首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The primary aim of this study is the elucidation of the mechanism of disulfide induced alteration of ligand binding in human tear lipocalin (TL). Disulfide bonds may act as dynamic scaffolds to regulate conformational changes that alter protein function including receptor-ligand interactions. A single disulfide bond, (Cys61-Cys153), exists in TL that is highly conserved in the lipocalin superfamily. Circular dichroism and fluorescence spectroscopies were applied to investigate the mechanism by which disulfide bond removal effects protein stability, dynamics and ligand binding properties. Although the secondary structure is not altered by disulfide elimination, TL shows decreased stability against urea denaturation. Free energy change (ΔG(0)) decreases from 4.9±0.2 to 2.1±0.3kcal/mol with removal of the disulfide bond. Furthermore, ligand binding properties of TL without the disulfide vary according to the type of ligand. The binding of a bulky ligand, NBD-cholesterol, has a decreased time constant (from 11.8±0.2 to 3.3s). In contrast, the NBD-labeled phospholipid shows a moderate decrease in the time constant for binding, from 33.2±0.2 to 22.2±0.4s. FRET experiments indicate that the hairpin CD is directly involved in modulation of both ligand binding and flexibility of TL. In TL complexed with palmitic acid (PA-TL), the distance between the residues 62 of strand D and 81 of loop EF is decreased by disulfide bond reduction. Consequently, removal of the disulfide bond boosts flexibility of the protein to reach a CD-EF loop distance (24.3?, between residues 62 and 81), which is not accessible for the protein with an intact disulfide bond (26.2?). The results suggest that enhanced flexibility of the protein promotes a faster accommodation of the ligand inside the cavity and an energetically favorable ligand-protein complex.  相似文献   

2.
Human Tear Lipocalin/von Ebner's gland protein (TL) is a member of the lipocalin superfamily. The protein is secreted by a number of serous glands and tissues and is overproduced under conditions of stress, infection and inflammation. In addition to its typical affinity for lipophilic ligands it was recently found to be able to inhibit cysteine proteinases [van't Hof et al., J. Biol. Chem. 272 (1997), 1837-1841], probably due to the presence of amino acid motifs resembling the papain binding domains of family 2 cystatins. In this work we have used a recombinant protein to confirm the results obtained with native TL. The inhibitory activity of the recombinant protein against papain was dependent on the ratio of papain and TL. At higher papain concentrations, the N-terminal sequence of TL was cleaved off by the protease, indicating that it can act in an inhibitor- or a substrate-like mode. This behaviour resembles that observed with certain chicken cystatin mutants. Using a recombinant TL mutant we found that the two Leu residues (Leu4-Leu5) contained within the first cystatin-like motif are absolutely essential for the inhibitory activity. These results were supported by experiments using a recombinant form of the corresponding pig von Ebner's gland protein (VEGp). This protein, which does not possess a fully conserved first cystatin-like motif, is unable to inhibit papain.  相似文献   

3.
The potential of ligand binding proteins as drug carriers and delivery systems has recently sparked great interest. We investigated the potential of tear lipocalin (TL) to bind the antibiotic, rifampin, and the environmental conditions for controlled release. To determine if TL binds rifampin, gel filtration was used to isolate protein fractions of tears. Rifampin was detected by absorbance spectroscopy in the elution fractions containing TL. The bound complex of rifampin-TL generates optical activity at about 360 nm, indicating a unique conformation at the binding site. Rifampin has a higher affinity for TL (Kd=128 microM) than albumin. Rifampin is released from the TL calyx in acidic conditions and is displaced by palmitic acid. Autooxidation of free rifampin begins in minutes but is delayed by at least 3 h in the presence of TL. These properties are conducive to stabilization and delivery of rifampin to tubercles that are acidic and rich in fatty acids. These studies show the potential of TL as a carrier for rifampin with controlled release to a targeted environment.  相似文献   

4.
Previous studies suggest that the conserved Trp17 on strand A of TL has a role in lipocalin stability and interacts, directly or indirectly, with Ile98 and Phe99 on strand G to influence ligand binding. Here, we determined the proximity of Trp17 to Ile98 and Phe99. Time-resolved fluorescence experiments showed resonance energy transfer between tryptophans at positions 17 and 98. In addition, an exciton effect was discovered in CD experiments resulting from interactions of the excited states of these tryptophans. Fluorescence anisotropy values of mutants containing two tryptophans (positions 99/17 and 98/17) were lower than expected in the absence of RET, confirming that these residues are proximate in tear lipocalin. The data support a model of tear lipocalin in which Trp17 and Phe99 are close together deep in the cavity and participate in an internal hydrophobic cluster. Ile98 is proximate to Trp17 but faces toward the outside of the cavity and in the model is part of an external hydrophobic patch. Comparison with beta-lactoglobulin suggests that these motifs may have an important influence on protein stability and ligand binding in other members of the lipocalin family.  相似文献   

5.
Human lipocalin-1 (Lcn-1, also called tear lipocalin), a member of the lipocalin structural superfamily, is produced by a number of glands and tissues and is known to bind an unusually large array of hydrophobic ligands. Apart from its specific function in stabilizing the lipid film of human tear fluid, it is suggested to act as a physiological scavenger of potentially harmful lipophilic compounds, in general. To characterize proteins involved in the reception, detoxification, or degradation of these ligands, a cDNA phage-display library from human pituitary gland was constructed and screened for proteins interacting with Lcn-1. Using this method an Lcn-1 interacting phage was isolated that expressed a novel human protein. Molecular cloning and analysis of the entire cDNA indicated that it encodes a 55-kDa protein, lipocalin-1 interacting membrane receptor (LIMR), with nine putative transmembrane domains. The cell membrane location of this protein was confirmed by immunocytochemistry and Western blot analysis of membrane fractions of human NT2 cells. Independent biochemical investigations using a recombinant N-terminal fragment of LIMR also demonstrated a specific interaction with Lcn-1 in vitro. Based on these data, we suggest LIMR to be a receptor of Lcn-1 ligands. These findings constitute the first report of cloning of a lipocalin interacting, plasma membrane-located receptor, in general. In addition, a sequence comparison supports the biological relevance of this novel membrane protein, because genes with significant nucleotide sequence similarity are present in Takifugu rubripes, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus, Bos taurus, and Sus scrofa. According to data derived from the human genome sequencing project, the LIMR-encoding gene has to be mapped on human chromosome 12, and its intron/exon organization could be established. The entire LIMR-encoding gene consists of about 13.7 kilobases in length and contains 16 introns with a length between 91 and 3438 base pairs.  相似文献   

6.
Anticalins are prepared by reshaping the ligand pocket of a natural lipocalin via protein engineering in order to recognize a prescribed ligand. In this manner, the anticalin DigA with specificity for digoxigenin was previously derived from the bilin-binding protein (BBP), a natural lipocalin from Pieris brassicae. The four peptide loops that form its ligand-binding site were randomized and a cognate variant was selected from the resulting library. Here, we propose a concept for improving the ligand-binding properties of this anticalin in an in vitro affinity maturation process by step-wise randomization of restricted areas of the loop region. Following selection on digoxigenin-binding activity via phage display and colony screening, several DigA variants were thus obtained. The recombinant proteins were thoroughly characterized in terms of ligand affinity and specificity, secondary structure and thermal stability against unfolding. The variant DigA16/19, which carries several new mutations, exhibits clearly improved affinity for digoxigenin, with K(D)=12.4 nM. Hence, it is suitable as a sensitive reagent in biochemical detection experiments, especially when produced as a functional fusion protein with alkaline phosphatase as reporter enzyme. In addition, DigA16/19 possesses enhanced ligand specificity and recognizes part of the linker that was used for fixing the steroid group to a carrier protein. Finally, the digoxigenin-binding anticalins appear to have high physico-chemical stability, with T(m) values in the 70 degrees C range. Our present findings support the notion that anticalins provide a useful class of compact and robust ligand-receptor proteins that can be tailored for practical demands.  相似文献   

7.
Human tear lipocalin (TL) exhibits diverse functions, most of which are linked to ligand binding. To map the binding site of TL for some amphiphilic ligands, we capitalized on the hydrophobic and hydrophilic properties of 8-anilino-1-naphthalenesulfonic acid (ANS). In single Trp mutants, resonance energy transfer from Trp to ANS indicates that the naphthalene group of ANS is proximate to Leu105 in the cavity. Binding energies of TL to ANS and its analogues reveal contributions from electrostatic interactions. The sulfonate group of ANS interacts strongly with the nonconserved intracavitary residue Lys114 and less with neighboring residues His84 and Glu34. This trigonal cluster of residues may play a role in the ligand recognition site for some negatively charged ligands. Because many drugs possess sulfonate groups, the trigonal cluster-sulfonate interaction can also be exploited as a lipocalin-based drug delivery mechanism. The binding of lauric acid and its analogues shows that fatty acids assume heterogeneous orientations in the cavity of TL. Predominantly, the hydrocarbon tail is buried in the cavity of TL and the carboxyl group is oriented toward the mouth. However, TL can also interact, albeit relatively weakly, with fatty acids oriented in the opposite direction. As the major lipid binding protein of tears, the ability to accommodate fatty acids in two opposing orientations may have functional implications for TL. At the aqueous-lipid interface, fatty acids whose carboxyl groups are positioned toward the aqueous phase are available for interaction with TL that could augment stability of the tear film.  相似文献   

8.
The thiol-disulfide oxidoreductase thioredoxin-1 (Trx1) is known to be secreted by leukocytes and to exhibit cytokine-like properties. Extracellular effects of Trx1 require a functional active site, suggesting a redox-based mechanism of action. However, specific cell surface proteins and pathways coupling extracellular Trx1 redox activity to cellular responses have not been identified so far. Using a mechanism-based kinetic trapping technique to identify disulfide exchange interactions on the intact surface of living lymphocytes, we found that Trx1 catalytically interacts with a single principal target protein. This target protein was identified as the tumor necrosis factor receptor superfamily member 8 (TNFRSF8/CD30). We demonstrate that the redox interaction is highly specific for both Trx1 and CD30 and that the redox state of CD30 determines its ability to engage the cognate ligand and transduce signals. Furthermore, we confirm that Trx1 affects CD30-dependent changes in lymphocyte effector function. Thus, we conclude that receptor-ligand signaling interactions can be selectively regulated by an extracellular redox catalyst.  相似文献   

9.
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) catalyzes the isomerization of PGH(2), a common precursor of various prostanoids, to produce PGD(2), an endogenous somnogen and nociceptive modulator, in the brain. L-PGDS is a member of the lipocalin superfamily and binds lipophilic substances, such as retinoids and bile pigments, suggesting that L-PGDS is a dual functional protein acting as a PGD(2)-synthesizing enzyme and a transporter for lipophilic ligands. In this study we determined by NMR the three-dimensional structure of recombinant mouse L-PGDS with the catalytic residue Cys-65. The structure of L-PGDS exhibited the typical lipocalin fold, consisting of an eight-stranded, antiparallel beta-barrel and a long alpha-helix associated with the outer surface of the barrel. The interior of the barrel formed a hydrophobic cavity opening to the upper end of the barrel, the size of which was larger than those of other lipocalins, and the cavity contained two pockets. Molecular docking studies, based on the result of NMR titration experiments with retinoic acid and PGH(2) analog, revealed that PGH(2) almost fully occupied the hydrophilic pocket 1, in which Cys-65 was located and all-trans-retinoic acid occupied the hydrophobic pocket 2, in which amino acid residues important for retinoid binding in other lipocalins were well conserved. Mutational and kinetic studies provide the direct evidence for the PGH(2) binding mode. These results indicated that the two binding sites for PGH(2) and retinoic acid in the large cavity of L-PGDS were responsible for the broad ligand specificity of L-PGDS and the non-competitive inhibition of L-PGDS activity by retinoic acid.  相似文献   

10.
Cathepsin D (CatD) is a lysosomal aspartic proteinase and plays an important role in the degradation of proteins and in apoptotic processes induced by oxidative stress, cytokines, and aging. All of these stimuli are potent inducers of endothelial cell apoptosis. Therefore, we investigated the role of CatD in endothelial cell apoptosis and determined the underlying mechanisms. Incubation with 100-500 microm H2O2 for 12 h induced apoptosis in endothelial cells. To determine a role for CatD, we co-incubated endothelial cells with the CatD inhibitor pepstatin A. Pepstatin A as well as genetic knock down of CatD abolished H2O2-induced apoptosis. In contrast, overexpression of CatD wild type but not a catalytically inactive mutant of CatD (CatDD295N) induced apoptosis under basal conditions. To gain insights into the underlying mechanisms, we investigated the effect of CatD on reactive oxygen species (ROS) formation. Indeed, knocking down CatD expression reduced H2O2-induced ROS formation and apoptosis. The major redox regulator in endothelial cells is thioredoxin-1 (Trx), which plays a crucial role in apoptosis inhibition. Thus, we hypothesized that CatD may alter Trx protein levels and thereby promote formation of ROS and apoptosis. Incubation with 100 microm H2O2 for 6 h decreased Trx protein levels, whereas Trx mRNA was not altered. H2O2-induced Trx degradation was inhibited by pepstatin A and genetic knock down of CatD but not by other protease inhibitors. Incubation of unstimulated cell lysates with recombinant CatD significantly reduced Trx protein levels in vitro, which was completely blocked by pepstatin A pre-incubation. Overexpression of CatD reduced Trx protein in cells. Moreover, H2O2 incubation led to a translocation of Trx to the lysosomes prior to the induction of apoptosis. Taken together, CatD induces apoptosis via degradation of Trx protein, which is an essential anti-apoptotic and reactive oxygen species scavenging protein in endothelial cells.  相似文献   

11.
Side chain mobility, accessibility, and backbone motion were studied by site-directed spin labeling of sequential cysteine mutants of the G strand in tear lipocalins (TL). A nitroxide scan between residues 98 and 105 revealed the alternating periodicity of mobility and accessibility to NiEDDA and oxygen, characteristic of a beta-strand. Residue 99 was the most inaccessible to NiEDDA and oxygen. EPR spectra with the fast relaxing agent, K(3)Fe(CN)(6), exhibited two nitroxide populations for most residues. The motionally constrained population was relatively less accessible to K(3)Fe(CN)(6) because of dynamic tertiary contact, probably with side chain residues of adjacent strands. With increasing concentrations of sucrose, the spectral contribution of the immobile component was greater, indicating a larger population with tertiary contact. Increased concentrations of sucrose also resulted in a restriction of mobility of spin-labeled fatty acids which were bound within the TL cavity. The data suggest that sucrose enhanced ligand affinity by slowing the backbone motion of the lipocalin. The correlation time of an MTSL derivative (I) attached to F99C resulted in the lack of side chain motion and therefore reflects the overall rotation of the TL complex. The correlation time of F99C in tears (13.5 ns) was the same as that in buffer and indicates that TL exists as a dimer under native conditions. TL-spin-labeled ligand complexes have a shorter correlation time than the protein alone, indicating that the fatty acids are not rigidly anchored in the cavity, but move within the pocket. This segmental motion of the ligand was modulated by protein backbone fluctuations. Accessibility studies with oxygen and NiEDDA were performed to determine the orientation and depth of a series of fatty acid derivatives in the cavity of TL. Fatty acids are oriented with the hydrocarbon tail buried in the cavity and the carboxyl group oriented toward the mouth. In general, the mobility of the nitroxide varied according to position such that nitroxides near the mouth had greater mobility than those located deep in the cavity. Nitroxides positioned up to 16 carbon units from the hydrocarbon tail of the ligand are motionally restricted and inaccessible, indicating the cavity extends to at least this depth. EPR spectra obtained with and without sucrose showed that the intracavitary position of lauric acid in TL is similar to that in beta-lactoglobulin. However, unlike beta-lactoglobulin, TL binds 16-doxyl stearic acid, suggesting less steric hindrance and greater promiscuity for TL.  相似文献   

12.
The principal lipid binding protein in tears, tear lipocalin (TL), binds acid and the fluorescent fatty acid analogs, DAUDA and 16-AP at one site TL compete for this binding site. A fluorescent competitive binding assay revealed that apo-TL has a high affinity for phospholipids and stearic acid (Ki) of 1.2 microM and 1.3 microM, respectively, and much less affinity for cholesterol (Ki) of 15.9 of the hydrocarbon chain. TL binds most strongly the least soluble lipids permitting these lipids to exceed their maximum solubility in aqueous solution. These data implicate TL in solubilizing and transporting lipids in the tear film. Phenylalanine, tyrosine and cysteine+ were substituted for TRP 17, the only invariant residue throughout the lipocalin superfamily. Cysteine substitution resulted in some loss os secondary structure, relaxation of aromatic side chain rigidity, decreased binding affinity for DAUDA and destabilization of structure. Mutants of TL, W17Y, and W17F showed a higher binding affinity for DAUDA than wild-type TL. Comparison of the results of the tryptophan 17 substitution in lipocalin with those of tryptophan 19 substitution in beta-lactoglobulin revealed important differences in binding characteristics that reflect the functional heterogeneity within the lipocalin family.  相似文献   

13.
The cation-π interaction impacts protein folding, structural stability, specificity, and molecular recognition. Cation-π interactions have been overlooked in the lipocalin family. To fill this gap, these interactions were analyzed in the 113 crystal and solution structures from the lipocalin family. The cation-π interactions link previously identified structurally conserved regions and reveal new motifs, which are beyond the reach of a sequence alignment algorithm. Functional and structural significance of the interactions were tested experimentally in human tear lipocalin (TL). TL, a prominent and promiscuous lipocalin, has a key role in lipid binding at the ocular surface. Ligand binding modulation through the loop AB at the "open" end of the barrel has been erroneously attributed solely to electrostatic interactions. Data revealed that the interloop cation-π interaction in the pair Phe28-Lys108 contributes significantly to stabilize the holo-conformation of the loop AB. Numerous energetically significant and conserved cation-π interactions were uncovered in TL and throughout the lipocalin family. Cation-π interactions, such as the highly conserved Trp17-Arg118 pair in TL, were educed in low temperature experiments of mutants with Trp to Tyr substitutions.  相似文献   

14.
Disulfide bonds play diverse structural and functional roles in proteins. In tear lipocalin (TL), the conserved sole disulfide bond regulates stability and ligand binding. Probing protein structure often involves thiol selective labeling for which removal of the disulfide bonds may be necessary. Loss of the disulfide bond may destabilize the protein so strategies to retain the native state are needed. Several approaches were tested to regain the native conformational state in the disulfide-less protein. These included the addition of trimethylamine N-oxide (TMAO) and the substitution of the Cys residues of disulfide bond with residues that can either form a potential salt bridge or others that can create a hydrophobic interaction. TMAO stabilized the protein relaxed by removal of the disulfide bond. In the disulfide-less mutants of TL, 1.0 M TMAO increased the free energy change (ΔG0) significantly from 2.1 to 3.8 kcal/mol. Moderate recovery was observed for the ligand binding tested with NBD-cholesterol. Because the disulfide bond of TL is solvent exposed, the substitution of the disulfide bond with a potential salt bridge or hydrophobic interaction did not stabilize the protein. This approach should work for buried disulfide bonds. However, for proteins with solvent exposed disulfide bonds, the use of TMAO may be an excellent strategy to restore the native conformational states in disulfide-less analogs of the proteins.  相似文献   

15.
Tear lipocalin (TL), a major component of human tears, shows pH-dependent endogenous ligand binding. The structural and conformational changes associated with ligand release in the pH range of 7.5-3.0 are monitored by circular dichroism spectroscopy and site-directed tryptophan fluorescence. In the transition from pH 7.5 to pH 5.5, the ligand affinity for 16-(9-anthroyloxy)palmitic acid (16AP) and 8-anilino-1-naphthalenesulfonic acid is reduced. At pH 4.0 these ligands no longer bind within the TL calyx. From pH 7.3 to pH 3.0, the residues on loops CD and EF, which overhang the calyx entrance, show reduced accessibility to acrylamide. In addition resonance energy transfer is enhanced between residues on the two loops; the distance between the loops narrows. These findings suggest that apposition of the loops at low pH excludes the ligand from the intracavitary binding site. The conformational changes observed in transition from pH 7.3 to pH 3.0 for loops CD and EF are quite different. The CD loop shows less population reshuffling than the EF loop with an acidic environment, probably because backbone motion is restrained by the adjacent disulfide bond. The Trp fluorescence wavelength maximum (lambda(max)) reflects internal electrostatic interactions for positions on loops CD and EF. The titration curves of lambda(max) for mutants on the EF loop fit the Hendersen-Hasselbalch equation for two apparent pK(a) values, while the CD loop positions fit satisfactorily with one pK(a) value. Midpoints of transition for the binding affinity of TL tryptophan mutants to 16AP occur at pH 5.5-6.1. Replacement of each amino acid on either loop by single tryptophan mutation does not disrupt the pH-dependent binding affinity to 16AP. Taken together the data suggest that pH-driven ligand release involves ionization changes in several titratable residues associated with CD and EF loop apposition and occlusion of the calyx.  相似文献   

16.
Thioredoxin (Trx) is a highly conserved redox protein involved in several essential cellular processes. In this study, our goal was to isolate peptide ligands to Escherichia coli Trx that mimic protein-protein interactions, specifically the T7 polymerase-Trx interaction. To do this, we subjected Trx to affinity selection against a panel of linear and cysteine-constrained peptides using M13 phage display. A novel cyclized conserved peptide sequence, with a motif of C(D/N/S/T/G)D(S/T)-hydrophobic-C-X-hydrophobic-P, was isolated to Trx. These peptides bound specifically to the E. coli Trx when compared to the human and spirulina homologs. An alanine substitution of the active site cysteines (CGPC) resulted in a significant loss of peptide binding affinity to the Cys-32 mutant. The peptides were also characterized in the context of Trx's role as a processivity factor of the T7 DNA polymerase (gp5). As the interaction between gp5 and Trx normally takes place under reducing conditions, which might interfere with the conformation of the disulfide-bridged peptides, we made use of a 22 residue deletion mutant of gp5 in the thioredoxin binding domain (gp5Delta22) that bypassed the requirements of reducing conditions to interact with Trx. A competition study revealed that the peptide selectively inhibits the interaction of gp5Delta22 with Trx, under oxidizing conditions, with an IC50 of approximately 10 microM.  相似文献   

17.
Direct expression of the cytokine receptor homology (CRH) domain of granulocyte-colony-stimulating factor (G-CSF) receptor is lethal to Escherichia coli. For the efficient and stable production of an active CRH domain in E. coli, we fused the CRH domain with different proteins, such as maltose-binding protein (MalE), glutathione S-transferase, and thioredoxin (Trx). Among these, Trx appeared to be the best in terms of the protein expression level, purification efficiency by affinity chromatography, and binding activity to its ligand, G-CSF. The yield of active Trx-CRH fusion protein increased about 200-fold compared to that of previously reported MalE-CRH fusion.  相似文献   

18.
Multiangle laser light scattering and fluorescence anisotropy decay measurements clarified the oligomeric states of native and recombinant tear lipocalin (lipocalin-1, TL). Native TL is monomeric. Recombinant TL (5-68 microM) with or without the histidine tag shows less than 7% dimer formation that is not in equilibrium with the monomeric form. Fluorescence anisotropy decay showed a correlation time of 9-10 ns for TL (10 microM-1 mM). Hydrodynamic calculations based on the crystallographic structure of a monomeric TL mutant closely concur with the observed correlation time. The solution properties calculated with HYDROPRO and SOLPRO programs from the available crystallographic structure of a monomeric TL mutant concur closely with the observed fluorescence anisotropy decay. The resulting model shows that protein topology is the major determinant of rotational correlation time and accounts for deviation from the Stokes-Einstein relation. The data challenge previous gel filtration studies to show that native TL exists predominantly as a monomer in solution rather than as a dimer. Delipidation of TL results in a formation of a complex oligomeric state (up to 25%). These findings are important as the dynamic processes in the tear film are limited by diffusional, translational as well as rotational, properties of the protein.  相似文献   

19.
All prokaryotic and eukaryotic thioredoxins contain a conserved tryptophan residue, exposed at the active site disulfide/dithiol. The role of this W31 in Escherichia coli thioredoxin (Trx) was studied by site-directed mutagenesis. Four mutant Trx with W31Y, W31F, W31H, and W31A replacements were characterized. Very low tryptophan fluorescence emission from the remaining W28 was observed in all mutant Trx; reduction resulted in large, but variable increases (up to 11-fold) of fluorescence, to levels higher than in native or denatured wild-type Trx, demonstrating a previously postulated change involving W28. All W31 mutant Trx were good substrates for E. coli thioredoxin reductase. Compared with wild type, the apparent Km values were increased less than 2-fold for the W31A, W31H, and W31F Trx and the W31Y Trx showed even slightly higher catalytic efficiency (kcat/Km value). Functions of reduced Trx with ribonucleotide reductase and in reduction of insulin disulfides were more strongly influenced by the W31 replacements, in particular at low pH for A and H residues. T7 DNA polymerase activity generated by T7 gene 5 protein and reduced Trx was lowered by large factors for W31Y, W31A, or W31H compared with W31F or the wild-type protein. The in vivo function of Trx was studied by using pUC118-trxA expression in an E. coli trxA- background. The trxA genes with W31Y and W31F substitutions restored, fully and partly, the methionine sulfoxide utilization of a trxA- metE- test strain; W31A and W31H mutations resulted in no growth. Propagation of M13 was moderately impeded by W31Y and W31F or severely by W31A and W31H replacements. Growth of a phage T3/7 hybrid was possible only with the W31Y and W31F substitutions reflecting the in vitro results for T7 DNA polymerase.  相似文献   

20.
Human apolipoprotein-D (apoD) is a glycosylated lipocalin that plays a protective role in Alzheimer’s disease due to its antioxidant function. Native apoD from human body fluids forms oligomers, predominantly a stable tetramer. As a lipocalin, apoD binds and transports small hydrophobic molecules such as progesterone, palmitic acid and sphingomyelin. Oligomerisation is a common trait in the lipocalin family and is affected by ligand binding in other lipocalins. The crystal structure of monomeric apoD shows no major changes upon progesterone binding. Here, we used small-angle X-ray scattering (SAXS) to investigate the influence of ligand binding and oxidation on apoD oligomerisation and conformation. As a solution-based technique, SAXS is well suited to detect changes in oligomeric state and conformation in response to ligand binding. Our results show no change in oligomeric state of apoD and no major conformational changes or subunit rearrangements in response to binding of ligands or protein oxidation. This highlights the highly stable structure of the native apoD tetramer under various physiologically relevant experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号