demonstrate equivalent increases in intracellular levels of cAMP. Further, neither theophylline (1mM), dibutyryl cyclic AMP (10(-4)M), or prostaglandin E1 (10(-6)M) is effective in stimulating tyrosinase activity in melanoma cells cultured at densities exceeding 6 X 10(4) cells/cm2. This finding suggests that the decay of hormone responsiveness occurs at a cellular site distal to cAMP production. The decrease in tyrosinase stimulation by MSH as cell density increases is also apparently not the result of an increase in activity of any soluble inhibitor of the enzyme, for cytosol preparations from high-density cultures (10(5) cells/cm2) fail to inhibit tyrosinase activity in cell homogenates from low-density cultures treated with MSH.  相似文献   

9.
Addition of adenosine or 5' AMP to the primary culture of newt iris epithelial cells produces an extensive array of fine cytoplasmic processes in a fraction of the cell population. Dibutyryl cyclic AMP, monobutyryl cyclic AMP, cyclic AMP and theophylline have the same effect, but the minimum effective concentrations of the latter four compounds are higher than those of the former two. When the primary cultures are treated simultaneously with two effective compounds at various concentrations a synergis-tic effect is observed between dibutyryl cyclic AMP and theophylline; cyclic AMP and theophylline; adenosine and theophylline; adenosine and cyclic AMP. The results support the interpretation that an increase in cellular level of cyclic AMP, which is produced by exogenous adenosine or 5' AMP as well as by exogenous cyclic AMP, its derivatives or theophylline, is responsible for the formation of radial cytoplasmic processes. The morphogenetic response does not depend on the presence of serum in the culture medium. The possibility is discussed that the cellular level of cyclic AMP is involved as one link of the sequential events which control the dedifferentiation of iris epithelial cells in cell-type conversion.  相似文献   

10.
Selective modification of the tetrahydrobiopterin levels in cultured chromaffin cells were followed by changes in the rate of tyrosine hydroxylation. Addition of sepiapterin, an intermediate on the salvage pathway for tetrahydrobiopterin synthesis, rapidly increased intracellular levels of tetrahydrobiopterin and elevated the rate of tyrosine hydroxylation in the intact cell. Tyrosine hydroxylation was also enhanced when tetrahydrobiopterin was directly added to the incubation medium of intact cells. When the cultured chromaffin cells were treated for 72 h with N-acetylserotonin, an inhibitor of sepiapterin reductase, tetrahydrobiopterin content and the rate of tyrosine hydroxylation were decreased. Addition of sepiapterin or N-acetylserotonin had no consistent effect on total extractable tyrosine hydroxylase activity or on catecholamine content in the cultured chromaffin cells. Three-day treatment of chromaffin cell cultures with compounds that increase levels of cyclic AMP (forskolin, cholera toxin, theophylline, dibutyryl- and 8-bromo cyclic AMP) increased total extractable tyrosine hydroxylase activity and GTP-cyclohydrolase, the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. Tetrahydrobiopterin levels and intact cell tyrosine hydroxylation were markedly increased after 8-bromo cyclic AMP. The increase in GTP-cyclohydrolase and tetrahydrobiopterin induced by 8-bromo cyclic AMP was blocked by the protein synthesis inhibitor cycloheximide. Agents that deplete cellular catecholamines (reserpine, tetrabenazine, and brocresine) increased both total tyrosine hydroxylase and GTP-cyclohydrolase activities, although treating the cultures with reserpine or tetrabenazine resulted in no change in cellular levels of cyclic AMP. Brocresine and tetrabenazine increased tetrahydrobiopterin levels, but the addition of reserpine to the cultures decreased catecholamine and tetrahydrobiopterin content and resulted in a decreased rate of intact cell tyrosine hydroxylation in spite of the increased activity of the total extractable enzyme. These data indicate that in cultured chromaffin cells GTP-cyclohydrolase activity like tyrosine hydroxylase activity is regulated by both cyclic AMP-dependent and cyclic AMP-independent mechanisms and that the intracellular level of tetrahydrobiopterin is one of the many factors that control the rate of tyrosine hydroxylation.  相似文献   

11.
As a model cell culture system for studying polyoma-mediated control of host gene expression, we isolated methotrexate-resistant 3T6 cells in which one of the virus-induced enzymes, dihydrofolate reductase, is a major cellular protein. In highly methotrexate-resistant cell lines dihydrofolate reductase synthesis accounts for over 10% that of soluble portein, corresponding to an increase of approximately 100-fold over the level in parental cells. This increase in dihydrofolate reductase synthesis is due to a corresponding increase in the abundance of dihydrofolate reductase mRNA and gene sequences. We have used these cells to show that infection with polyoma virus results in a 4- to 5-fold increase in the relative rate of dihydrofolate reductase synthesis and a corresponding increase in dihydrofolate reductase mRNA abundance. The increase in dihydrofolate reductase synthesis begins 15 to 20 h after infection and continues to increase until cell lysis. These observations represent the first direct evidence that viral infection of eukaryotic cells results in the increased synthesis of a specific cellular enzyme and an increase in the abundance of a specific cellular mRNA. In order to gain additional insight into the control of dihydrofolate reductase synthesis we examined other parameters affecting dihydrofolate reductase synthesis. We found that the addition of fresh serum to stationary phase cells results in a 2-fold stimulation of dihydrofolate reductase synthesis, beginning 10 to 12 h after serum addition. Serum stimulation of dihydrofolate reductase synthesis is completely inhibited by the presence of dibutyryl cyclic AMP as well as by theophylline or prostaglandin E1, compounds which cause an increase in intracellular cyclic AMP levels. In fact, the presence of dibutyryl cyclic AMP and theophylline results in a 2- to 3-fold decrease in the rate of dihydrofolate reductase synthesis and the abundance of dihydrofolate reductase mRNA. However, in contrast to the effect on serum stimulation, dibutyryl cyclic AMP and theophylline do not inhibit polyoma virus induction of dihydrofolate reductase synthesis or dihydrofolate reductase mRNA levels. These observations suggest that dihydrofolate reductase gene expression is controlled by at least two regulatory pathways: one involving serum that is blocked by high levels of cyclic AMP and another involving polyoma induction that is not inhibited by cyclic AMP.  相似文献   

12.
Exogenous cyclic AMP and dibutyryl cyclic AMP decreased the relative ciliary activity values of tracheal organ cultures. In contrast, theophylline and cholera toxin were not ciliostatic. The use of a radioimmunoassay for cyclic AMP indicated that all of the tested substances increased intracellular cyclic AMP levels to some extent (from 3-fold for cholera toxin to almost 40-fold for dibutyryl cyclic AMP). Physical inactivation of explants by either freeze-thaw or heat destroyed all ciliary activity and greatly decreased intracellular cyclic AMP levels. Cyclic AMP levels of explants remained relatively constant during in vitro cultivation. Three strains of Mycoplasma pneumoniae were found to contain extremely low amounts of cyclic AMP. Infection of tracheal explants produced a significant decrease in relative ciliary activity, but only a slight decline in organ-culture cyclic AMP levels.  相似文献   

13.
The proliferation rate of cultured cells from the mouse mammary carcinoma Shionogi 115 is regulated both by local cell population density and by androgens. Measurement of intracellular levels of cyclic AMP has shown that these levels are constant over a wide range of proliferation rates (mean doubling times varied from 23 hr to more than 200 hr). Addition of dibutyryl cyclic AMP or theophylline to the culture medium resulted in inhibition of growth—even in the presence of androgen. This inhibition of growth and the relationship between cyclic AMP levels and cell proliferation is discussed.  相似文献   

14.
Calcium ionophore A23187 lowers basal levels of tyrosinase and inhibits the MSH-induced increase in tyrosinase in Cloudman S-91 mouse melanoma cell cultures. Ionophore at a concentration of 10(-6) g/ml causes a 50% reduction in basal levels of tyrosinase and inhibits the MSH stimulated level of enzyme. Ionophore A23187 also inhibits the PGE1 mediated stimulation of tyrosinase, as well as the rise in enzyme activity observed in cells exposed to either theophylline (1 mM) or dbcAMP (10(-4)M). Ionophore does not affect basal levels of cyclic AMP nor the elevated levels produced by either MSH or PGE1, suggesting then, that the antagonistic activity of A23187 is localized to a point in the pathway of tyrosinase activation distal to the formation of cAMP. Ionophore causes a rapid and marked (greater than 50%) inhibition of cellular protein synthesis and it is possible that this calcium mobilizing compound may exert its inhibitory effects on tyrosinase activity by causing a general reduction in cellular translation. Since the inhibition of protein synthesis occurs in cells exposed to ionophore in either the presence or absence of calcium in the medium, it seems, likely that the ionophore may exert its effects by causing the release of calcium from intracellular sites.  相似文献   

15.
The effect of theophylline and isoproterenol on bovine tracheal smooth muscle tension and cyclic AMP levels was investigated. Concentrations of isoproterenol (4 × 10?6 M) and theophylline (10 mM) that relaxed carbachol-contracted tracheal muscle by 85–95% did not significantly elevate control levels of cyclic AMP. In the absence of carbachol, several-fold increases in cyclic AMP were caused by isoproterenol although no elevations by theophylline were measurable. However, when isoproterenol and theophylline were administered together, theophylline potentiated the rise in cyclic AMP caused by isoproterenol. Phosphodiesterase studies in tracheal muscle showed the presence of a high and a low Km enzyme which were inhibited by theophylline. Cyclic GMP levels were elevated in muscles contracted by carbachol as well as in carbachol-contracted muscles that had been relaxed by theophylline. In non-tension studies, in which the tracheal muscle was not under isometric tension, carbachol or theophylline alone increased cyclic GMP and together they synergistically elevated cyclic GMP. Atropine blocked the elevation caused by carbachol but not that caused by theophylline. In contrast to theophylline, isoproterenol did not elevate cyclic GMP, and in carbachol-contracted muscles that had been relaxed by isoproterenol, cyclic GMP levels were no different from control. Also, in non-tension studies, isoproterenol decreased basal cyclic GMP and antagonized the increase in cyclic GMP due to carbachol.The results indicate that whole-tissue levels of cyclic AMP and cyclic GMP do not correlate with the state of tracheal smooth muscle tension. Cyclic GMP levels do not clearly correlate with either contraction or relaxation. The inhibition by carbachol of increases in cyclic AMP due to isoproterenol and the inhibition by isoproterenol of increases in cyclic GMP due to carbachol provide evidence for a reciprocal cholinergic-adrenergic antagonism of cyclic AMP and cyclic GMP levels. The antagonism did not appear to be due to either cyclic nucleotide affecting the elevation of the other since the levels of both cyclic nucleotides were depressed.  相似文献   

16.
Calcium ionophore A23187 lowers basal levels of tyrosinase and inhibits the MSH-induced increase in tyrosinase in Cloudman S-91 mouse melanoma cell cultures. lonophore at a concentration of 10–6 g/ml causes a 50% reduction in basal levels of tyrosinase and inhibits the MSH stimulated level of enzyme. lonophore A23187 also inhibits the PGEi mediated stimulation of tyrosinase, as well as the rise in enzyme activity observed in cells exposed to either theophylline (1 mM) or dbcAMP (10–4M). lonophore does not affect basal levels of cyclic AMP nor the elevated levels produced by either MSH or PGEi, suggesting then, that the antagonistic activity of A23187 is localized to a point in the pathway of tyrosinase activation distal to the formation of cAMP. lonophore causes a rapid and marked (> 50%) inhibition of cellular protein synthesis and it is possible that this calcium mobilizing compound may exert its inhibitory effects on tyrosinase activity by causing a general reduction in cellular translation. Since the inhibition of protein synthesis occurs in cells exposed to ionophore in either the presence or absence of calcium in the medium, it seems, likely that the ionophore may exert its effects by causing the release of calcium from intracellular sites.  相似文献   

17.
The mitotic selection procedure for cell cycle analysis was utilized to investigate the concentration-dependent modification of radiation-induced division delay in Chinese hamster ovary (CHO) cells by methyl xanthines (caffeine, theophylline, and theobromine) and by dibutyryl cyclic AMP. The methyl xanthines (concentrations from 0.5 to 1000 micrograms/ml) all reduced radiation-induced division delay with the effect being linear between approximately 100 and 1000 micrograms/ml. After doses of 100-300 rad, delay was reduced by 75, 94 or 83 per cent at 1000 micrograms/ml for each drug, respectively. However, the addition of dibutyryl cyclic AMP had an opposite effect: radiation-induced delay was increased by the concentration range of 0.3 to 300 micrograms/ml. These results indicate that in mammalian cells the control of cell cycle progression and the modification of radiation-induced division delay are not simply related to intracellular levels of cyclic AMP. Rather, there appear to be at least two competing mechanisms which are differentially affected by caffeine analogues or by direct addition of dibutyryl cyclic AMP. The direct effect of caffeine and the methyl xanthines on membrane calcium permeability is considered.  相似文献   

18.
The effect of cyclic AMP (cAMP) analogs and phosphodiesterase (PDE) inhibitors on neurite outgrowth was studied in explant cultures of olfactory neurons. Nasal pits from 5- or 6-day-old chick embryos were minced, explanted into culture dishes, and grown in a serum-free medium. One of the cyclic AMP analogs, dibutyryl cyclic AMP (dbcAMP) or 8-bromo-cyclic AMP (8-Br-cAMP), or one of the PDE inhibitors, theophylline or isobutylmethylxanthine (IBMX), was added to the culture medium. The explants were examined for neurite outgrowth after 2 days in vitro. Db-cAMP increased the number of explants expressing neurites by 25-35% over control cultures, whereas 8-Br-cAMP had essentially no effect at the same concentrations. Addition of dibutyryl cyclic GMP (dbcGMP) gave no increase in neurite outgrowth, thus indicating that the effect of enhancing neuritic growth is specific to cAMP and not cyclic nucleotides in general. The resulting increase in neurite outgrowth is due to the cyclic nucleotide component of dbcAMP, since both IBMX and theophylline, which elevate intracellular cAMP, also increased neurite outgrowth significantly. When forskolin was added to the culture medium, there was a trend to increased neurite outgrowth; this was significantly enhanced when a subthreshold concentration of theophylline was added in addition to the forskolin.  相似文献   

19.
The effects of the synthetic glucocorticoid dexamethasone on the cAMP content of murine T lymphocyte cell lines has been investigated. Incubation of the 3B4.15 T cell hybrids with dexamethasone results in an average 5-fold increase in intracellular cyclic AMP levels after 6 h of treatment. This phenomenon is abolished in the presence of RU486 and of cycloheximide, indicating that it requires binding of the drug to the intracellular glucocorticoids receptor and de novo protein synthesis. Dexamethasone-induced elevation of intracellular cyclic AMP correlates with both an increase in adenylate cyclase activity and a decrease in phosphodiesterase activity in T cell hybrids. This modulation of cyclic AMP metabolism is independent of serum-derived factors, suggesting that it is not secondary to transmembrane receptor stimulation by an extracellular ligand. We propose that glucocorticoids interfere with the homeostatic control of intracellular cAMP concentration, leading to a sustained increase in the content of this important second messenger in murine T lymphocyte cell lines. This study suggests that elevation of cAMP levels may represent one way by which glucocorticoids modulate the immune response.  相似文献   

20.
B B Fuller  D H Viskochil 《Life sciences》1979,24(26):2405-2415
Exposure of mouse melanoma cells in culture to MSH (melanocyte stimulating hormone) results in a marked increase in tyrosinase (O-diphenyl: O2 oxidoreductase) activity following a lag period of 6–9 hours. Within 20 minutes after exposure of cells to MSH, the intracellular levels of cyclic AMP rise to levels which are ten times those of controls but fall to concentrations twice control values by 60 minutes. Transient increases in both protein and RNA synthetic rates also occur following MSH administration correlating in time with the dramatic but rapidly decaying increase in cellular cyclic AMP. The increase in tyrosinase activity observed in response to either MSH, dibutyryl cAMP, or theophylline, is completely suppressed by the addition of either cycloheximide (0.28 μg/ml) or actinomycin D (0.05 μg/ml) as is the basal activity of the enzyme. Results from 14C/3H leucine studies suggest that MSH may cause increased denovo synthesis of tyrosinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号