首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We mapped and cloned SKI6 of Saccharomyces cerevisiae, a gene that represses the copy number of the L-A double-stranded RNA virus, and found that it encodes an essential 246-residue protein with homology to a tRNA-processing enzyme, RNase PH. The ski6-2 mutant expressed electroporated non-poly(A) luciferase mRNAs 8- to 10-fold better than did the isogenic wild type. No effect of ski6-2 on expression of uncapped or normal mRNAs was found. Kinetics of luciferase synthesis and direct measurement of radiolabeled electroporated mRNA indicate that the primary effect of Ski6p was on efficiency of translation rather than on mRNA stability. Both ski6 and ski2 mutants show hypersensitivity to hygromycin, suggesting functional alteration of the translation apparatus. The ski6-2 mutant has normal amounts of 40S and 60S ribosomal subunits but accumulates a 38S particle containing 5′-truncated 25S rRNA but no 5.8S rRNA, apparently an incomplete or degraded 60S subunit. This suggests an abnormality in 60S subunit assembly. The ski6-2 mutation suppresses the poor expression of the poly(A) viral mRNA in a strain deficient in the 60S ribosomal protein L4. Thus, a ski6 mutation bypasses the requirement of the poly(A) tail for translation, allowing better translation of non-poly(A) mRNA, including the L-A virus mRNA which lacks poly(A). We speculate that the derepressed translation of non-poly(A) mRNAs is due to abnormal (but full-size) 60S subunits.  相似文献   

3.
4.
Eukaryotic initiation factor (elF) 4A functions as a subunit of the initiation factor complex elF4F, which mediates the binding of mRNA to the ribosome. elF4A possesses ATPase and RNA helicase activities and is the prototype for a large family of putative RNA helicases (the DEAD box family). It is thought that the function of elF4A during translation initiation is to unwind the mRNA secondary structure in the 5' UTR to facilitate ribosome binding. However, the evidence to support this hypothesis is rather indirect, and it was reported that elF4A is also required for the translation of mRNAs possessing minimal 5' UTR secondary structure. Were this hypothesis correct, the requirement for elF4A should correlate with the degree of mRNA secondary structure. To test this hypothesis, the effect of a dominant-negative mutant of mammalian elF4A on translation of mRNAs with various degrees of secondary structure was studied in vitro. Here, we show that mRNAs containing stable secondary structure in the 5' untranslated region are more susceptible to inhibition by the elF4A mutant. The mutant protein also strongly inhibits translation from several picornavirus internal ribosome entry sites (IRES), although to different extents. UV crosslinking of elF4F subunits and elF4B to the mRNA cap structure is dramatically reduced by the elF4A mutant and RNA secondary structure. Finally, the elF4A mutant forms a more stable complex with elF4G, as compared to the wild-type elF4A, thus explaining the mechanism by which substoichiometric amounts of mutant elF4A inhibit translation.  相似文献   

5.
The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.  相似文献   

6.
7.
8.
9.
In wild-type yeast cells, steady-state concentrations of subunits of the ubiquinol-cytochrome c reductase complex (complex III) and the levels of their translatable mRNAs change coordinately in response to the need for mitochondrial function. Despite this, re-introduction of the cloned gene for one of the subunits (11 kd) into cells by transformation with a free-replicating plasmid results in the discoordinate synthesis of this subunit only, without effects on either the synthesis or degradation of the other subunits. The overproduced subunit is associated with the mitochondrial fraction, yet does not interfere with mitochondrial function, as judged by the growth of transformed cells on nonfermentable media. Quantitative analysis of both mRNA and protein levels suggests that both translational controls and elevated turnover of excess protein contribute to a partial compensation for the effects of increased gene dosage in transformed cells. These contain approximately 30 copies of the cloned gene and 15-30 times the normal level of its mRNA. Nevertheless, synthesis of the 11-kd protein is only 6- to 8-fold higher than normal, and steady-state levels are increased only 5- to 10-fold. These findings imply that synthesis of the various subunits of complex III is not tightly coupled and that for the 11-kd subunit at least, the level of mRNA is likely to be the most important means of regulating protein level. Fine-tuning may be additionally achieved by control of translation and degradation of excess protein which is not assembled in the complex.  相似文献   

10.
Stribinskis V  Gao GJ  Ellis SR  Martin NC 《Genetics》2001,158(2):573-585
RPM2 is a Saccharomyces cerevisiae nuclear gene that encodes the protein subunit of mitochondrial RNase P and has an unknown function essential for fermentative growth. Cells lacking mitochondrial RNase P cannot respire and accumulate lesions in their mitochondrial DNA. The effects of a new RPM2 allele, rpm2-100, reveal a novel function of RPM2 in mitochondrial biogenesis. Cells with rpm2-100 as their only source of Rpm2p have correctly processed mitochondrial tRNAs but are still respiratory deficient. Mitochondrial mRNA and rRNA levels are reduced in rpm2-100 cells compared to wild type. The general reduction in mRNA is not reflected in a similar reduction in mitochondrial protein synthesis. Incorporation of labeled precursors into mitochondrially encoded Atp6, Atp8, Atp9, and Cytb protein was enhanced in the mutant relative to wild type, while incorporation into Cox1p, Cox2p, Cox3p, and Var1p was reduced. Pulse-chase analysis of mitochondrial translation revealed decreased rates of translation of COX1, COX2, and COX3 mRNAs. This decrease leads to low steady-state levels of Cox1p, Cox2p, and Cox3p, loss of visible spectra of aa(3) cytochromes, and low cytochrome c oxidase activity in mutant mitochondria. Thus, RPM2 has a previously unrecognized role in mitochondrial biogenesis, in addition to its role as a subunit of mitochondrial RNase P. Moreover, there is a synthetic lethal interaction between the disruption of this novel respiratory function and the loss of wild-type mtDNA. This synthetic interaction explains why a complete deletion of RPM2 is lethal.  相似文献   

11.
12.
A partially assembled complex I in NAD4-deficient mitochondria of maize   总被引:3,自引:0,他引:3  
The proton-translocating NADH:ubiquinone oxidoreductase (respiratory complex I) consists of at least 32 subunits in higher plants, nine of which are mitochondrially encoded (NAD 1–7, NAD4L, NAD9). Complex I (CI) has been analyzed from a mitochondrial mutant of maize, NCS2, that carries a deletion for the 3′ end of the nad4 gene. Mitochondria from highly defective, near-homoplasmic mutant plants have only trace amounts of the normal complex I. Instead, a reduced amount of a smaller complex, which also exhibits NADH dehydrogenase activity, is detected on ‘blue-native’ polyacrylamide gels. Subunits of 76 kDa, 40 kDa and 55 kDa, as well as NAD7 and NAD9, have been identified in the subcomplex by their cross-reactivity with heterologous antisera. The corresponding subunits in Neurospora are localized in a ‘peripheral arm’ of CI, which is known to assemble independently of a ‘membrane arm’. The maize NCS2 CI subcomplex is loosely bound to the membrane and is missing several subunits that could be membrane components. Thus, the mutant CI subcomplex may consist of a peripheral arm. A reduction in the steady-state levels of NAD7 and NAD9 in NCS2 mitochondria occurs despite normal rates of biosynthesis and there is a concomitant decrease of the nuclear encoded 76 kDa subunit. The reduction in CI-associated NADH dehydrogenase activity in the nad4 -deficient NCS2 mutant mitochondria is not associated with a compensatory increase in the activities or amounts of the putative ‘exogenous’ NAD(P)H dehydrogenases that are found in plant mitochondria.  相似文献   

13.
14.
15.
Late in adenovirus infection, large amounts of viral mRNA accumulate while cell mRNA transport and translation decrease. Viruses deleted in the E1B region of type 5 adenovirus do not produce the same outcome: (i) viral mRNA synthesis by the mutants is normal, delivery to the cytoplasm is 50 to 75% of normal, but steady-state levels of viral mRNA are decreased 10-fold; (ii) cell mRNA synthesis and transport continue normally in the mutant virus-infected cell; and (iii) translation of preexisting cell mRNA which is disrupted in wild-type infection remains normal in mutant-virus-infected cells. Thus E1B proteins are required for accumulation of virus mRNA and for induction of the failure of host cell mRNA transport and translation. If a single function is involved, by inference the transport and some aspect of translation of mRNAs could be linked.  相似文献   

16.
17.
18.
The levels of replication-dependent histone mRNAs are coordinately regulated with DNA synthesis. A major regulatory step in histone mRNA metabolism is regulation of the half-life of histone mRNAs. Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated. Instead, they end with a conserved stem-loop structure, which is recognized by the stem-loop binding protein (SLBP). SLBP is required for histone mRNA processing, as well as translation. We show here, using histone mRNAs whose translation can be regulated by the iron response element, that histone mRNAs need to be actively translated for their rapid degradation following the inhibition of DNA synthesis. We also demonstrate the requirement for translation using a mutant SLBP which is inactive in translation. Histone mRNAs are not rapidly degraded when DNA synthesis is inhibited or at the end of S phase in cells expressing this mutant SLBP. Replication-dependent histone mRNAs have very short 3' untranslated regions, with the stem-loop located 30 to 70 nucleotides downstream of the translation termination codon. We show here that the stability of histone mRNAs can be modified by altering the position of the stem-loop, thereby changing the distance from the translation termination codon.  相似文献   

19.
Cytochrome c oxidase (EC 1.9.3.1) is an enzyme which is composed of subunits derived from both the mitochondrial and the nuclear genomes. To determine whether or not the expression of these two genomes is co-ordinated at the mRNA level, we have examined the steady-state levels of mRNAs coding for cytochrome c oxidase subunit III (mitochondrially encoded) and subunit VIc (nuclear-encoded) in rat tissues. This was compared with the tissue concentration of the holoenzyme, which was estimated by measuring cytochrome c oxidase enzyme activity. The tissues (heart, brain, liver, kidney, soleus muscle and superficial white vastus muscle) possessed a 13-fold range of enzyme activity, which was highest in heart and lowest in the superficial vastus muscle. Specific subunit mRNA levels were quantified by using slot-blot hybridization of cDNA probes to total tissue RNA. The highest values for subunit III and Vlc mRNA tissue contents were found in kidney, followed by liver and heart (40-60% of that of kidney). The white vastus muscle contained the lowest subunit mRNA level (15% of that of kidney). Although some variability was apparent within each tissue, a parallel pattern of mRNA expression of the nuclear- and mitochondrially encoded subunits was observed. Differences between muscle (heart, vastus and soleus) and non-muscle tissues were noted in the relationship between mRNA and protein levels of expression. Thus, although this suggests that tissue-specific regulatory processes operate, the steady-state expression of subunit III and subunit Vlc mRNAs appears to be co-ordinately regulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号