首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The avirulence genes Avr9 and Avr4 from the fungal tomato pathogen Cladosporium fulvum encode extracellular proteins that elicit a hypersensitive response when injected into leaves of tomato plants carrying the matching resistance genes, Cf-9 and Cf-4, respectively. We successfully expressed both Avr9 and Avr4 genes in tobacco with the Agrobacterium tumefaciens transient transformation assay (agroinfiltration). In addition, we expressed the matching resistance genes, Cf-9 and Cf-4, through agroinfiltration. By combining transient Cf gene expression with either transgenic plants expressing one of the gene partners, Potato virus X (PVX)-mediated Avr gene expression, or elicitor injections, we demonstrated that agroinfiltration is a reliable and versatile tool to study Avr/Cf-mediated recognition. Significantly, agroinfiltration can be used to quantify and compare Avr/Cf-induced responses. Comparison of different Avr/Cf-interactions within one tobacco leaf showed that Avr9/Cf-9-induced necrosis developed slower than necrosis induced by Avr4/Cf-4. Quantitative analysis demonstrated that this temporal difference was due to a difference in Avr gene activities. Transient expression of matching Avr/Cf gene pairs in a number of plant families indicated that the signal transduction pathway required for Avr/Cf-induced responses is conserved within solanaceous species. Most non-solanaceous species did not develop specific Avr/Cf-induced responses. However, co-expression of the Avr4/Cf-4 gene pair in lettuce resulted in necrosis, providing the first proof that a resistance (R) gene can function in a different plant family.  相似文献   

2.
Rivas S  Romeis T  Jones JD 《The Plant cell》2002,14(3):689-702
The tomato Cf-9 gene confers race-specific resistance to the fungal pathogen Cladosporium fulvum expressing the corresponding avirulence gene Avr9. In tobacco, Cf-9 confers a hypersensitive response to the Avr9 peptide. To investigate Cf-9 protein function in initiating defense signaling, we engineered a functional C-terminal fusion of the Cf-9 gene with the TAP (Tandem Affinity Purification) tag. In addition, we established a transient expression assay in Nicotiana benthamiana leaves for the production of functional Cf-9:myc and Cf-9:TAP. Transiently expressed Cf-9:myc and Cf-9:TAP proteins induced an Avr9-dependent hypersensitive response, consistent with previous results with stably transformed tobacco plants and derived cell suspension cultures expressing c-myc-tagged Cf-9. Gel filtration of microsomal fractions solubilized with octylglucoside revealed that the Cf-9 protein, either as c-myc or TAP fusions, migrated at a molecular mass of 350 to 475 kD. By using blue native gel electrophoresis, the molecular size was confirmed to be approximately 420 kD. Our results suggest that only one Cf-9 protein molecule is present in the Cf-9 complex and that Cf-9 is part of a membrane complex consisting of an additional glycoprotein partner(s). The high structural similarity between Cf proteins and Clavata2 (CLV2) of Arabidopsis, together with the similarity of molecular mass between Cf-9 and CLV complexes (420 and 450 kD, respectively), led us to investigate whether Cf-9 is integrated into membrane-associated protein complexes like those formed by CLV1 and CLV2. Unlike CLV2, the Cf-9 protein did not form disulfide-linked heterodimers, no ligand (Avr9)-dependent shift in the molecular mass of the Cf-9 complex was detected, and no Rho-GTPase-related proteins were found associated with Cf-9 under the conditions tested. Thus, Cf-9-dependent defense signaling and CLV2-dependent regulation of meristem development seem to be accomplished via distinct mechanisms, despite the structural similarity of their key components Cf-9 and CLV2.  相似文献   

3.
水杨酸和乙烯对依赖于Cf基因的过敏坏死的调控作用   总被引:3,自引:0,他引:3  
通过农杆菌(Agrobacterium tumefaciens)介导的方法将互补Aνr/Cf基因对同时在烟草叶片中表达,可以导致过敏性坏死反应。以水杨酸积累缸失型nahC和乙烯不应型etr1-1转基因烟草植株为材料,对水杨酸和乙烯在依赖于番茄Cf-4和Cf—9基因的过敏坏死中的调控作用进行了比较研究。结果表明,nahG植株产生的依赖于Cf-4的过敏坏死反应强度与野生型相似,依赖于Cf—9的坏死反应则明显轻于野生型。转etr1—1基因植株产生的依赖于Cf-4和Cf—9的坏死反应均轻于野生型,与依赖于Cf-4的坏死反应相比,转基因植株中依赖于Cf—9的坏死反应比野生型的减轻程度更显著。这些结果说明水杨酸可能对依赖于Cf—9的过敏坏死起重要调控作用,但对依赖于Cf-4的无此作用;而乙烯则对两者依赖性过敏坏死均起调控作用。  相似文献   

4.
5.
The Cf-9 gene encodes an extracytoplasmic leucine-rich repeat protein that confers resistance in tomato to races of the fungus Cladosporium fulvum that express the corresponding avirulence gene Avr 9. We investigated whether the genomic Cf-9 gene functions in potato and tobacco. Transgenic tobacco and potato plants carrying Cf-9 exhibit a rapid hypersensitive cell death response (HR) to Avr 9 peptide injection. Cf 9 tobacco plants were reciprocally crossed to Avr 9-producing tobacco. A developmentally regulated seedling lethal phenotype occurred in F1 progeny when Cf9 was used as the male parent and Avr 9 as the female parent. However, when Cf9 was inherited in the maternal tissue and a heterozygous Avr 9 plant was used as the pollen donor, a much earlier reaction was caused, leading to no germination of any F1 seed. Detailed analysis of the Avr 9-induced responses in Cf 9 tobacco leaves revealed that (1) most mesophyll cells died within 3 hr (compared with 12 to 16 hr in tomato); (2) the macroscopic HR was visible at an Avr 9 titer five times lower than that which caused visible symptoms in tomato; (3) the HR invariably extended into noninjected panels of the tobacco leaf; (4) no HR occurred in leaves of young tobacco plants; (5) in older plants, the HR was dramatically enhanced by sequential Avr 9 challenges; and (6) coexpression of a salicylate hydroxylase transgene (nahG) from Pseudomonas putida reduced the severity of the macroscopic leaf HR and also restored germination to Cf 9 x 35S:Avr 9 F1 seedlings. Simultaneous introduction of Cf-9 homologs (Hcr 9-9 genes A and B or D) along with the native Cf-9 gene did not alter the responses that were specifically induced by Avr 9. Various ways to use the Cf-9-Avr 9 gene combination to engineer broad-spectrum disease resistance in several solanaceous species are discussed.  相似文献   

6.
The Cf-4 and Cf-9 genes originate from the wild tomato species Lycopersicon hirsutum and L. pimpinellifolium and confer resistance to strains of the leaf mold fungus Cladosporium fulvum that secrete the Avr4 and Avr9 elicitor proteins, respectively. Homologs of Cf-4 and Cf-9 (Hcr9s) are located in several clusters and evolve mainly through sequence exchange between homologs. To study the evolution of Cf genes, we set out to identify functional Hcr9s that mediate recognition of Avr4 and Avr9 (designated Hcr9-Avr4s and Hcr9-Avr9s) in all wild tomato species. Plants responsive to the Avr4 and Avr9 elicitor proteins were identified throughout the genus Lycopersicon. Open reading frames of Hcr9s from Avr4- and Avr9-responsive tomato plants were polymerase chain reaction-amplified. Several Hcr9s that mediate Avr4 or Avr9 recognition were identified in diverged tomato species by agroinfiltration assays. These Hcr9-Avr4s and Hcr9-Avr9s are highly identical to Cf-4 and Cf-9, respectively. Therefore, we conclude that both Cf-4 and Cf-9 predate Lycopersicon speciation. These results further suggest that C. fulvum is an ancient pathogen of the genus Lycopersicon, in which Cf-4 and Cf-9 have been maintained by selection pressure imposed by C. fulvum.  相似文献   

7.
8.
The Cf-2 gene of tomato confers resistance to strains of the biotrophic pathogenic fungus Cladosporium fulvum carrying avirulence gene Avr2. To allow dissection of the biochemical mechanism of perception of AVR2 by Cf-2, we set out to clone the Avr2 gene. Here, we report the functional cloning of Avr2 cDNA, based on the induction of a hypersensitive response (HR) by the encoded AVR2 protein in Cf2 tomato plants. Analysis of strains of C. fulvum that are virulent on Cf2 tomato lines revealed various independent frameshift mutations in the Avr2 open reading frame (ORF) and a point mutation resulting in a premature stop codon. All modifications result in the production of truncated AVR2 proteins. Interestingly, an additional modification involves the insertion of a LINE-like element, Cfl1, in the Avr2 ORF. Cfl1 is the first LINE-like element identified in C. fulvum and provides the first example of loss of avirulence of a plant pathogen caused by insertion of a retrotransposable element in an Avr gene. Rcr3 represents an additional plant protein that is specifically required for Cf-2-mediated resistance. Analysis of two different rcr3 mutant Cf2 tomato plants revealed that their ability to respond to AVR2 with a HR correlates with their degree of resistance to AVR2-producing strains of C. fulvum. These data support a role for Rcr3 in the perception of AVR2 by Cf-2.  相似文献   

9.
Wulff BB  Thomas CM  Parniske M  Jones JD 《Genetics》2004,167(1):459-470
The interaction between tomato (Lycopersicon esculentum) and the leaf mold pathogen Cladosporium fulvum is an excellent model for investigating disease resistance gene evolution. The interaction is controlled in a gene-for-gene manner by Cf genes that encode type I transmembrane extracellular leucine-rich repeat glycoproteins that recognize their cognate fungal avirulence (Avr) proteins. Cf-4 from L. hirsutum and Cf-9 from L. pimpinellifolium are located at the same locus on the short arm of tomato chromosome 1 in an array of five paralogs. Molecular analysis has shown that one mechanism for generating sequence variation in Cf genes is intragenic sequence exchange through unequal crossing over or gene conversion. To investigate this we used a facile genetic selection to identify novel haplotypes in the progeny of Cf-4/Cf-9 trans-heterozygotes that lacked Cf-4 and Cf-9. This selection is based on the ability of Avr4 and Avr9 to induce Cf-4- or Cf-9-dependent seedling death. The crossovers were localized to the same intergenic region defining a recombination hotspot in this cross. As part of a structure-function analysis of Cf-9 and Cf-4, nine EMS-induced mutant alleles have been characterized. Most mutations result in single-amino-acid substitutions in their C terminus at residues that are conserved in other Cf proteins.  相似文献   

10.
11.
Nekrasov V  Ludwig AA  Jones JD 《FEBS letters》2006,580(17):4236-4241
Tomato Cf-9, a receptor-like protein (RLP), confers resistance to races of the fungal pathogen Cladosporium fulvum that express the Avr9 avirulence gene. CITRX (Cf-9-interacting thioredoxin) was previously identified in a yeast two-hybrid screen as a protein interacting with the cytoplasmic domain of Cf-9 and shown to be a negative regulator of the cell death induced after Cf-9/Avr9 interaction. ACIK1 is a Ser/Thr protein kinase that is specifically required for the Cf-9 and Cf-4 dependent defence response in tomato. In this paper we present data suggesting that CITRX may act as an adaptor recruiting the ACIK1 kinase to the cytoplasmic domain of Cf-9 upon elicitation with the Avr9 peptide. Interestingly, the catalytic activities of both CITRX and ACIK1 are not required for their interaction.  相似文献   

12.
13.
We have previously shown that tomato Cf-9 induces an Avr9-dependent hypersensitive response (HR) in Nicotiana tabacum and potato. We show here that Cf-4 also induces an Avr4-dependent HR in two tobacco species (N. tabacum and N. benthamiana). The HR induced by Cf-4 and Cf-9 was compared in stable tobacco transgenics by a seedling lethal assay and resistance to recombinant Potato virus X expressing Avr4 or Avr9. We also compared HR induction with Agrobacterium-mediated transient expression. The Cf-4/Avr4 combination induced a more rapid HR than Cf-9/Avr9. Sensitive assays for Cf-9 and Cf-4 function should prove useful for structure/function analyses of these resistance proteins in tobacco.  相似文献   

14.
Kruijt M  Brandwagt BF  de Wit PJ 《Genetics》2004,168(3):1655-1663
Cf resistance genes in tomato confer resistance to the fungal leaf pathogen Cladosporium fulvum. Both the well-characterized resistance gene Cf-9 and the related 9DC gene confer resistance to strains of C. fulvum that secrete the Avr9 protein and originate from the wild tomato species Lycopersicon pimpinellifolium. We show that 9DC and Cf-9 are allelic, and we have isolated and sequenced the complete 9DC cluster of L. pimpinellifolium LA1301. This 9DC cluster harbors five full-length Cf homologs, including orthologs of the most distal homologs of the Cf-9 cluster and three central 9DC genes. Two 9DC genes (9DC1 and 9DC2) have an identical coding sequence, whereas 9DC3 differs at its 3' terminus. From a detailed comparison of the 9DC and Cf-9 clusters, we conclude that the Cf-9 and Hcr9-9D genes from the Cf-9 cluster are ancestral to the first 9DC gene and that the three 9DC genes were generated by subsequent intra- and intergenic unequal recombination events. Thus, the 9DC cluster has undergone substantial rearrangements in the central region, but not at the ends. Using transient transformation assays, we show that all three 9DC genes confer Avr9 responsiveness, but that 9DC2 is likely the main determinant of Avr9 recognition in LA1301.  相似文献   

15.
The tomato Cf-9 gene confers resistance to races of the leaf mould fungus Cladosporium fulvum that carry the Avr9 avirulence gene. Cf-9 was isolated by transposon tagging using a modified maize Dissociation (Ds) element. This generated an allelic series of Ds-induced mutations of Cf-9, of which two were found to confer novel phenotypes in a screen for mutants affecting wild-type Cf-9 function in trans. Genetic and molecular analysis of these mutants suggested semidominant, Avr9-dependent, negative-interfering mutations involving Ds insertions in a defined subregion of Cf-9. Interference was associated with expression of the 5'-end of Cf-9 upstream of the Ds insertions in these mutants, suggesting that truncated Cf-9 proteins were the likely cause of interference. Transgenic tomato lines harbouring Cf-9 constructs with premature stop codons in positions similar to the Ds insertions also showed interference, indicating that the presence of Ds was not required for interference to occur. Interestingly, interference in these transgenic lines was completely dominant and was associated with a pronounced developmental phenotype that was dependent on co-expression of Cf-9, Avr9 and a truncated Cf-9 transgene. However, interference with a weakly autoactive Hcr9 gene was Avr9-independent and did not cause a developmental phenotype, suggesting that localized restoration of Cf-9/Avr9-dependent cell death was responsible for the developmental phenotype. The restricted region in which truncation of Cf-9 results in dominant-negative interference suggests that leucine-rich repeats (LRR) 16-19 of Cf-9 may mediate dimerization of Cf-9 and LRRs 20-23 may mediate interactions with downstream partner proteins required for Cf-9 signalling, or vice versa.  相似文献   

16.
To identify proteins involved in tomato Cf-9 resistance protein function, a yeast two-hybrid screen was undertaken using the cytoplasmic C-terminus of Cf-9 as bait. A thioredoxin-homologous clone, interacting specifically with Cf-9, was identified and called CITRX (Cf-9-interacting thioredoxin). Virus-induced gene silencing (VIGS) of CITRX resulted in an accelerated Cf-9/Avr9-triggered hypersensitive response in both tomato and Nicotiana benthamiana, accompanied by enhanced accumulation of reactive oxygen species, alteration of protein kinase activity and induction of defence-related genes. VIGS of CITRX also conferred increased resistance to the fungal pathogen Cladosporium fulvum in the otherwise susceptible Cf0 tomato. CITRX acts as a negative regulator of the cell death and defence responses induced through Cf-9, but not Cf-2. Recognition of the Cf-9 C-terminus by CITRX is necessary and sufficient for this negative regulation. This is the first study that implicates thioredoxin activity in the regulation of plant disease resistance.  相似文献   

17.
Introgression of resistance trait Cf-4 from wild tomato species into tomato cultivar MoneyMaker (MM-Cf0) has resulted in the near-isogenic line MM-Cf4 that confers resistance to the fungal tomato pathogen Cladosporium fulvum. At the Cf-4 locus, five homologues of Cladosporium resistance gene Cf-9 (Hcr9s) are present. While Hcr9-4D represents the functional Cf-4 resistance gene matching Avr4, Hcr9-4E confers resistance towards C. fulvum by mediating recognition of the novel avirulence determinant Avr4E. Here, we report the isolation of the Avr4E gene, which encodes a cysteine-rich protein of 101 amino acids that is secreted by C. fulvum during colonization of the apoplastic space of tomato leaves. By complementation we show that Avr4E confers avirulence to strains of C. fulvum that are normally virulent on Hcr9-4E-transgenic plants, indicating that Avr4E is a genuine, race-specific avirulence determinant. Strains of C. fulvum evade Hcr9-4E-mediated resistance either by a deletion of the Avr4E gene or by production of a stable Avr4E mutant protein that carries two amino acid substitutions, Phe(82)Leu and Met(93)Thr. Moreover, we demonstrate by site-directed mutagenesis that the single amino acid substitution Phe(82)Leu in Avr4E is sufficient to evade Hcr9-4E-mediated resistance.  相似文献   

18.
The Cf-9 resistance gene from tomato confers resistance to races of the fungal pathogen Cladosporium fulvum that express the corresponding avirulence gene, Avr9. Avr9 encodes a secreted peptide. To investigate Cf-9 function, we tagged the Cf-9 protein with a triple myc epitope at either the amino- or carboxy-terminus of the mature protein. Tobacco plants carrying these constructs activate a defence response to Avr9 peptide. The Cf-9 sequence predicts a protein of 94 kDa, with 22 glycosylation sites. Using c-myc antibodies, c-myc : Cf-9 protein was detected as a unique band with a molecular size of 160 kDa. The band shifted to approximately 105 kDa after glucosidase treatment, indicating that Cf-9 protein is highly glycosylated. Plasma membranes were isolated using two-phase partitioning, and c-myc : Cf-9 was enriched in these fractions, indicating that Cf-9 is a plasma membrane protein. This was confirmed by silver-enhanced immunogold labelling of tobacco protoplasts carrying the amino-terminal c-myc tag; a higher labelling density was observed on the surface of protoplasts derived from c-myc : Cf-9 tobacco compared to untransformed control. The presence of Cf-9 in the plasma membrane is consistent with its role in conferring recognition of the extracellular Avr9 peptide.  相似文献   

19.
Defense responses mediated by the genetically unlinked Cf-9 and Cf-2 genes were compared with those involving no Cf gene (Cf0). Compatible tomato (Lycopersicon esculentum)-Cladosporium fulvum intercellular washing fluids were injected into tomato cotyledons, and the kinetics of responses was monitored under conditions of 70 and 98% relative humidity. The latter conditions suppressed the normal macroscopic responses. For the Cf-9-Avr9 interaction, stomatal opening was induced within 3 to 4 h and after 9 h mesophyll cell death commenced. A burst of ethylene production occurred between 9 and 12.5 h and remained elevated. Free salicylic acid levels increased after 12 h, peaked at 24 h, and thereafter declined. For the Cf-2-Avr2 interaction, stomata became plugged after 8 h, and salicylic acid and ethylene levels increased by 12 and 18 h, respectively, and thereafter declined. Host cell death commenced around vascular tissue by 24 h. Cell death in both incompatible interactions was frequently preceded by cell enlargement. For Cf0-injected plants, no significant responses were detected. High humidity delayed and reduced the Cf-Avr-gene-dependent cell death and ethylene synthesis, whereas induced salicylic acid levels were unaffected for Cf-2-Avr2 and reduced in magnitude only for Cf-9-Avr9.  相似文献   

20.
In many plant-pathogen interactions resistance to disease is controlled by the interaction of plant-encoded resistance (R) genes and pathogen-encoded avirulence (Avr) genes. The interaction between tomato and the leaf mould pathogen Cladosporium fulvum is an ideal system to study the molecular basis of pathogen perception by plants. A total of four tomato genes for resistance to C. fulvum (Cf-2, Cf-4, Cf-5 and Cf-9) have been isolated from two genetically complex chromosomal loci. Their gene products recognize specific C. fulvum-encoded avirulence gene products (Avr2, Avr4, Avr5 and Avr9) by an unknown molecular mechanism. Cf genes encode extracellular membrane-anchored glycoproteins comprised predominantly of 24 amino acid leucine-rich repeats (LRRs). Cf genes from the same locus encode proteins which are more than 90% identical. Most of the amino-acid sequence differences correspond to the solvent-exposed residues within a beta-strand/beta-turn structural motif which is highly conserved in LRR proteins. Sequence variability within this motif is predicted to affect the specificity of ligand binding. Our analysis of Cf gene loci at the molecular level has shown they comprise tandemly duplicated homologous genes, and suggests a molecular mechanism for the generation of sequence diversity at these loci. Our analysis provides further insight into the molecular basis of pathogen perception by plants and the organization and evolution of R gene loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号