首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Down-regulation or overexpression of the cyclin-dependent kinase inhibitor p27 have been observed in a range of malignancies, including lung cancer. To further elucidate the role of the molecule in tumor growth regulation, we evaluated p27 expression in a series of non-small cell lung carcinomas (NSCLCs), and examined its relation with histology, kinetic parameters, ploidy, and overall survival. We extended our investigation into the association of p27 levels with the presence of Ki-ras mutations, as well as with the expression status of p53 and pRb in tumor cells. MATERIAL AND METHODS: p27, p53, and pRb status were immunohistochemically evaluated in a total of 69 NSCLCs. In situ assays were employed to assess the kinetic parameters (Ki-67 immunohistochemistry for proliferation index, Tdt-mediated dUTP nick end labeling assay for apoptotic index). The ploidy status of the tumors was assessed after staining nuclei with the Feulgen procedure, and the presence of Ki-ras mutations was examined by restriction fragment length polymorphisms. All possible associations were assessed with a series of statistical methods. RESULTS: Immunoreactivity for p27 was observed in the entire series of specimens, with the mean percentage of positive cells being 33%. Adenocarcinomas (AdCs) exhibited higher p27 levels compared to squamous cell carcinomas (SqCCs) (p < 0.01). An inverse correlation was established between p27 expression and proliferation index (PI) (r = -0.834, p < 0.01) but not with apoptotic index (AI), whereas aneuploid tumors were characterized by lower p27 levels than diploid ones (p < 0.01). No difference in p27 immunostaining was observed with regard to the presence of Ki-ras mutations, whereas aberrant p53 and/or pRb expression patterns were associated with p27 underexpression (p < 0.01 for p53 status, p < 0.05 regarding pRb levels, and p < 0.01 for a combined deregulation of both proteins). Two or more alterations in the p27/p53/pRb protein network (i.e., p27 levels lower than the estimated mean value, overexpressed p53, and/or aberrant pRb) were associated with increased PI and aneuploidy (p < 0.001 and p < 0.01, respectively). A powerful trend was found between p27 expression and overall survival (p = 0.066). CONCLUSIONS: Our findings confirm the heterogeneity between AdCs and SqCCs, and are suggestive of an increased proliferative activity in NSCLCs underexpressing p27. Furthermore, our analysis supports the concept of p27 forming a functionally compact network with p53 and pRb, which is actively involved in the regulation of cellular proliferation and chromosomal stability.  相似文献   

2.
Activation of the p53 protein protects the organism against the propagation of cells that carry damaged DNA with potentially oncogenic mutations. MDM2, a p53-specific E3 ubiquitin ligase, is the principal cellular antagonist of p53, acting to limit the p53 growth-suppressive function in unstressed cells. In unstressed cells, MDM2 constantly monoubiquitinates p53 and thus is the critical step in mediating its degradation by nuclear and cytoplasmic proteasomes. The interaction between p53 and MDM2 is conformation-based and is tightly regulated on multiple levels. Disruption of the p53-MDM2 complex by multiple routes is the pivotal event for p53 activation, leading to p53 induction and its biological response. Because the p53-MDM2 interaction is structurally and biologically well understood, the design of small lipophilic molecules that disrupt or prevent it has become an important target for cancer therapy.  相似文献   

3.
Zhong H  Carlson HA 《Proteins》2005,58(1):222-234
The interaction between human p53 and MDM2 is a key event in controlling cell growth. Many studies have suggested that a p53 mimic would be sufficient to inhibit MDM2 to reduce cell growth in cancerous tissue. In order to design a potent p53 mimic, molecular dynamics (MD) simulations were used to examine the binding interface and the effect of mutating key residues in the human p53-MDM2 complex. The Generalized Born surface area (GBSA) method was used to estimate free energies of binding, and a computational alanine-scanning approach was used to calculate the relative effects in the free energy of binding for key mutations. Our calculations determine the free energy of binding for a model p53-MDM2 complex to be -7.4 kcal/mol, which is in very good agreement with the experimentally determined values (-6.6--8.8 kcal/mol). The alanine-scanning results are in good agreement with experimental data and calculations by other groups. We have used the information from our studies of human p53-MDM2 to design a beta-peptide mimic of p53. MD simulations of the mimic bound to MDM2 estimate a free energy of binding of -8.8 kcal/mol. We have also applied alanine scanning to the mimic-MDM2 complex and reveal which mutations are most likely to alter the binding affinity, possibly giving rise to escape mutants. The mimic was compared to nutlins, a new class of inhibitors that block the formation of the p53-MDM2 complex. There are interesting similarities between the nutlins and our mimic, and the differences point to ways that both inhibitors may be improved. Finally, an additional hydrophobic pocket is noted in the interior of MDM2. It may be possible to design new inhibitors to take advantage of that pocket.  相似文献   

4.
5.
The p53 protein is well-known for its tumour suppressor function. The p53-MDM2 negative feedback loop constitutes the core module of a network of regulatory interactions activated under cellular stress. In normal cells, the level of p53 proteins is kept low by MDM2, i.e. MDM2 negatively regulates the activity of p53. In the case of DNA damage, the p53-mediated pathways are activated leading to cell cycle arrest and repair of the DNA. If repair is not possible due to excessive damage, the p53-mediated apoptotic pathway is activated bringing about cell death. In this paper, we give an overview of our studies on the p53-MDM2 module and the associated pathways from a systems biology perspective. We discuss a number of key predictions, related to some specific aspects of cell cycle arrest and cell death, which could be tested in experiments.  相似文献   

6.
Disrupting the interaction between the p53 tumor suppressor and its regulator MDM2 is a promising therapeutic strategy in anticancer drug research. In our search for non peptide inhibitors of this protein-protein interaction, we have devised a ligand design concept exploiting the central position of Val 93 in the p53 binding pocket of MDM2. The design of molecules based on this concept has allowed us to rapidly identify compounds having a 3-imidazolyl indole core structure as the first representatives of a new class of potent inhibitors of the p53-MDM2 interaction.  相似文献   

7.
8.
9.
S Bae  JH Jung  K Kim  IS An  SY Kim  JH Lee  IC Park  YW Jin  SJ Lee  S An 《FEBS letters》2012,586(19):3057-3063
Murine double minute (MDM2) is an E3 ligase that promotes ubiquitination and degradation of tumor suppressor protein 53 (p53). MDM2-mediated regulation of p53 has been investigated as a classical tumorigenesis pathway. Here, we describe TRIAD1 as a novel modulator of the p53-MDM2 axis that induces p53 activation by inhibiting its regulation by MDM2. Ablation of TRIAD1 attenuates p53 levels activity upon DNA damage, whereas ectopic expression of TRIAD1 promotes p53 stability by inhibiting MDM2-mediated ubiquitination/degradation. Moreover, TRIAD1 binds to the C-terminus of p53 to promote its dissociation from MDM2. These results implicate TRIAD1 as a novel regulatory factor of p53-MDM2.Structured summary of protein interactions:p53 physically interacts with Mdm2 and Triad1 by anti tag coimmunoprecipitation (View Interaction: 1, 2, 3)Mdm2physically interacts with Triad1 by anti tag coimmunoprecipitation (View interaction)p53physically interacts with Mdm2 by anti tag coimmunoprecipitation (View interaction)Triad1binds to p53 by pull down (View interaction)Mdm2physically interacts with p53 by anti tag coimmunoprecipitation (View interaction)p53physically interacts with Triad1 by anti tag coimmunoprecipitation (View interaction)  相似文献   

10.
The p53-MDM2 feedback loop is vital for cell growth control and is subjected to multiple regulations in response to various stress signals. Here we report another regulator of this loop. Using an immunoaffinity method, we purified an MDM2-associated protein complex that contains the ribosomal protein L23. L23 interacted with MDM2, forming a complex independent of the 80S ribosome and polysome. The interaction of L23 with MDM2 was enhanced by treatment with actinomycin D but not by gamma-irradiation, leading to p53 activation. This activation was inhibited by small interfering RNA against L23. Ectopic expression of L23 reduced MDM2-mediated p53 ubiquitination and also induced p53 activity and G(1) arrest in p53-proficient U2OS cells but not in p53-deficient Saos-2 cells. These results reveal that L23 is another regulator of the p53-MDM2 feedback regulation.  相似文献   

11.
Restoring p53 activity by inhibiting the interaction between p53 and the mouse double minutes clone 2 (MDM2) offers an attractive approach to cancer therapy. Nutlin-3a is a small-molecule inhibitor that inhibits MDM2 binding to p53 and subsequent p53-dependent DNA damage signaling. In this study, we determined the efficacy of Nutlin-3a in inducing p53-mediated cell death in osteosarcoma (OS) cell lines both in vivo and in vitro. Targeted disruption of the p53-MDM2 interaction by Nutlin-3a stabilizes p53 and selectively activates the p53 pathway only in OS cells with wild-type p53, resulting in a pronounced anti-proliferative and cytotoxic effect due to G1 cell cycle arrest and apoptosis both in vitro and in vivo. p53 dependence of these alternative outcomes of Nutlin-3a treatment was shown by the abrogation of these effects when p53 was knocked-down by small interfering RNA. These data suggest that the disruption of p53-MDM2 interaction by Nutlin-3a might be beneficial for OS patients with MDM2 amplification and wt p53 status.  相似文献   

12.
13.
The p53-MDM2 network: from oscillations to apoptosis   总被引:3,自引:0,他引:3  
The p53 protein is well-known for its tumour suppressor function. The p53-MDM2 negative feedback loop constitutes the core module of a network of regulatory interactions activated under cellular stress. In normal cells, the level of p53 proteins is kept low by MDM2, i.e. MDM2 negatively regulates the activity of p53. In the case of DNA damage, the p53-mediated pathways are activated leading to cell cycle arrest and repair of the DNA. If repair is not possible due to excessive damage, the p53-mediated apoptotic pathway is activated bringing about cell death. In this paper, we give an overview of our studies on the p53-MDM2 module and the associated pathways from a systems biology perspective.We discuss a number of key predictions, related to some specific aspects of cell cycle arrest and cell death, which could be tested in experiments.  相似文献   

14.
Song MS  Song SJ  Kim SY  Oh HJ  Lim DS 《The EMBO journal》2008,27(13):1863-1874
The tumour suppressor p53, which accumulates in response to DNA damage and induces cell-cycle arrest and apoptosis, has a key function in the maintenance of genome integrity. Under normal conditions, the antiproliferative effects of p53 are inhibited by MDM2, a ubiquitin ligase that promotes p53 ubiquitination and degradation. MDM2 is also self-ubiquitinated and degraded. Here, we show that the tumour suppressor RASSF1A regulates G(1)-S cell-cycle progression in a p53-dependent manner by promoting MDM2 self-ubiquitination and preventing p53 degradation. Importantly, RASSF1A associates with MDM2 and death-domain-associated protein (DAXX) in the nucleus, thereby disrupting the interactions between MDM2, DAXX, and the deubiquitinase, HAUSP, and enhancing the self-ubiquitin ligase activity of MDM2. Moreover, RASSF1A partially contributes to p53-dependent checkpoint activation at early time points in response to DNA damage. These findings reveal a new and important function for RASSF1A in regulating the p53-MDM2 pathway.  相似文献   

15.
Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α) forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2) oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i) ELISA with recombinant MDM2; (ii) cell lysate pull-down towards endogenous MDM2; (iii) MDM2-CK1α complex-based competition ELISA; and (iv) MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i) function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii) be used as a tool to study NEDDylation of CK1α, and (iii) reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross-talk between NEDDylation, protein kinase signalling, and cell survival.  相似文献   

16.
Molecular mechanism of the interaction between MDM2 and p53   总被引:7,自引:0,他引:7  
We have investigated the kinetic and thermodynamic basis of the p53-MDM2 interaction using a set of peptides based on residues 15-29 of p53. Wild-type p53 peptide bound MDM2 with a dissociation constant of 580nM. Phosphorylation of S15 and S20 did not affect binding, but T18 phosphorylation weakened binding tenfold, indicating that phosphorylation of only T18 is responsible for abrogating p53-MDM2 binding. Truncation to residues 17-26 increased affinity 13-fold, but further truncation to 19-26 abolished binding. NMR studies of the binding of the p53-derived peptides revealed global conformational changes of the overall structure of MDM2, stretching far beyond the binding cleft, indicating significant changes in the domain dynamics of MDM2 upon ligand binding.  相似文献   

17.
Gankyrin is a new oncoprotein with potent cell cycle and apoptotic properties that is overexpressed early in hepatocarcinogenesis and in hepatocellular carcinomas. Gankyrin regulates the phosphorylation of the retinoblastoma protein (pRb) by CDK4 and enhances the ubiquitylation of p53 by the RING ubiquitin ligase MDM2. Purified preparations of the 26S proteasome contain gankyrin, which specifically interacts with the S6b (Rpt3) ATPase of the 19S regulator. In conclusion, gankyrin is a small versatile cell cycle regulator that illustrates the essential interplay between the ubiquitin proteasome system and gene expression in the cell. Here, we discuss the activities of gankyrin and present a model for its function in the regulation of pRb and p53.  相似文献   

18.
Testicular germ cell tumors (TGCT) are unique in their excellent response to DNA-damaging chemotherapy. Mutation of p53 is rare in both untreated and relapsed TGCTs, suggesting that p53 fails to respond effectively against malignant transformation in germ cells. Previous studies implicated the presence of a poorly defined TGCT-specific mechanism of p53 inactivation. Here we show that disruption of p53-MDM2 binding using the MDM2-specific inhibitor Nutlin activates p53 in TGCT cells and is sufficient to induce strong apoptosis. Knockdown of MDMX cooperates with Nutlin to activate p53. Surprisingly, we found that p53 activation induced a two-fold increase in MDMX mRNA and protein expression in TGCT cells. A p53-responsive promoter is identified in MDMX intron 1 that contains a functional p53-binding site, suggesting that MDMX also functions as a negative feedback regulator of p53 in a cell line-dependent fashion. These findings suggest that MDM2 and MDMX are responsible for the functional inactivation of p53 in TGCT. Furthermore, TGCT cells are unique in having a strong apoptosis response to p53. Direct activation of p53 by targeting MDM2 and MDMX may provide a backup approach for the treatment of TGCTs resistant to DNA-damaging drugs.  相似文献   

19.
Mdm2 is the main regulator of p53 and is amplified in approximately 7% of all human cancers. MDM2 gene amplification as well as expression has been correlated to an increased tumorigenic potential. We have analyzed the prevalence of MDM2 gene amplifications and SNP309 in 284 colorectal tumors using a relatively new highly sensitive PCR/ligase detection reaction method in relation to TP53 mutational status and genomic instability. We found MDM2 to be amplified in 9% of the 284 colorectal cancers analyzed and a significantly higher proportion of tumors with high MDM2 gene amplification retained a wild-type p53 gene (P = 0.058). MDM2 gene amplification was significantly correlated to advanced tumor stage. Several small-molecule MDM2 antagonists have already been identified that either physically inhibit the p53-MDM2 binding or the E3 ligase function of MDM2. Our results suggest that MDM2 is a promising target for this type of cancer therapy in a substantial subgroup of colorectal cancers.  相似文献   

20.
Intracellular protein levels of p53 and MDM2 have been shown to oscillate in response to ionizing radiation (IR), but the physiological significance of these oscillations remains unclear. The p53-MDM2 negative feedback loop – the putative cause of the oscillations – is embedded in a network involving a mutual antagonism (or positive feedback loop) between p53 and AKT. We have shown earlier that this p53-AKT network predicts an all-or-none switching behavior between a pro-survival cellular state (low p53 and high AKT levels) and a pro-apoptotic state (high p53 and low AKT levels). Here, we show that upon exposure to IR, the p53-AKT network can also reproduce the experimentally observed p53 and MDM2 oscillations. The present work is based on the hypothesis that the physiological significance of the experimentally observed oscillations could be found in their role in regulating the switching behavior of the p53-AKT network between pro-survival and pro-apoptotic states. It is shown here that these oscillations are associated with a significant decrease in the threshold level of IR at which switching from a pro-survival to a pro-apoptotic state occurs. Moreover, oscillations in p53 protein levels induce higher levels of expression of p53-target genes compared to non-oscillatory p53, and thus influence cell-fate decisions between cell cycle arrest/DNA damage repair versus apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号